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Abstract: Building extraction from remote sensing (RS) images is a fundamental task for geospatial
applications, aiming to obtain morphology, location, and other information about buildings from RS
images, which is significant for geographic monitoring and construction of human activity areas. In
recent years, deep learning (DL) technology has made remarkable progress and breakthroughs in
the field of RS and also become a central and state-of-the-art method for building extraction. This
paper provides an overview over the developed DL-based building extraction methods from RS
images. Firstly, we describe the DL technologies of this field as well as the loss function over semantic
segmentation. Next, a description of important publicly available datasets and evaluation metrics
directly related to the problem follows. Then, the main DL methods are reviewed, highlighting
contributions and significance in the field. After that, comparative results on several publicly available
datasets are given for the described methods, following up with a discussion. Finally, we point out
a set of promising future works and draw our conclusions about building extraction based on DL
techniques.

Keywords: deep learning; convolutional neural network; building extraction; high resolution; remote
sensing

1. Introduction

With the rapid development of imaging technology, high-resolution remote sensing
(RS) imagery is becoming more and more readily available. Therefore, research within
the field of RS has flourished, and automatic building segmentation from high-resolution
images has received widespread attention [1–15]. The process of extracting buildings from
RS images is shown in Figure 1, which is essentially a pixel-level classification of RS images
to obtain binary images with contents of building or non-building, and this process can be
modeled as a semantic segmentation problem [16–29].

Figure 1. Illustration of extracting buildings from remote sensing images. The white and black pixels
in prediction denote buildings and background respectively.

Deep learning (DL), with convolutional neural networks (CNN) [30–34] as its repre-
sentative, is an automated artificial intelligence technique that has emerged in recent years,
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specializing in learning general patterns from large amounts of data as well as exploiting
the knowledge learned to solve unknown problems. It has been successfully applied and
rapidly developed in areas such as image classification [35], target detection [36], boundary
detection [37], semantic segmentation [16], and instance segmentation [38] in the field
of computer vision. Proving to be a powerful tool for breakthroughs in many fields, DL
techniques applied to building extraction in RS have emerged and become the mainstream
technical tools. Although there are some reviews on RS image building extraction [39–42]
or DL-based RS image processing [43–45], there is still a lack of a research that summarizes
the latest results of RS image building extraction based on DL techniques. In this paper,
we extensively review the DL-based building extraction from RS images, excluding the
extraction of roads and other man-made features, in which the processing inputs include
aerial images, satellite images, and other multi-source data such as light detection and
ranging (LiDAR) point cloud data and elevation data.

As a fundamental task in the field of RS, automatic building extraction is of great
significance in a wide range of application areas such as urban planning, change detection,
map services and disaster management [46–56]. It is the basis for accomplishing these
applications to have efficient and accurate building information. Building extraction has
some unique features and challenges, which mainly include the following:

• Building types are in general highly changeable. They differ in interior tones and
textures and have a variety of spatial scales. In addition, their shapes and colors may
vary from building to building.

• Buildings generally stand in close proximity to features of similar materials such as
roads, and can easily be confused with other elements. The segmentation quality of
boundary contours is particularly important.

• The long-distance association relationship between buildings and surrounding objects
is an important concern due to a variety of complex factors that may cause foreground
occlusions, such as shadows, artificial non-architectural features, and heterogeneity of
building surfaces.

• RS images have more complex and diverse backgrounds and scenes, and the shapes of
buildings are more regular and well-defined than those of natural objects, rendering
boundary issues particularly critical.

DL techniques have breathed new momentum into meeting these challenges and
have sparked a wave of new promising research. In this paper, we review these research
advances, with the following core contributions:

1. A detailed description of existing high-quality public datasets applied to building seg-
mentation problems and commonly used evaluation metrics, which are key elements
in judging the effectiveness of building segmentation methods.

2. Structured review of existing DL-based building segmentation methods, including
their characteristic structures or contributions.

3. The quantitative experimental results provided in the literature are discussed, includ-
ing their problems as well as some properties.

4. An outlook based on extensive literature research and summary is given for the
possible directions of future work.

As shown in Figure 2, the remaining parts of the article are organized as follows. The
introduction of DL techniques related to the building segmentation problem is presented in
Section 2. In Section 3, descriptions of the most widely used public building datasets and
evaluation metrics for segmentation models are presented. Then, an overview of existing
methods is presented in Section 4. In Section 5, the proposed methods are briefly discussed
based on quantitative results on the datasets, and future research directions are provided.
Finally, Section 6 concludes the paper.
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Figure 2. Visualization of the reviewed contents.

2. DL Techniques

Semantic segmentation, one of the research directions of DL most closely related to
building extraction, is not an isolated research area, but a natural step in the process from
coarse to refined inference. It is a downstream task of image classification, a fundamental
computer vision task, for which image classification models provide feature extractors that
extract rich semantic features from different layers. In this section, firstly, we recall the
classic deep CNNs and design inspirations used as deep semantic segmentation systems,
and point out its enlightening role for subsequent segmentation networks. Then, transfer
learning, an important means of training DL models, is introduced. Finally, we introduce
the loss functions used to train segmentation networks.

2.1. Deep CNNs

As one of the most fundamental tasks in computer vision, the image classification
task assigns labels based on the input image and predefined categories. CNN-based image
classification methods have matured in recent years and have become an important part
of the downstream task of semantic segmentation. Here, we briefly review some classical
CNN architectures for image processing, which include VGG, GooLeNet, and ResNet.

2.1.1. VGG Networks

In 2014, Visual Geometry Group (VGG) [57] at the University of Oxford proposed a
network with more than 10 layers with concise design principles to build deeper neural
network models. The structure of the VGG network is shown in Figure 3, with the main
components being a 3 × 3 convolution operation and a 2 × 2 max-pooling operation. The
small-sized convolutional layer has a smaller number of parameters and computations
than the convolutional layer with large-sized convolutional kernels (e.g., 5 × 5 or 7 × 7
convolution operations in AlexNet [35]) to obtain a similar perceptual field. In addition, a
remarkable feature is to increase the number of feature maps after using the pooling layer,
reducing the phenomenon of useful information loss in feature maps after downsampling.

VGG network is one of the most influential CNN models because of its reinforcing the
important idea in DL that CNNs with deeper architectures can facilitate hierarchical feature
representation of visual data. It could be a guide to the structural design of subsequent
deep CNN models. Meanwhile, VGG with 16 layers (VGG-16) has become one of the
common feature extractors for downstream tasks.
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Figure 3. VGG network architecture.

2.1.2. GoogLeNet

GoogLeNet based on inception modules was proposed by Google in 2014 [58], which
won the ImageNet competition that year. It has been improved several times in the follow-
ing years, leading to InceptionV2 [59], InceptionV3 [60] and InceptionV4 [61]. The structure
of the inception module is shown in Figure 4, presenting a net-in-network (NIN) archi-
tecture. The same network layer including large-size convolution, small-size convolution
and pooling operations can capture feature information separately in a parallel manner. In
addition, inception modules control the number of channels with 1 × 1 convolution and en-
hance the network representation by fusing information from different sensory domains or
scales. Due to these modules, the number of parameters and operations is greatly reduced,
while the network advances in terms of storage footprint and time consumption. The
idea of inception provides a new way of stacking networks for CNN architecture design,
rather than just sequential stacking, as well as it can be designed to be much wider. For
the same number of parameters, inception-based networks are wider and more expressive,
providing a fundamental direction for lightweight design of deep neural networks.

Figure 4. Inception module with dimensionality reduction from the GoogLeNet architecture.

2.1.3. ResNet

Presented in 2015, ResNet [62] is a landmark research result that pushed neural
networks to deeper layers. 152-layer ResNet ranked in the top five at ILSVRC 2015 with an
error rate of 3.6% and achieved a new record with respect to classification, detection, and
localization in a single network architecture. Through experiments and analysis of several
deep CNN models, it was found that deep networks experience network degradation
during layer deepening and could not necessarily perform better than shallow networks.
In response, a deep residual structure was proposed as shown in Figure 5, allowing the
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network to shift to learning of residuals. The residual network learns new information
different from what was previously available, relieving the pressure on the deep network
to learn feature representations and update parameters. It allows the DL model to move
once again in a deeper and better direction.

Figure 5. Residual block from the ResNet architecture.

2.2. Transfer Learning

Training a deep neural network from scratch is often difficult for two reasons. On
the one hand, training a deep network from scratch requires enough dataset, and the
dataset of the target task is not large enough. On the other hand, it takes a long time for
the network to reach convergence. Even if a sufficiently large dataset is obtained and the
network can reach convergence in a short time, it is much better to start the training process
with weights from previous training results than with randomly initialized weights [63,64].
Yosinski et al. [65] demonstrated that even features learned by migration from less relevant
tasks are better than those learned directly from random initialization. It also takes into
account that the transferability will decrease as the difference between the source task and
the target task increases.

However, the application of transfer learning techniques is not so straightforward.
The use of pre-trained networks must satisfy the network architecture constraint of using
existing network architectures or network components for transfer learning. Then, the
training process itself in transfer learning is very small compared to the training process
from scratch, so it can pave the way for fast convergence of downstream tasks. An important
practice in transfer learning is to continue the training process from a previously trained
network to fine-tune the weight values of the model. It is important to choose the layers for
fine-tuning wisely, generally choosing the higher layers in the network, as the underlying
layers generally tend to retain more general features.

ImageNet [66,67] is a large image classification dataset in the field of computer vision
and is often used to train the feature extraction network part of segmentation networks.
VGG-16 and ResNet pre-trained by ImageNet are easily available to be used as the encoder
part of the segmentation network as well. In addition, a large collection of RS image
segmentation data has also been collected and merged into a large dataset and used to
pre-train the segmentation network [68].

2.3. Loss Function

Deep neural network models are trained with the loss-gradient back-propagation
algorithm, so that the design of the loss function is also directly related to the efficiency of
the network training and the performance of the model on the target task. Then the rest
of this section describes several commonly used loss functions in building segmentation
networks. To facilitate the expression of the computational process, y and p denote the
ground truth label and prediction result, respectively.
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• Cross entropy loss: Cross entropy loss (CE) is the most commonly used loss function
in dense semantic annotation tasks. It can be described as:

CE(p, y) = −∑ y log(p) (1)

• Weighted Cross Entropy loss: Weighted cross entropy loss (WCE) is obtained by
summing over all pixel losses and can not actively cope with application scenarios
such as building extraction where the categories are unbalanced. Therefore, WCEs
that consider category imbalance, such as median frequency balancing (MFB) [69,70]
CEs, have emerged.

MFBCE(p, y) = −∑ y log(p)× w (2)

where w is the category balance weight in median form, expressed by the ratio of
the median of the pixel frequencies of all the categories to the pixel frequencies of
that category.

• Dice loss: Dice loss is designed for the intersection over union (IoU), an important eval-
uation metric in semantic segmentation, and is designed to improve the performance
of the model by increasing the value of this evaluation metric.

DiceLoss(p, y) = 1 − 2 ∑ (y × p)
∑ (y) + ∑ (p)

(3)

• Focal loss: Focal loss (FL) is improved from CE loss. To address class imbalance, an
intuitive idea is to use weighting coefficients to further reduce the loss of the easy
classification category. FL can be expressed as:

FL(p) = −α(1 − p)γ log(p) (4)

where α is the weighting factor for the classes and γ ≥ 0 is a tunable parameter.

3. Datasets and Evaluation Metrics

In the case of DL, data is an extremely important component, specially with the
deepening of the network and the increasing number of parameters. The establishment
of each new building extraction method for basic DL requires the validation of a dataset.
In this section, several publicly available datasets and important evaluation metrics for
evaluating deep segmentation networks are presented.

3.1. Open Datasets

The data sources used to validate the building extraction methods are numerous
including datasets compiled by several research institutions and data obtained by literature
authors from publicly available websites (e.g., Google Earth, OpenStreetMap, and United
States Geological Survey [71–77]). The former is of higher quality, while the latter is
relatively more confusing and less generalized. Therefore, only three high quality datasets
with considerable applications are described next in this section.

• Massachusetts Buildings Dataset [78]: The datasets, available on the website of Toronto
University (https://www.cs.toronto.edu/~vmnih/data/, 15 August 2021), consists of
151 high-resolution aerial images of Boston’s urban and suburban areas. The image
size in Massachusetts Buildings Dataset is 1500 × 1500 pixels, and each image covers
a widespread area of 2250 × 2250 m2. The dataset was randomly divided into three
subsets: a training set of 137 images, a validation set of 4 images and a test set of
10 images. It is worth mentioning that these data are restricted to regions where the
average missed noise level is about 5% or lower. An example is shown in Figure 6.

• Inria Aerial Dataset [79]: This dataset, available on https://project.inria.fr/aerialima
gelabeling/ (15 August 2021), consists of 360 high-resolution RGB aerial images
covering different cities, including Austin, Chicago, Gitza, West/East Tyrol, Vienna,

https://www.cs.toronto.edu/~vmnih/data/
https://project.inria.fr/aerialimagelabeling/
https://project.inria.fr/aerialimagelabeling/
https://project.inria.fr/aerialimagelabeling/
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Bellingham, Bloomington, and San Francisco. The areas cover urban buildings with
different characteristics. For example, most of the buildings in Chicago and San
Francisco are densely distributed and usually smaller in shape, while the buildings in
Kitsap are scattered. The images have a spatial resolution of 0.3 m and an image size of
5000 × 5000 pixels, each covering a widespread surface of 1500 × 1500 m2. Only 180
images were provided with public pixel annotation (ground truth), and the remaining
180 images were reserved for testing, where users could submit predicted images
and obtain scores on the official website. To test the performance of the segmentation
method more easily and quickly, by convention, the first five images of each region
from the training set can be selected for validation. It is worth mentioning that all
image data are of high quality as they are derived from different aerially captured
orthorectified images of the landscape that are officially available locally, ignoring
data such as Open Street Maps (OSM). An example is shown in Figure 7.

• WHU Building Dataset [80]: The whole dataset, available on the website of Pho-
togrammetry and Computer Vision (GPCV) at Wuhan University (http://gpcv.whu.
edu.cn/data/, 15 August 2021), contains both aerial image dataset and satellite image
dataset. The WHU aerial dataset covers 18,700 buildings of diverse shapes and colors.
The entire image and the corresponding vector shapefiles were seamlessly cropped
into 8189 patches of 512 × 512 pixels with a ground resolution of 0.3 m. The WHU
satellite dataset consists of six adjacent satellite images covering 550 km2 in East Asia
with a ground resolution of 2.7 m. Images of different colors from different sensors
and seasons constitute a challenging case for automated building extraction. The
vector building map contains 29,085 buildings. The entire image is also seamlessly
cropped into 17,388 slices for training and testing, processed in the same way as the
aerial dataset. Of these, 21,556 buildings (13,662 tiles) were used for isolated training
and the remaining 7,529 buildings (3,726 tiles) were used for testing. An example is
shown in Figure 8.

(a) (b)

Figure 6. An example of the Massachusetts Building Dataset. (a) Original image; (b) Ground truth label.

http://gpcv.whu.edu.cn/data/
http://gpcv.whu.edu.cn/data/
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(a)

Figure 7. An example of the Inria dataset. (a) Original image; (b) Ground truth label.

(a) (b)

Figure 8. An example of the WHU dataset. (a) Original image; (b) Ground truth label.

3.2. Evaluation Metrics

In order to evaluate the performance of segmentation methods, it is usually necessary
to select some quantitative evaluation metrics to evaluate the accuracy of different methods.
In this section, we introduce the commonly used evaluation metrics, including pixel
accuracy (PA), precision (Pre), recall (Rec), F1 score (F1), and IoU. In the building extraction
task, the building is the positive case and the background category is the negative case.
These four metrics are defined as:

PA =
tp + tn

tp + tn + f p + f n
(5)

Pre =
tp

tp + f p
(6)

Rec =
tp

tp + f n
(7)

F1 = 2 · Pre · Rec
Pre + Rec

(8)

IoU =
tp

tp + f p + f n
(9)
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where tp, tn, f p and f n are the number of true positives, true negatives, false positives and
false negatives pixels, respectively.

4. Building Extraction Methods Based on DL

DL techniques represented by CNNs have been developed for a long time in the
direction of building extraction under the field of RS, whose processing of the input and
output can be shown in Figure 9. Various deep neural network architectures for solving
building extraction problems have emerged one after another.

Figure 9. Processing of input and output on DL-based building extraction study. The dataset is partially enhanced to supply
the model for back-propagation training until a certain termination condition is reached, such as iteration time and number
of iterations. After that, the model can enter the application phase, where inference on unseen data produces predictions
that match the requirements.

Patch-based annotation networks [81,82] are the key process of the adoption of DL into
the building segmentation problem, with the main advantage of helping researchers to free
themselves from complex manual feature design and perform automated building extraction
for high- and even ultra-high-resolution RS images. The patch-based approach is essentially
an image classification network that assigns a specified label to each patch, where the last
layer of the network is usually a fully connected layer. The method cuts the image into a
number of sub-images much smaller than the original size, i.e. patches, after which a CNN is
applied to process the individual patches and give a single classification for each one, and
finally stitch them together to form a complete image. The patch-level annotation method
does not require high capacity of the network, and the network is usually uncomplicated in
structure and easy to design. Saito et al. [81] designed a simple neural network containing
three convolutional layers and two fully connected layers to accomplish automatic extraction
of buildings, in which the feasibility and effectiveness of the method was confirmed by
experiments. However, the patch-based classification method has two inherent defects that
can not be avoided. On the one hand, the features of neighboring patches are similar and
the proportion of overlapping regions is extremely large. Thus, there is a large amount of
redundant computation, resulting in wasted resources and low efficiency. On the other hand,
there is a lack of long-distance information exchange. As a result, the method can not fully
exploit the contextual information in high-resolution RS images, with difficulty in completely
and accurately extracting buildings from complex backgrounds.

Fully convolutional network (FCN) [16] is a landmark pixel-based segmentation
method proposed to provide new inspiration for applying CNNs to advance building
extraction research. The core idea is to use existing CNNs as encoders to generate hierarchi-
cal features and use upsampling means such as deconvolution as decoders to reconstruct
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images and generate the semantic labels, eliminating the fully connected layer exclusively.
A classical encoder-decoder structure is formed, which can theoretically accept images of
different sizes as network inputs and output semantically labeled images at pixel level
with the same resolution. There exists a common point in current segmentation networks,
i.e., feature extraction is performed by the encoder in the process of performing multi-stage
downsampling, and the decoder gradually recovers the size and structure of the image
in the process of upsampling and generates semantic annotations. Based on this starting
point consideration, a popular approach is to use the image classification network with the
fully connected layer removed directly as a feature extraction network, i.e., encoder, such
as VGG-16, GoogLeNet and ResNet; the decoder part is composed of upsampling modules
such as deconvolution, which eventually generates dense pixel-level labels.

However, in spite of a robust approach, there are limitations in the classical FCN
model for building extraction from RS images:

1. RS images are usually high-resolution with rich contextual semantic information,
while the classical classification network is not sufficient for mining global contex-
tual information.

2. CNNs do well in mining local features, but not in modeling long-distance associ-
ation information. It is difficult for the plain decoder structure to reconstruct the
structured hierarchical detail information, such as building boundaries and contours,
which is lost due to the decrease of feature map resolution caused by the encoder
downsampling.

3. The RS images are informative, so the processing of building extraction problem should
focus on the model operation efficiency while ensuring the segmentation accuracy.

In this section, we first give an overview of the baseline methods such as FCN,
SegNet [17], and U-Net [18] applied to building extraction. These problems mentioned
above are then reviewed along with the current feasible solutions to these problems. Table 1
shows the main methods involved in the review (in the order in which they appear in this
section), containing the architectures involved in the methods, their main contributions,
and a hierarchy based on their task objectives: accuracy (ACC) and reusability (Reu) of
the model structure. Specifically, Reu indicates whether the advanced network modules
proposed in the literature can be reused relatively easily by other partitioned networks or
studies. Each objective is divided into three grades, depending on the degree of focus of
the corresponding work on that objective. From the perspective of accuracy, aggregating
multi-scale contextual information, considering boundary information, iterative refinement
and adopting appropriate post-processing strategies are aspects to be considered. Network
components with good reusability are usually robust while not producing large changes in
the size of the input and output feature maps, such as attention modules. Moreover, they
are usually designed with the objective of aggregating certain elements that are useful for
accomplishing the target task.

Table 1. Deep learning-based methods on building extraction.

Methods Acc. Reu. Contributions

DeconvNet-Fusion [2] ** ** Multi-source data post-fusion
FCN [83] * * Early CNNs

ConvNet [84] * * Signed distance
Fused-FCN4s [85] ** ** Multi-source data post-fusion
SegNet-Dist [86] * * Signed distance

MC-FCN [87] * ** Multi-scale architecture
MFRN [88] * ** Multi-scale architecture
BR-Net [89] ** ** Boundary extraction, multiple tasks

GMEDN [90] *** ** NB, multi-scale architecture
ENRU-Net [91] ** ** APNB
PISANet [92] ** ** Pyramid self-attention module
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Table 1. Cont.

Methods Acc. Reu. Contributions

ELU-FCN-CRFs [93] * * ELU, CRFs
FC-DenseNet-FPCRF [71] ** ** FPCRFs, GCNs

CNN-RNN [94] *** *** Iterative refinement of RNN architecture
EANet [95] *** *** Boundary-aware networks

Networks with BP loss [96] ** ** BP loss
BRRNet [97] *** *** Residual refinement module

DSFE-GGCN [98] ** *** Gated GCN, deep feature embedding
FCN with LFE [99] * * Local feature extraction module

EU-Net [100] * ** DSPP, category balanced loss
ScasNet [101] *** *** Multi-scale aggregation
SR-FCN [102] * ** Multiscale prediction, ASPP

Building-A-Nets [103] ** *** GAN
P-LinkNet [104] * ** Multi-scale structure LinkNet
MA-FCN [105] * ** Boundary constraints, multiscale prediction

GAN-SCA [106] ** *** SCA, GAN
HFSA-Unet [107] *** *** Two-stage channel attention

ESFNet [108] * *** Separable factorized residual block
ACR-Net [109] ** *** RBAC

SegNet-Dist-Fused [110] * * Signed distance, multi-source data fusion
CFCN [111] ** ** Boundary constraint networks

4.1. Baseline Methods

FCN, SegNet, and U-Net all employ an encoder-decoder architecture, but offer dif-
ferent aspects of design mindsets that are reflected in the encoder, upsampling, and skip
connection, respectively.

• The encoders for FCN and SegNet are usually obtained by removing fully connected
layers using classification networks such as VGG-16 and ResNet, and the encoder
for U-Net is designed to be symmetric with the decoder, allowing the depth of the
network to be increased or decreased depending on the complexity of the task.

• The decoder structure of FCN is the simplest and contains only one deconvolution
operation, while U-Net and SegNet adopt multiple upsampling to organize the de-
coder structure.

• There is a feature fusion by FCN with feature maps organized by pixel-by-pixel sum-
ming, U-Net with feature map stitching, and SegNet with pooling indices generated
by pooling operation embedded in the decoder feature map to solve the problem of
insufficient recovery information in the upsampling process.

These three types of basic methods have been applied to the building extraction
problem since a few years ago [3,83,84,86–89], which have recently been used mainly as a
baseline to motivate new methods and to compare their effectiveness.

4.2. Contextual Information Mining

The key points of building extraction are mining local information (short-distance
contextual information around pixels such as building outline and boundary) and global
information (long-distance contextual information between buildings and background and
overall association relationship between buildings and buildings with other pixels in the
image). Rich local information helps to improve the accuracy of pixel-level annotation,
while complete global information is also essential to resolve local blur. It is the concern of
all DL-based building extraction methods to balance and fuse these two aspects.

4.2.1. Global Information Mining

An encoder that contains only backbone network such as VGG-16 and ResNet for
feature extraction is imperfect. It is specialized in extracting local information at short
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distances, but not able to adequately extract contextual information at long distances,
which is mainly due to the inherent properties of CNNs.

A popular approach to get out of this dilemma is to develop network modules based
on self-attention mechanisms. Non-local block (NB) [112] is a self-attention network
module developed to extract global information and efficiently capture global contextual
information by computing the similarity relationship between each pair of pixels. At
the same time, NB ensures that the input and output shapes are the identical and can
be migrated to different networks in a "plug-and-play" manner. The global information
is properly fused with the local information extracted by CNN to enhance the building
extraction capability of the model. However, the computational effort of NB is closely
related to the resolution of the input image with the drawback of high time complexity and
high spatial complexity of computation, which reaches O(H × W × H × W). Asymmetric
pyramid non-local block (APNB) [113] was introduced by Wang et al. [91] for contextual
global information extraction, and it employs four adaptive pooling layers of different
scales to reduce the number of pixels involved in the relational computation. Due to these
pooling layers, the time and space complexity of APNB is reduced to O(H ×W × N), where
N is much smaller than H × W. To better balance the conflict between extracting local and
global contextual information and coordinating the relationship between different scales
and levels, Zhou et al. [92] combined atrous spatial pyramid pooling (ASPP) [114] and NB
both structures to propose a pyramidal self-attentive module for convenient embedding
in the network, which further enhances the information processing capability of FCNs.
Overall, the self-attention mechanism can be cleverly attached to other convolutional
networks, but it suffers from an inherent drawback that it can destroy the short-range
association and detailed information between buildings to some extent, and should be
used in conjunction with other means.

4.2.2. Boundary Contour Refinement

CNNs have spatial transformation invariance, which makes it impossible to accurately
locate spatial locations when modeling long distances, so FCNs fail to accurately label the
boundary contours of buildings. However, properties such as contours and boundaries are
of great significance for buildings.

A feasible way to optimize the segmentation results is to introduce a second-trained
conditional random field (CRF) as a post-processing module in the last layer of the seg-
mentation network. The common implementation of CRF is a fully connected network
that mines the interrelationships between long-range pixels without distance constraints,
a characteristic that is difficult to be taken into account by CNNs. Shrestha et al. [93]
argues that FCN involves upsampling operations that produce rough borders for building
segmentation and extraction results. In contrast, among RS image segmentation, two pixels
with similar location and color features have a high probability of being assigned the same
label, and vice versa is less likely to be segmented. Hence, the fully connected CRF can
be used to improve the FCN-8s with VGG-16 as the encoder to exploit the association
characteristics between pixels and improve the blurring at the building boundaries. CRFs
in the form of fully connected networks are separated from the previous CNN module
when used as a post-processing module for segmentation results, and the previous CNN
module is usually fixed during training of CRFs without information interaction with the
features extracted by the CNN. Li et al. [71] proposed the feature pairwise conditional
random field (FPCRF) based on the graph convolutional network (GCN) [115–119], which
is a CRF for pairs of potential pixels with local constraints, incorporating the feature maps
extracted by the CNN. FPCRF module can be added to the building segmentation network
as a plug-and-play component to improve the segmentation performance of the model
without significantly increasing the training and inference time. In addition, the train-
ing efficiency of FPCRF is significantly higher than that of the fully connected form of
CRF. Sharing a similar design idea with CRF, Maggiori et al. [94] designed a recurrent
neural network-based post-processing module for segmentation results by analyzing the
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mathematical process of partial differential equations for the refinement process when
considering the boundary refinement of building segmentation, which enhances the the
confidence level of pixel classification and thus optimize the segmentation details.

It is time consuming to find a better CNN network architecture with no guarantee
of robustness of the new CNN model. Another way to solve the boundary problem is to
design boundary-aware networks in a targeted manner, and boundary labeling can be
simply obtained by applying morphological erosion operations through building labeling.
The branch network for boundary extraction is used to guide the semantic segmentation
network to learn more information about the building boundaries that contribute to image
segmentation. Bringing in a branch network focusing on boundary information processing
in the segmentation network [95,96], the model achieved fine segmentation results by
training the network with a joint loss of multiple branches, such as boundary-aware
perceptual loss (BP loss).

Shao et al. [97] provides an idea of segmentation refinement by drawing on the design
of residual networks, and the proposed network consists of two parts: a prediction module
and a residual refinement module. The prediction part is a conventional segmentation
network with encoder-decoder structure, and the residual refinement module is a residual
learning module that accepts the coarse segmentation results generated by the prediction
module to learn the different information between the coarse segmentation results and the
true annotations. The whole network is trained jointly by a multi-branch loss function. The
residual refinement module has a deeper hierarchy and large perceptual field with easy
portability to other fully convolutional neural networks, thus improving the refinement
capability of the basic segmentation network for boundary contour. Shi et al. [98] analyzed
the conflict between the downsampling operation of deep CNN and the accurate segmen-
tation of boundaries, and introduced a gated GCN based on GCN design into the CNN
structure, which is able to refine the coarse semantic prediction results to generate clear
boundaries and high fine-grained pixel-level classification results.

It is good to take into account the boundary information and some specific structures
and train the network with joint loss, but the richness of the boundary samples can also
be an important factor that should not be ignored to limit the performance exploration of
such methods.

4.2.3. Dilated Convolution

Dilated convolution [120], also known as atrous convolution, has a convolutional
kernel that encompasses a larger region in a mesh without significantly increasing the com-
putational effort. It is able to rapidly increase the perceptual field while maintaining image
resolution, alleviating the conflict that deep network features have a theoretical perceptual
field much smaller than the actual perceptual field [121], thus making it easier to model
multi-scale contextual information. Hamaguchi et al. [99] enhanced the extraction of local
features with a reasonable stacking of small dilation rate dilation convolutions, effectively
reducing the cases of ambiguous results for small-sized building segmentation.This property
of that is used to extract multi-scale contextual information, and the most popular design
structure is ASPP, as shown in Figure 10. ASPP mines feature information at different scales
in parallel with multiple sets of dilation convolution kernels of different sizes. The proper
dilation rate design ensures that each pixel location is involved in the computational side.
Feature maps generated by multiple parallel branches are stitched together.
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Figure 10. Atrous spatial pyramid pooling block.

The success of the DeepLab models [21–24] can be attributed to the innovation of the
ASPP module, which has made a splash in the segmentation of natural images and has
also been widely introduced in the study of building extraction [102,104]. Kang et al. [100]
proposed a dense ASPP for quantitative analysis of image input size and perceptual field
reality, named dense spatial pyramid pooling (DSPP) module, which consists of five parallel
convolution or pooling layers. It consists of two dilated convolutions with dilation rates of
3 and 6, two standard convolutional layers with sizes of 1 × 1 and 3 × 3, and one pooling
layer, obtaining dense multi-scale contextual information better than ASPP.

Different from the dilation convolution module with parallel structure like ASPP,
Liu et al. [101] designed a self-cascaded multi-scale context aggregation module as shown
in Figure 11. The semantic extraction module at each level is implemented by dilation
convolution with different dilation rates, fusing multi-scale semantic information at dif-
ferent resources level by level. The self-cascaded module aims to aggregate global to
local contextual information while well preserving hierarchical dependencies, i.e., the
underlying containment and relative location relationships between objects and scenes at
different scales.

Figure 11. Multi-scale contextual information aggregation module.

4.2.4. Multi-Scale Prediction

An alternative approach to aggregate contextual information is to use a multi-scale
prediction strategy, i.e., to guide the feature information towards the general direction
of accurately labeled buildings as it propagates through the decoder step by step. In the
process of decoder recovering feature map size to produce labeled images, the parameters
of each convolutional block influence the change of feature mapping, so that the process of
decoder expanding feature map size is full of many uncertainties. For this reason, a multi-
scale prediction can be adopted to guide this process, which can be shown in Figure 12.
Feature maps of different sizes are gradually generated during the upsampling process,
where each prediction map aggregates the scale information of the previous level and
requires the network to gradually produce better predictions.
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Figure 12. Multi-scale Prediction.

Ma et al. [90] designed a distillation decoder containing an upsampling branch and
a multi-scale prediction branch. The upsampling branch contains five deconvolution
layers, and the multi-scale branch aggregates the multi-scale feature maps generated by
the last four upsamplings without considering the information generated by the first
upsampling since it contains only little high-level semantic information. Model ablation
experiments show that the aggregation of multi-scale information for prediction is effective
and significantly outperforms baseline methods such as FCN, SegNet, and U-Net for
building extraction on RS images. Ji et al. [102] introduced a multi-scale prediction module
based on FCN, which generates multiple independent prediction maps simultaneously in
the process of aggregating multi-scale information, imposing restrictions on the generation
and transmission of each scale information level by level, guiding them in the direction that
is conducive to producing better prediction maps. In addition to the restrictions imposed
step-by-step inside the network, it is possible to bootstrap externally during the training
phase without affecting the inference speed. Li et al. [103] and Pan et al. [106] proposed
the models by applies the design idea of generative adversarial network (GAN), where a
discriminative network is attached to the segmentation network to guide the segmentation
network to generate annotated images that are very similar to the real annotations, and
make the discriminative network unable to distinguish whether the input annotated images
are real annotations or not. This adversarial training approach is shown to be effective and
can be transferred to other models to improve model performance.

Multi-branch networks prove to be an important and effective means of extracting
multi-scale information, but can limit the speed when inferring. A suitable network post-
processing technique is the way to break this limitation.

4.2.5. Feature Fusion

Feature fusion aims to integrate global feature maps from different layers and relatively
local feature maps by introducing contextual information in the network architecture in
the form of skip connections. A commonly used approach is primarily the pixel-by-pixel
position summation of feature maps from FCN and the stitching of feature maps along
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the channel dimension from U-Net, which are widely used in RS image segmentation
networks [104,105]. However, it is clear that the capability of the feature maps from different
layers to provide information is varied and even in conflict, which may accumulate noisy
information irrelevant to the segmentation task.

Bringing in attention mechanism is an important means to improve the way of feature
fusion. Pan et al. [106] chained spatial attention module (SAM) and channel attention
module (CAM) in fusing low-level features, enabling segmentation networks to selec-
tively enhance more useful features in specific locations and channels. He et al. [107]
designed a two-stage attention structure for exploring the correlation between different
feature channels of intermediate features. The network module contains two parallel
channel attention modules of different forms for extracting channel correlation features,
which can be easily embedded into segmentation networks such as U-Net to enhance the
segmentation capability.

4.3. Lightweight Network Design

Building extraction is usually performed in high-resolution images so that the design
of segmentation networks has to take into account the consumption of computational
resources such as GPU memory and the inference speed of the prediction phase. However,
most existing methods usually require a large number of parameters and floating-point op-
erations to obtain high accuracy, which leads to high computational resource consumption
and low inference speed.

In order to achieve a better balance between accuracy and efficiency, a common
approach is to apply an existing lightweight network or adopt a more efficient convolutional
module to develop a lightweight network as a feature extraction network [122–124]. Lin
et al. [108] and Liu et al. [109] developed new feature extraction backbone networks
with deep separable convolutional asymmetric convolution respectively, incorporating
decoder networks to achieve segmentation results with accuracy no less than mainstream
networks such as U-Net, SegNet, and earlier lightweight networks such as ENet [125], with
significantly lower number of parameters and computational effort.

4.4. Multi-Source Data

Extracting buildings from RGB images is currently the most widely used method.
However, DSM elevation data and LiDAR data are widely used as auxiliary data to correct
the angle of the building and pinpoint the location of the building to improve the accuracy
of building segmentation. In other words, RGB data provides extensive background color
information and building shape information, while DSM elevation data and LIDAR data
provide accurate relative position information and three-dimensional spatial information.
The fusion of RGB images with data from other sources exists in two main stages, the pre-
processing stage before input to the network and the post-processing stage of the network.

Data fusion in the previous stage typically involves attaching multi-source data such
as DSM as an additional channel to RGB images to form multi-channel data [110,111].
However, the approach of direct fusion of data ignores the variability of different data
sources. Huang et al. [2] utilizes independent FCNs to provide segmentation results based
on data from different data sources and performs feature fusion at the final layer with confi-
dence votes to obtain the results. Bittner et al. [85] employs multiple mutually independent
encoder networks for feature extraction from multiple sources of data separately, and the
segmentation results are derived with a decoder after fusing the features.

5. Discussion and Outlook

In the previous sections we have reviewed the existing methods qualitatively, that
is, we have not considered any quantitative results. In this section, we gather the results
of the runs of these methods on the three most representative datasets (Massachusetts
Building Dataset, Inria building dataset and WHU aerial imagery dataset) in terms of the
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metrics described in Section 3 and perform analysis. In addition, we provide an outlook on
possible directions for future research.

5.1. Analysis of Quantitative Experimental Results

After an extensive survey of the literature in recent years, it can be found that the
experimental results of many methods are conducted on some non-standard datasets,
which undoubtedly makes it difficult to engage in comparison of methods from different
literature. Therefore, in this section, three widely used publicly available datasets are
selected for the summary of quantitative experimental results. The collected experimental
results are shown in Tables 2–4.

Table 2. Results on Massachusetts Building Dataset (%).

Methods PA Pre Rec F1 IoU

Patch-based CNN [82] - 94.6 95.5 - -
MFRN [88] 94.51 - - 85.01 -
GMEDN [90] 93.78 - - - 70.39
ENRU-Net [91] 94.18 - - 84.41 73.02
ELU-FCN-CRFs [93] - 95.07 93.40 93.93 89.08
ResNet ScasNet [101] - - - 85.58 74.34
EU-Net [100] - 86.70 83.40 85.01 73.93
HFSA-Unet [107] - 84.75 79.08 81.75 69.23

Table 3. Results on Inria building dataset (%).

Methods PA Pre Rec F1 IoU

Ensemble FCNs [15] 96.46 - - - 76.27
GMEDN [90] 96.43 - - - 76.69
PISANet [92] 94.50 85.92 88.68 87.27 77.45
UNet+BP Loss [96] 96.52 - - - 76.62
EU-Net [100] - 90.28 88.14 89.20 80.50
Building-A-Nets [103] 96.71 - - - 78.73
P-LinkNet [104] - 91.50 - - 84.48
GAN-SCA [106] 96.60 - - - 77.52
HFSA-Unet [107] - 92.30 89.89 91.07 83.63
ARC-Net [109] 92.5 89.6 86.8 87.5 77.9

Table 4. Results on WHU aerial building dataset (%).

Methods PA Pre Rec F1 IoU

ENRU-Net [91] 98.92 - - 95.16 90.77
PISANet [92] 96.15 94.20 92.94 93.55 87.97
UNet+BP Loss [96] 98.84 95.06 94.89 94.97 90.78
EU-Net [100] - 94.98 95.10 95.04 90.56
SR-FCN [102] - 94.4 93.9 - 88.9
MA-FCN [105] - 95.2 95.1 - 90.7
HFSA-Unet [107] - 95.09 95.18 95.13 90.72
ESFNet [108] - - - - 85.34
ARC-Net [109] 97.5 96.4 95.1 95.7 91.8
MAP-Net [76] - 95.62 94.81 95.21 90.86

However, the different settings of the experimental hyperparameters (e.g., training
time and number of iteration rounds) still make it difficult to compare the newly developed
and diverse approaches fairly even if these methods use the same dataset for experiments.
Most of the approaches in the literature are compared with well-known baseline methods
such as FCN, U-Net, and SegNet to demonstrate the effectiveness of the new methods.

It is worth mentioning that there are some approaches (e.g., ESFNet) whose research
goal is to limit the complexity of the model or to pursue the speed of network inference, i.e.,
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to make the model lightweight without significantly reducing its segmentation capability
and to make the study of building extraction more relevant to practical application scenarios.
Table 5 shows the amount of FLOPS and the number of parameters for some of the networks
involved in this paper. Even though we do not compare the computational complexity
measures of all the networks for completeness because the complexity-related measures are
not clearly given in the original paper, we can still find the following patterns. Real-time
semantic segmentation networks such as ENet, ERFNet and EDANet, as well as the efficient
building segmentation network ESFNet, are dedicated to developing lightweight models
with much lower number of parameters and FLOPS than other segmentation networks. The
remaining networks, except for FCN-8s and Deeplabv3, are almost comparable in terms
of computation and number of parameters, and are all controlled within an acceptable
range. In addition, some works have reported their training time and inference time, such
as GMEDN and ARC-Net. based on their structure and parameter size one can make an
estimate of the computing time on GPU, the general model takes about 6 hours to train
on the Massachusetts building dataset and Inria dataset, and about 0.26 seconds to infer a
patch of 256× 256 size. But the training time consumption of lightweight model will be
greatly reduced. For a larger dataset like WHU, the network may take ten hours or more to
train, but random cropping of the input image to a smaller size would shorten that time.

Table 5. Model Complexity.

Methods FLOPS (G) Parameters (M)

FCN-8s 73.49 134.27
U-Net 53.51 29.55
SegNet 79.89 39.87
PSPNet 93.48 46.73

HRNetv2 59.20 29.54
Deeplabv3 121.06 60.99

Deeplabv3+ 19.12 40.47
SRFCN 96.66 35.00

GMEDN 29.85 127.43
ENRU-Net [91] 51.87 73.71
MAP-Net [76] 48.09 24.00

ENet [125] 2.22 0.36
ERFNet [126] 14.67 2.06
EDANet [127] 4.410 0.68
ESFNet [108] 2.514 0.18

Considering the experimental comparison of methods and their reproducibility, each
method should evaluate its results on a standard dataset, including important evalua-
tion metrics such as IoU and F1. An excellent route is to describe their training process
comprehensively and disclose their models with corresponding training weights.

Given the performance with respect to the methods, we draw the following points:

1. ResNet and VGG-16 are the most widely used backbone networks for local feature
extraction.

2. Dilation convolution is the main underlying module for rapidly increasing the per-
ceptual field and extracting multi-scale information.

3. Skip connection is a necessary way for the intersection of different levels of semantic
information.

4. Multi-scale prediction and boundary constraints are powerful tools for improving the
information processing capability of the decoder.

When considering the choice of model structure, the following factors can be con-
sidered and selected. U-Net can be the first model that can be tried to solve the building
extraction problem for a specific region, and usually acceptable results can be achieved.
DeeplabV3+ can be an advanced building segmentation network, and some feasible im-
provements can be developed on it, such as GMEDN, because they are highly scalable.
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Lightweight real-time segmentation networks based on structures such as channel group-
ing strategy, deep separable convolution and dilated convolution are an optimal choice
when hardware resources are limited within the scene, such as ESFNet.

5.2. Future Research Directions

Based on extensive literature research and summary, it is believed that DL techniques
remain the mainstream approach to investigate building extraction and will continue to
evolve in the future. However, technical challenges still exist, and the remainder of the
section gives some research outlooks.

• Multi-source data fusion: RS image segmentation using the combination of RGB
images and multi-source data such as LiDAR is an important research direction, but
there still exist numerous challenges. There are many multi-source data noises, such
as mis-matching of images with LiDAR data, so the robustness of the method is
important. Exploring an effective and robust way of multi-source data fusion remains
an important research point for the future [4,13].

• Feature maps fusion: Almost all current FCN segmentation methods use CNN for
feature map upsampling and downsampling, which can directly lead to changes
in feature map resolution information and thus cause information loss. A feasible
approach is to take multiple feature maps from different locations of the network for
fusion and complementary information loss [90,97,104,107], while the specific way of
fusing multiple features is an open problem to be studied systematically.

• Multi-scale contextual information: Mining of multi-scale contextual information [104,
105,107] is a key component of building extraction networks. Although some modules
based on dilated convolution attached to feature extraction backbone networks have
been developed, further research on more efficient approaches remains necessary.

• Boundary optimization: Buildings are usually with a certain regular geometry or a
combination of multiple geometries. Therefore, the annotation of boundary contours
is extremely important, and improving the quality of boundary segmentation is
an obvious research direction to enhance the model segmentation capability. It is
a common practice to apply CRF to post-process segmentation results to further
improve the accuracy of boundary contour annotation, which is simple in design
but has limited room for improvement. A new class of approaches is to exploit a
branch network specifically for boundary refinement [97,98] as well as a boundary
loss function [95,96], for which appropriate training strategies are required.

• Lightweight network structure: The building extraction study faces a high-resolution
RS image application scenario, where the inference speed of the application equipment
is limited. Hence, it is of great importance to consider lightweight factors when de-
signing segmentation networks, so that the networks can consume less computational
and storage resources while ensuring little performance loss of the segmentation
models [108,109]. One possible research direction is to separate the training and
inference phases of the network. Multi-branch networks are easier to train and get
good segmentation capability, while single-branch networks are faster in inference
[128,129]. Therefore, the network structure can be merged or pruned during inference
to improve the application capability in real scenarios.

6. Conclusions

In this paper, we focus on RS-based building extraction using DL semantic segmenta-
tion methods. Compared to other surveys on traditional building extraction methods or
RS, this review paper is more devoted to the popular topic of DL semantic segmentation,
covering the state-of-the-art and latest work. We analyse the building extraction problem
and the basics of DL, providing the reader with the basic features of RS related to building
distribution and the basic deep learning knowledge to conduct this research. We cover
multiple types of popular DL semantic segmentation methods for solving building extrac-
tion and their associated elements such as datasets and evaluation methods, illustrating
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their important organization and characteristics so that researchers can grasp the flow of
research and current research progress. We investigate the methods involved from two
perspectives: qualitative contributions and quantitative performance comparisons. In
addition, we provide some helpful insights into the problems and methodological develop-
ments in the field, including the limitations and advantages of existing methods as well as
the design and selection of networks. However, the work in this paper also suffers from
the following two main limitations: no quantitative comparison of those non-open-source
studies because of the difficulty of a fair comparison and less attention to downstream tasks
relevant to building extraction, such as building instance segmentation and damage change
detection. In conclusion, DL methods to solve the automatic building extraction problem
from RS images are very powerful and mainstream means to promote practical application
scenarios. Therefore, we strongly encourage researchers to make the implementation code
of their proposed models and then their application datasets as open as possible, and look
forward to a large number of innovations and research lines in the upcoming years.
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Abbreviations
The following abbreviations are used in this manuscript:

RS remote sensing
DL deep learning
CNN convolutional neural network
LiDAR light detection and ranging
VGG visual geometry group
NIN net-in-network
CE cross entropy
WCE weighted cross entropy
MFB median frequency balancing
IoU intersection over union
FL focal loss
PA pixel accuracy
Pre precision
Rec recall
FCN fully convolutional network
ACC accuracy
NB non-local block
APNB asymmetric pyramid non-local block
ASPP atrous spatial pyramid pooling
CRF conditional random field
FPCRF feature pairwise conditional random field
GCN graph convolutional network
BP boundary-aware perceptual
DSPP dense spatial pyramid pooling
GAN generative adversarial network
SAM spatial attention module
CAM channel attention module
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