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Abstract: This paper presents a big data analytics-based model developed for electric distribution
utilities aiming to forecast the demand of service orders (SOs) on a spatio-temporal basis. Being
fed by robust history and location data from a database provided by an energy utility that is using
this innovative system, the algorithm automatically forecasts the number of SOs that will need to be
executed in each location in several time steps (hourly, monthly and yearly basis). The forecasted
emergency SOs demand, which is related to energy outages, are stochastically distributed, projecting
the impacted consumers and its individual interruption indexes. This spatio-temporal forecasting is
the main input for a web-based platform for optimal bases allocation, field team sizing and scheduling
implemented in the eleven distribution utilities of Energisa group in Brazil.

Keywords: utility analytics; prediction analytics; big data in power system operation; advance
statistics for energy; spatio-temporal forecasting

1. Introduction

The electric distribution utilities are responsible for supplying energy to an extensive
number of consumers spanned across vast geographic regions. This service is provided
through the electrical grid, which is also spread along the utility operating area. In this
scenario, distribution utilities should allocate and manage resources all over its conces-
sion area, aiming to provide its services considering energy quality goals while reducing
operational costs.

Workforce planning aims to optimally allocate and size work teams to perform a
given task on a specific time horizon. This problem includes the proposition (strategic
planning) of operational facilities (depots) where the teams start their daily work routine,
sizing (tactical planning) the number of workers in each depot and finally distributing
(operational planning) each staff member in a work schedule. These studies are necessarily
based on some spatio-temporal service demand predictions, which must be conducted
for different forecasting horizons (long, medium and short term) and also for distinct
geographical scales (city, district, zone).

The strategic planning algorithm receives location data of the forecasted services
and, with this data, optimizes the positioning of operational bases (depots), taking into
consideration the actual bases. As a result, the system can indicate the opening or closing of
some bases if it seems necessary to reduce costs and improve services quality and efficiency.
Depots are related to real locations that are used as stations from where work teams can be
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dispatched during working hours. Strategic planning has a long-term impact (years, for
example), and the actions proposed by companies in this context may include employee
training quality policies and infrastructure location [1,2].

The tactical planning algorithm is responsible for sizing the number of electricians per
depot within the region being studied and involves more detailed decisions such as stock
levels of spare parts, production rates, outsourcing, hiring, and allocation of employees.
Discussions about this activity can be observed in [3–6]. This algorithm receives the number
of electricians available on the existing bases as well as the location of these bases, and
unlike strategic planning, it covers a medium-term period (weeks to months). With this
information on hand, the sizing of the necessary teams for dealing with the forecasted
services can be done, resulting in the required number of teams and works per depot to
deal with this predicted service demand.

The operational planning algorithm is responsible for defining the work schedule of
the workforce crew. With user-defined schedules and the number of available electricians
per base, this algorithm allocates the electricians along with the schedules, forming teams
to deal with the service demand forecasted and to minimize idle time. This algorithm
consists of a short-term horizon (hours to weeks) and encompasses the detailed actions
needed to achieve immediate goals [5]. As a result, this returns the schedule that best fits
the scale of the demand and maximizes the productivity of the workforce.

As previously mentioned, the planning algorithms should receive the respective
spatio-temporal service demand forecasting. These projections are directly related to the
technical features of each work. The demand for planned actions such as inspections and
preventive maintenance could be provided by maintenance programming strategies [7].
Other planned works, including commercial services, such as new consumer connections
or power cuts due to the lack of payment or frauds, can also be furnished by specialized
algorithms [8].

Unplanned services related to power outages cannot be programmed, but their de-
mand should also be forecasted. This prediction is very important for distribution system
operation, enabling preventive actions that aim to improve power system resilience [9].
The literature shows analytics and machine learning algorithms that process the service
orders (SOs) historical data along with meteorological information aiming to provide
short-term predictions of the spatio-temporal distribution of power outages in the con-
cession area [10–12]. These algorithms require historical meteorological data and also its
predictions, which jeopardize its application in utilities without this kind of information.
Given the high level of uncertainty involved in predicting climate events, this forecasting
strategy is not recommended for long-term studies like the ones required by workforce
planning. In fact, to the best knowledge of the authors’ knowledge, the literature does not
present an algorithm for long-term prediction of the number of power outages distributed
in a geographic region.

The historical data regarding the executed service orders (SOs) represents a huge
database including different types of information, such as location (latitude and longi-
tude), technical features (type of work, execution time) and so on. Big data, according
to [13], refers to extremely large data sets of varying types of data, being a combination of
structured, semi-structured, and unstructured data, which can be collected, stored, and
later analyzed to provide insights for organizations and used in machine learning projects,
predictive modeling, and other advanced analytics. In [14], big data is cited as a massive
amount of information (exceeding many zettabytes), which requires other techniques than
commonly used software to gather, store, and process data within a short time. These big
data algorithms can be applied to extract valuable insights from operational databases such
as executed service orders (SOs) exploited through the entire concession area.

This paper shows a Python-based big data analytics algorithm for spatio-temporal
service orders (SOs) demand forecasting in electric distribution utilities. This algorithm is a
module of the Intelligent Workforce Planning System called AWDEC (Aplicação Web para
Dimensionamento de Equipes de Campo—Brazilian acronym for Web-based Workforce
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Planning System). This platform was developed for Brazilian electric distribution utilities,
and it is split into four modules, such as spatio-temporal forecasting; strategic planning
(depots allocation); tactical planning (field teams sizing); and operational planning (field
teams scheduling). The optimization planning modules use optimization techniques, such
as Particle Swarm and Mixed-Integer Linear Programming, for solving the respective
problems. These techniques have several different applications in energy systems, as
reported in [15–17].

The forecasting module is responsible for services demand prediction based on the
work history provided by the distribution utility. The prediction is produced for each
location under the responsibility of the energy company and each month along the year,
taking into account typical workweeks to project the hourly SOs demand. The forecasted
emergency SOs demand, which is related to power outages, is stochastically distributed
considering its historical and geographical spread, projecting the impacted consumers and
its individual interruption indexes. These individual indexes are considered in the financial
penalties estimation algorithm regarding interruption duration goal violations, which is
one of the costs to be minimized in the strategic planning model (depots allocation).

This web-based platform is already being used by eleven distribution utilities from
the Energisa group in all Brazilian geographical regions. Due to the sheer complexity
of this system, this paper is dedicated to the forecasting module with an emphasis on
emergency services demand prediction. As previously mentioned, and also stated in [3], to
the best of the authors’ knowledge, this is the first proposal of a spatio-temporal service
orders demand prediction algorithm for distribution utilities that integrate different time
horizons (year, month, weeks, days and hours) and distinct geographic divisions (locations
and squares). Aiming to provide an adaptive algorithm that automatically represents the
patterns presented in the service order time-series from each location, a seasonal mean
average strategy was selected. This algorithm is flexible for dealing with different situations
regarding data availability, and it also represents weather seasonality, one of the main
causes of power outages in distribution systems [3].

2. Methodology

The proposed algorithm processes the historical data related to the service orders
executed by the field teams all around the utility concession area, providing spatio-temporal
predictions of the number of services to be executed in different time scales (year, month,
week, day and hour) and geographic divisions (city, squares). The algorithm needs to
filter the historical database that aims to detect and also correct possible outliers related
to missing geographic coordinates and/or bad registers of this information. Emergency
services related to power outages are geographically distributed in a more detailed way,
sorting the affected consumers in order to estimate the time without energy for each
client. This duration is compared with individual time goals for each consumer, providing
financial penalties that must be paid by the utilities for its clients. Figure 1 summarizes the
proposed spatio-temporal forecasting algorithm, and Figure 2 points out the main features
regarding the distribution of the monthly predicted emergency services. Each step of the
proposed algorithm will be shown in the next subsections.

2.1. Geographic Filter of Emergency Service Orders

This functionality is responsible for verifying if the 2-tuple <latitude, longitude> from
an order belongs to a certain municipality. It depends on two premises: (1) geographic
coordinates are described in the WGS-84 cartographic system; (2) cartographic limits of
municipalities are available in a geographic base.
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Figure 1. Flowchart summarizing the proposed spatio-temporal service order demand forecasting
algorithm.

Figure 2. Emergency service orders distribution and individual time without energy estimation.

Geographical coordinates can be described according to a wide range of cartographic
systems, but those provided by the GPS (Global positioning system) are represented
in WGS-84. GPS receivers can provide coordinates in other cartographic systems, but
such receivers need to be configured to do so. It is not common to find dedicated GPS
receivers configured with cartographic systems other than the WGS-84, and usually, the
transformation between systems is conducted offline after the coordinates have been
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exported to a file. In the case of the cell phone′s native GPS receivers, there is no possibility
of such configuration. Thus, it is highly probable that any coordinates provided to the
application will be represented in WGS-84, even if the user is not aware of it.

The IBGE (Brazilian Institute of Geography and Statistics) provides data from the
twelfth census operation carried out in Brazil, known as the 2010 Census. Until the
publication date of this article, the next and newer census was not accomplished. Among
the various census data, it is available as the base of the municipal territorial limits, which
represents the current situation of the Brazilian administrative political division, on a
scale compatible with 1:250,000, without cartographic generalization or redundant points
suppression. For each state, the group of municipalities is made available in shapefile
format, referenced to the Brazilian Geodesic System (currently SIRGAS 2000). For this
work, the bases of municipal networks of all Brazilian states were obtained from the IBGE
FTP portal [18].

Note that the latitude and longitude coordinates used in this project are given in
WGS-84 and that these were matched against municipal boundaries described in a dif-
ferent cartographic system called SIRGAS 2000 [19], it is very common to make a direct
comparison between points described in the two systems because they are significantly
similar. The maximum error in an operation like this, under very specific conditions, is
up to 70 cm. In the case of the coordinate validation proposed herein, such maximum
error value is fully acceptable, and therefore there was no motivation to implement a
coordinate transformation.

The coordinates validation was constructed in Python 3.x, and the reading of the
shapefiles of the municipal mesh was carried out with a library called Fiona [20]. The
algorithm is quite straightforward: a test is performed on all polygons to verify that the
point to be validated (latitude, longitude) is within it, and then it is verified that the polygon
found has the same name as the desired municipality. The routine to check whether a point
is inside any polygon was taken from the classical literature on geometric modeling for
detecting points inside concave and convex polygons [21].

The methodology used to calculate the prediction of SOs depends on the historical
database related to SOs execution (time and location). Therefore, it is first necessary to
prepare the data before the application of the forecasting algorithm. This is required to
filter out gross errors. This process starts at filtering the history of service orders (SO)
completed, for it is required to assess the consistency of the variety of information that
encompasses this data; in particular, the confirmation of the geo-coordinates referring
to the location where the SO was executed. This information is vital for the accuracy
of the estimation of the volume of services demand per location. In the case that this
information is missing from the records of executed services, the coordinate is replaced
by the coordinate of the first client affected by this service. If the client’s coordinates are
also missing, the coordinates are replaced by the centroid of the region. Records of services
without affected clients are populated with client information from the ones geographically
closer to the coordinates of the service.

2.2. Service Order Grouping

The services to be performed by the distribution utilities field teams vary both in
technical terms and also in commercial aspects. For instance, works related to power
outages include distinct activities going from protective device reclosing to a transformer
substitution. The myriad of service types requires some aggregation aiming to identify
temporal patterns without jeopardizing the workforce planning objectives.

The service orders (SOs) are classified into 3 categories: Emergency, Scheduled Reg-
ulated and Scheduled Non-Regulated. The emergency SOs must be handled as soon as
possible to meet the limits set by [22]. For this category, the calculation of the time the
client remains off the power grid starts after three minutes without electricity supply. On
the other hand, Regulated Scheduled SOs also generated payback but can be completed
in a longer period (a few days) compared to the emergency ones. Lastly, Non-Regulated
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Scheduled SOs do not generate any penalties to the utility. Thus, it is of great importance to
focus on Emergency occurrences. All service types are lumped together into their general
categories; that is, all emergency service orders go to the Emergency Occurrence Service
Block meanwhile all the planned services (maintenance, for example) go into Schedule
Service blocks, which are further split into Regulated and Non-Regulated blocks.

The average execution and preparation times are calculated based on history. Figure 3
shows the contents of each Service Block.

Figure 3. Inside look of each Service Block. The user interface (UI) is in Portuguese because this
system is already in use by the energy utility. The terms represent service type description (descrição
do bloco), department (departamento), vehicle (veículo), service type (tipo de serviço), planned
or commercial (programada/commercial), emergency (emergencial), regulated service (serviço
regulado), yes (sim), no (não), special travel time (TMD de exceção), team skill (perfil equipe),
execution time (TME) and preparation time (TMP).

For each Service Block, a description can be added, what type of vehicle will be used
to attend these types of SOs (which has an impact on cost and payback in the Modules
that come after Forecast Planning), what kind of service it is (emergency or business),
what electrician profiles it uses and what Services it draws from the database based on the
information provided.

Each location is represented by latitude and longitude pairs. Locations, where there is
a base, are represented by the latitude and longitude of the corresponding base. To represent
the locations without bases, a centroid’s latitude and longitude are calculated from the
geographic distribution of the several different types of SOs belonging to the preferred
locations. The distance between locations is the distance between its bases/centroids, as
shown in Figure 4. The considered distances are the actual distances for existing roads
obtained via Google API, represented by the dotted lines. Afterward, the system verifies if
a pair of latitude and longitude belong to a specific city.

2.3. Virtual Location

Another fundamental functionality is the creation of Virtual Locations. Some states
are so big in Brazil that utilities split them into multiple locations. For Energisa Sergipe, a
utility in Brazil, the capital of Sergipe is Aracaju, which due to its sheer size it was split
into two virtual locations, Aracaju 10,001 and Aracaju 10,002, which ends up dividing
the SOs among the two. This division is conducted automatically using the traditional
k-means algorithm.



Energies 2021, 14, 7991 7 of 16

Figure 4. Division of a territory into multiple locations.

2.4. Monthly Service Demand Forecast by Location

A monthly forecast is calculated for each location and each service type block. The
predicted monthly volume of SOs is given by Equation (1):

Q_OSm
ij = 1/N ∑N

n=1Q_OSm
ij (n) (1)

where:
Q_OSm

ij is the average amount of SOs in Service Block j in location i predicted for the
month m;

Q_OSm
ij (n) is the amount of SOs in Service Block j in location i executed in month m

in year n;
N is the number of available years in the history database.
This equation model represents the yearly seasonality inherent in the historical data,

which is, for the predominantly aerial distribution power system in Brazil [23], highly
important considering how the rainy season is one of the most common causes of problems
that generate SOs in the power system.

2.5. Forecast of Hourly Service Demand by Location

The hourly forecast consists of a breakdown of the predicted monthly volume of SOs
according to the historical distribution of this amount in each hour of the respective month
for each day of the week. Therefore, this modeling also takes into account the daily and
weekly seasonality, that is, the SO execution pattern as a function of the hour of the day
and the day of the week. For example, some SOs are not executed outside business hours.

Service orders that can be scheduled and are not subject to regulatory deadlines
restrictions [24] are not carried out outside business hours or on weekends. Thus, for each
month, and also for each location and each service, it is estimated, for each hour of the
day of the week, the proportion between the number of SOs completed in the respective
hour to the total volume of SOs executed in the respective month. This estimate takes
into account the entire historical, i.e., the hourly proportion is calculated considering all
annual records for that respective month. For example, the historical data of two whole
years, the proportion for a given month considers the SOs executed in each month in these
two years. The construction of this typical week allows the distribution of the monthly
volume foreseen in each month in hourly values necessary for the Tactical and Operational
Modules (sizing and allocation of teams in scales).
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Mathematically, the hourly ratio can be calculated by Equation (2):

TOTAL_OSij
m = ∑n=1

N Q_OSij
m(n)

fij
md(h) = ∑n=1

N Q_OSij
mh(n)/Nd

m × TOTAL_OSij
m (2)

where:
TOTAL_OSij

m is the total SO volume of Service Block j in location i for the month m;
Q_OSij

m is the amount of SOs in Service Block j, in the location i, completed on the
month m in year n;

Nd
m is the number of days of week d, in month m of all years available in the historical

database;
Q_OSij

mh(n) is the amount of SOs in Service Block j, in the location i, completed in
the month m at hour h of year n;

fij
md(h) is the participation factor that represents the proportion of the quantity of

SOs in Service Block j, in location i, completed in the month m, at hour h, at a day of the
week d to the total amount of SOs in Service Block j, in location i, executed in month m in
all of the history data.

2.6. Spatial Forecast of Emergency Service Orders Demand by Location

The emergency services orders (ESOs) monthly spatial forecasting for each location is
stochastically distributed along the geographic area, projecting the impacted consumers
and its individual interruption indexes. These individual indexes are considered in the
financial penalties estimation algorithm regarding interruption duration goal violations,
which is one of the costs to be minimized in the strategic planning model (operational
facilities allocation).

The algorithm is based on bi-dimensional histograms, calculated through the geo-
graphical division of each location in sub-regions called squares. This division enables the
automatic and non-parametric estimation of the probability distribution of ESOs along
the location geographical area for each month. This estimative is obtained through the
ratio between the number of ESOs executed in each square and the total number of ESOs
in the respective location at the analyzed month. This algorithm allows the automatic
identification of regions with more incidence of ESOs.

The application of histograms requires the definition of the number of squares where
the geographical region will be divided. The automation of this process can be conducted
through the automatic estimation of the area of each square. The lateral size of each square
can be estimated using the following expression [25]:

∆x = 3.49σx N−
1
3 (3)

σx =
1

N − 1

√√√√ N

∑
i=1

(xi − x)2 (4)

where ∆x represents the lateral square size through the x direction (latitude or longitude);
N is the total number of ESOs executed in the analyzed location along the historical data;
xi is the coordinate (latitude or longitude) from the i-th ESO executed the considered
location; and x the coordinate sample mean (latitude or longitude) estimated from the
ESOs executed in the analyzed location.

Given the lateral sizes of each square, the bi-dimensional histogram from historical
ESOs for each location on a monthly basis can be estimated as follows:

1. Compute the square area (SA) using Expressions (3) and (4) for the latitude (∆x) and
longitude (∆y), respectively, obtaining:

SA = ∆x∆y (5)
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2. Compute the number of squares (NS) from the geographical area (GA) of the analyzed
location through the expression:

NS =
GA
SA

(6)

3. Compute the number of ESOs executed in each square and divide this number by the
total number of ESOs executed in the analyzed location in the considered month.

The probability distribution of ESOs along the geographical area allows the allocation
of ESOs monthly predicted demand according to this proportion. Once divided, the
number of ESOs in each square is randomly drawly between the customers belonging to
the respective square. Considering an averaged energy restoring time-related to each ESO,
this customer attribution gives an estimation of the outage duration for each client. After
the distribution process for each square is complete, the outage time for each customer is
estimated on a Brazilian regulatory basis (monthly, quarterly and annually), providing the
financial penalties estimation related to these three individual goals violations.

3. Results and Discussions

The spatio-forecasting algorithm shown in Section 3 is implemented in AWDEC and is
available for 11 distribution utilities in Brazil. Due to manuscript size limitations, its results
will be illustrated considering historical executed SOs databases from two utilities: Energisa
Sergipe and Energisa Tocantins. These selected utilities represent extreme cases, which
are related to small (Sergipe state—782,000 consumers, 21,910 km2) and vast (Tocantins
state—601,423 consumers, 277,621 km2) geographical areas. For both cases, the algorithm
considered historical SOs data from 5 years (2016–2020).

The output of these studies is the spatio-temporal forecasting for all service orders in
the cities within the state’s territory. The focus of the results will be on the largest locations
(where most of the SOs are concentrated) for each state, which is Aracaju for Sergipe state
and Palmas for the Tocantins state.

As was discussed previously, when a region is too big, it could be split into Virtual
Locations that represent the whole, where each part contains the service orders within
their area, which ultimately belongs to the original region. In Figure 5, the distribution of
the service orders has been divided and plotted in this case for the upper part of Aracaju,
identified by the number 10,001. It is worth noting that the darker color in the image is
to give more emphasis to the emergency SOs. As for the plot itself, what is shown is a
finished automatically generated Dashboard with the results of the Forecasting Module
from the AWDEC implemented at Energisa group in Brazil. The second part of the region
is identified by 10,002 and also belongs to Aracaju, where the remaining SOs of the region
can be found and shown in Figure 6.
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Figure 5. Monthly distribution of the hourly forecasted service orders throughout the year for a Monday in Aracaju city,
Sergipe state, Brazil. This figure is one of the graphical interfaces of AWDEC, developed in Microsoft Power BI. The terms
in Portuguese represents year (ano), month (mês), day of the week (dia semana), location (localidade), service type (bloco
de serviço), commercial without deadline (comercial não programado), commercial with deadline (comercial programado),
reconnection (religação), power cut (suspensão de fornecimento) and emergency (técnico emergencial). The months are
January (Janeiro), February (Fevereiro), until December (Dezembro).

Figure 6. The second part of the virtual location of Aracaju, where the rest of the region’s SOs are found. This figure is one of
the graphical interfaces of AWDEC, developed in Microsoft Power BI. The terms in Portuguese represents year (ano), month
(mês), week day (dia semana), location (localidade), service type (bloco de serviço), commercial without deadline (comercial
não programado), commercial with deadline (comercial programado), reconnection (religação), power cut (suspensão
de fornecimento) and emergency (técnico emergencial). The months are January (Janeiro), February (Fevereiro), until
December (Dezembro).

These proportions divide the total volume of SOs from a Service Block from a location,
for every month of the year, into hours of a day for up to 4 weeks (hourly distribution of
SOs for the month), as can be seen in Figure 7 where the hourly demands of SOs forecasted
are shown throughout the day.
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Figure 7. Hourly distribution of service order demand forecasted for a day. This figure is one of the graphical interfaces of
AWDEC, developed in Microsoft Power BI. The terms in Portuguese represents year (ano), hour (horário), week period
(período), location (localidade) and demand (demanda). The horizontal axis (horario) represents the 24 h of a given day.

The performance of the Spatial Forecasting Module is illustrated in Figure 8, where
the first 5 months of 2021 are compared for the biggest city of the state of Sergipe (Aracaju)
in Brazil. The yellow triangles are the executed ESOs present in the first 5 months of the
history of 2021, whereas the red dots are the forecasted SOs. At a quick glance, it can be seen
that the prediction is quite precise, even when considering how out of the ordinary 2020
was for the country’s energy companies in general, including Brazilian energy distribution
companies [26,27]. Comparing the total executed SOs from history (5770) and the total
forecasted services (5688), the difference is less than 2%, showing that the system has
good accuracy.

Another study was conducted with its historical data, completely unrelated to the
state of Sergipe. The state chosen was the Tocantins and its largest city, Palmas, for the
comparison. This city has an uneven distribution of service orders due to its sheer size
and population concentration, as can be seen in Figure 9. The less populated areas show
an uneven distribution of the SOs, and based on the historical data, it can be inferred that
for the year 2021, there has been an unusually large number of emergency service orders
happening in the first 5 months when the total volume is compared, where 6304 SOs have
been executed, while 5438 were forecasted. In this special case, it is worth looking at a
monthly comparison.

The importance of consistent historical data can be inferred from Table 1. Even though
the data of the past 3 years for this city has been consistent for the most part, certain
months, in particular, February, are shown to be outliers, where it is visible that for the
year of 2018 the total number of emergency service orders plummeted compared to the
following years and even in comparison to the other months of the same year. Additionally,
even while being fed data like this, the Forecasting Module is capable of maintaining a
conservative estimate with an acceptable degree of accuracy since an outlier like that is not
a common occurrence.
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Figure 8. Spatial distribution of executed and predicted emergency SOs throughout the biggest city
in the state of Sergipe, Aracaju, in the first 5 months of 2021.

Table 1. Total number of emergency SO in the past 3 years for the city of Palmas.

Month
2018

History
2019

History
2020

History
2021

Forecast History

1 1476 1520 1460 1461 1724
2 196 1276 1242 800 1241
3 1390 1405 1081 1243 1370
4 1185 972 983 1113 1097
5 826 926 716 821 872
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The resulting forecast for the first five months of 2021 for Aracaju can be found in 
Figure 10, alongside the executed ESOs for the first 5 months. As for the state of Tocantins, 
the main city is Palmas, and the forecasting is illustrated for the same period (January to 
May, 2021) in Figure 11. Based on the comparison of the first 5 months, it can be inferred 
that the prediction for the latter half of the year will be accurate enough to represent the 
volume of expected emergency service orders. 

Two scenarios can be inferred from this. The first is that, while the spatial distribution 
is very close as a whole when comparing the total prediction of SOs with the executed SOs 
from history data having less than 2% of the difference for Aracaju, the side-by-side 
comparison for each month shows that as a whole, the importance of the total forecasted 
volume of services is quite high since the foreplaning for what to expect is what matters. 
The second, following the trend inherited from the years of data, is the fact that there is a 
tendency of increasing the number of emergency services caused by the rainy season from 
April to the end of July in Aracaju (a seaside town in Brazilian Northeast) and from 
October to April in Palmas (Brazilian Central Plateau). This climate impact causes an 
increase in problems that can affect the distribution system and consumers directly, such 
as falling trees due to strong winds during heavy rains. 

  

Figure 9. Spatial distribution of the predicted and executed emergency SOs throughout Palmas, in
the state of the Tocantins in Brazil, for the first 5 months of 2021.

The resulting forecast for the first five months of 2021 for Aracaju can be found in
Figure 10, alongside the executed ESOs for the first 5 months. As for the state of Tocantins,
the main city is Palmas, and the forecasting is illustrated for the same period (January to
May 2021) in Figure 11. Based on the comparison of the first 5 months, it can be inferred
that the prediction for the latter half of the year will be accurate enough to represent the
volume of expected emergency service orders.

Figure 10. Forecasted (blue) versus historical emergency service orders (orange) for Aracaju city in 2021.
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Figure 11. Forecasted (blue) versus history (orange) emergency service orders for Palmas city in 2021.

Two scenarios can be inferred from this. The first is that, while the spatial distribution
is very close as a whole when comparing the total prediction of SOs with the executed
SOs from history data having less than 2% of the difference for Aracaju, the side-by-side
comparison for each month shows that as a whole, the importance of the total forecasted
volume of services is quite high since the foreplaning for what to expect is what matters.
The second, following the trend inherited from the years of data, is the fact that there is a
tendency of increasing the number of emergency services caused by the rainy season from
April to the end of July in Aracaju (a seaside town in Brazilian Northeast) and from October
to April in Palmas (Brazilian Central Plateau). This climate impact causes an increase in
problems that can affect the distribution system and consumers directly, such as falling
trees due to strong winds during heavy rains.

4. Conclusions

This paper presents a big data analytics-based algorithm for spatio-temporal service
orders demand forecasting in electric distribution utilities. Combining georeferenced
algorithms for historical data processing and statistical methods for projection and analysis,
the methodology is implemented as a module in an intelligent workforce planning system
called AWDEC (Brazilian acronym for web-based workforce planning system—Aplicação
Web para Dimensionamento de Equipes de Campo). This web-based platform is already
implemented in the Energisa group in Brazil, which is the owner of eleven distribution
utilities split along all the Brazilian geographical regions.

The presented results highlight the accuracy and also the flexibility of the proposed
method, which provide good results in two extreme scenarios regarding a small (Sergipe)
and a vast (Tocantins) geographic concession area. The forecasts were conducted auto-
matically without any user intervention, which confirms the generalization ability of the
implemented algorithm.

Another important aspect is regarded to the accuracy of the emergency service orders
(ESOs) spatio forecasting model highlighted in Figures 8 and 9. The automatically predicted
distribution of ESO is highly coherent with the realized ESO demand, providing precise
information that could be used beyond the workforce planning objective, such as in
maintenance scheduling systems.
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