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Abstract: The paper addresses the problem of insufficient knowledge on the impact of noise on
the auto-regressive integrated moving average (ARIMA) model identification. The work offers a
simulation-based solution to the analysis of the tolerance to noise of ARIMA models in electrical load
forecasting. In the study, an idealized ARIMA model obtained from real load data of the Polish power
system was disturbed by noise of different levels. The model was then re-identified, its parameters
were estimated, and new forecasts were calculated. The experiment allowed us to evaluate the
robustness of ARIMA models to noise in their ability to predict electrical load time series. It could be
concluded that the reaction of the ARIMA model to random disturbances of the modeled time series
was relatively weak. The limiting noise level at which the forecasting ability of the model collapsed
was determined. The results highlight the key role of the data preprocessing stage in data mining
and learning. They contribute to more accurate decision making in an uncertain environment, help
to shape energy policy, and have implications for the sustainability and reliability of power systems.

Keywords: ARIMA; electricity load; forecasting; model identification; tolerance to noise; robustness;
simulation

1. Introduction

Electrical load forecasting plays a key role in the management and control of a power
system. Electricity is a peculiar product—there is currently no practical possibility to
store it on a large scale at a desired time. It is necessary to balance energy supply and
demand in real time. Imbalance may cause problems with the stability of the power system.
Breakdowns resulting from power system instability have serious implications for the
sustainability of regional, national, and international energy systems. They may be a cause
of many human systems failures and of serious environmental disasters. Precise analysis
and forecasting of electric load are necessary to make rational decisions at all levels of
energy sector control, management, and policy (technical, managerial, regulatory) as they
are closely linked with countries’ energy security, resources, and natural environment.
Effective forecasting decreases uncertainty, thus allowing for more accurate decisions at
the operational, strategic, and policy levels.

The importance of modelling and forecasting of electricity consumption is reflected in
numerous studies [1]. There are many modelling approaches dedicated to the volume of
demand/consumption/load. Depending on the time horizon, forecasts may be divided
into: (i) very short-term load forecasting—VSTLF (up to one hour ahead), (ii) short-term
load forecasting—STLF (from one hour to one month ahead), (iii) medium-term load
forecasting—MTLF (from one week to one year ahead), and (iv) long-term load forecasting—
LTLF (more than one year ahead) [2,3]. Diverse methods are applied depending on the time
horizon and the aim of the forecasts. Three main classes of forecasting methods may be
distinguished: (i) statistical methods, e.g., exponential smoothing models (ESM), multiple
linear regression (MLR), and autoregressive and moving average (ARMA); (ii) artificial
intelligence methods, e.g., artificial neural networks (ANN), fuzzy regression models
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(FRM), and support vector machines (SVMs); and (iii) hybrid methods comprising of two
or more methods from one or both classes [4,5]. A comprehensive review of models and
techniques used in load forecasting is presented in [1–6].

Auto-regressive integrated moving average (ARIMA) models are among the most
popular approaches in the statistical methods class successfully applied in electrical load
forecasting, in VSTLF, STLF, and MTLF tasks [1–6]. ARIMA model identification means
specifying the class: moving average—MA, auto-regressive—AR, or mixed —ARMA,
and the order. The background for model identification may be found in the general
guidelines on the pattern of autocorrelation (ACF) and partial autocorrelation functions
(PACF); therefore, much depends on experts’ knowledge and experience. Factors shaping
the load process in the power system are to a large extent random in nature. Electric
load is influenced by highly diverse and non-deterministic human activity, numerous
technological processes and their random alterations, changing weather conditions, and
other stimuli that are non-deterministic or difficult to include in the modeling. Random
noise is an inherent component of all measurement data. It may come from various sources:
measuring and transmission instruments as well as factors external to the process. Growth
of the noise in the measured signal (observed load time series) significantly impacts the
capabilities of forecasting models [7]. Taking into account the specificity of ARIMA models,
the level of the random component in a time series (measured by its amplitude) significantly
impacts the possibility of the correct model identification [8].

The above considerations have led to the formulation of the following research prob-
lem: insufficient knowledge on the impact of noise on the ARIMA model identification in
electrical load forecasting. Authors’ motivation for this research is two-fold: exploratory
and pragmatic. First, the authors desire to fill the knowledge gap that exists in the research
on noise laden electrical load time series forecasting with ARIMA models. Second, they
wish to provide a robust methodology for the evaluation of the tolerance of ARIMA models
to unavoidable noise occurring in the electric load time series. Additional motivation
for this research is to provide practical guidelines for the use of ARIMA models in noise
laden electrical load forecasting. Achieving those goals would imply more effective load
forecasting, thus better-informed decisions in managing power systems.

The contribution of this paper to forecasting theory and practice is threefold:

• Development of studies on the impact of noise in time series on the forecasting model
identifiability and their robustness,

• Assessment of the tolerance to noise of ARIMA models,
• Formulation of practical guidelines for the use of ARIMA models in noise laden

electrical load forecasting.

The paper has the following structure. In this section (Section 1), the research problem
is formulated and the motivation for the study is offered. Section 2 presents the essence of
ARIMA models and their identification. Section 3 provides a review of the publications
on ARIMA models in electrical load forecasting. Sections 2 and 3 are the basis for the
formulation of the problem solution. Section 4 describes the adopted research methodology
and the simulation experiment design. Section 5 presents the results of the experiment. The
subsequent sections explore the ARIMA model identification for real load data and impact
of random noise on ARIMA models identification and their ability to predict electrical
load time series. Section 6 presents the discussion on the contribution of the results to the
development of forecasting methodology and practice of load forecasting. The article ends
with conclusions.

2. ARIMA Models and Their Identification

The ARIMA class of models, also referred to in the literature as the Box–Jenkins
models due to the ground-breaking contribution of G.E.P. Box and G.M. Jenkins (1970) [9],
integrate the autoregressive AR(p) and moving average MA(q) component so that:

Yt = φ1Yt−1 + · · ·+ φpYt−p + et − θ1et−1 − · · · − θqet−q, (1)
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where:

φi—coefficient at observation Yt−i,
et—error distributed as white noise,
p—the order expresses the earliest value included,
θi—coefficient at error et−i,
q—the order of the series depends on the earliest previous error.

Using the backshift operator: Bjyt = yt−j, Equation (1) may be expressed by Equation (2):

φp(B)Yt = θq(B)et (2)

where:

φp(B) = 1 − φ1B − · · · − φpBp—moving-average operator, represented as a polynomial in
the backshift operator;
θq(B) = 1 − θ1B − · · · − θqBq—autoregressive operator, represented as a polynomial in the
backshift operator.

The ARMA assumes that the process is stationary. It means that time series has at
least constant mean and variance, and its covariance function depends only on the time dif-
ference. When nonstationarity is observed, data transformations are needed. Considering
nonstationarity in variance, logarithm transformation is the most popular solution, whereas
nonstationarity in mean is commonly removed by differencing. Differenced processes are
modelled by auto-regressive integrated moving average—ARIMA(p,d,q)—and the general
form for the model is:

φp(B)(1 − B)dYt = θq(B)et (3)

where:

d—order of integration (differencing).

The standard process of ARIMA modelling covers six consecutive phases: (i) pre-
liminary analysis, (ii) transformation to stationary, (iii) identification of the components,
(iv) parameters estimation, (v) testing, and (vi) application.

Identification of an adequate ARIMA model depends on the autocorrelation and
partial autocorrelation pattern. The general idea is that ACF of the p-order AR process
decays gently (exponentially), whereas the PACF cuts off after the p-th lag. In contrast,
the ACF of the MA process of q order cuts off after the q lag, whereas the PACF gently
decreases. If both ACF and PACF decay exponentially, this suggests a mixed ARMA
process. A popular approach to the determination of the appropriate order of ARIMA
is based on fitting [10]. A common approach is the automation of model identification.
It relies on the algorithmic comparison of models with different parameters and results
in the choice of a model which best fulfils the fit criteria [11–13]. Models that pass the
Ljung-Box test are accepted as statistically adequate. To compare and determinate the
fitting accuracy, several other criteria are used: simple statistical metrics, such as mean
absolute error (MAE), mean absolute percentage error (MAPE), final prediction error (FPE),
Akaike information criterium (AIC), or Bayesian information criteria (BIC) [14–16].

There is a large variety of ARIMA models. In the case of series with a seasonal
component, the seasonal ARIMA (SARIMA) model may be used. The general notation of
the SARIMA seasonal model is: ARIMA(p,d,q)(P,D,Q)s, where s is a number of seasons in
the seasonal cycle:

ΦP(Bs)φp(B)(1 − B)d(1 − Bs)DYt = ΘQ(Bs)θq(B)et, (4)

where:

ΦP(Bs) = 1 − Φ1Bs − · · · − ΦPBPs—seasonal autoregressive operator,
ΘQ(Bs) = 1 − Θ1Bs − · · · − ΘQBQs—seasonal moving-average operator.
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It is worth emphasizing that ARIMA models also consider multiple seasonality, which
is especially useful in the case of energy forecasting:

ΩP2(Bs2)ΦP1(Bs1)φp(B)(1 − B)d(1 − Bs1)D1(1 − Bs2)D2Yt = ψQ2(Bs2)ΘQ2(Bs2)θq(B)et, (5)

where:

ΦP1(Bs1) = 1 − Φ1Bs1 − · · · − ΦP1 BP1s1—first seasonal autoregressive operator,
ΘQ1(Bs1) = 1 − Θ1Bs1 − · · · − ΘQ1 BQ1s1 —first seasonal moving-average operator,
ΩP2(Bs2) = 1 − Ω1Bs2 − · · · − ΩP2 BP2s2—second seasonal autoregressive operator,
ψQ2(Bs2) = 1 − ψ1Bs2 − · · · − ψQ2 BQ2s2—second seasonal moving-average operator.

Further extensions and variations of the classic ARIMA are models that include
exogenous series as input variables, referred to as an ARIMAX:

Yt = µ + ∑i
ωi(B)
δi(B)

Bki xi,t +
θq(B)
φp(B)

et (6)

where:

ωi(B)—numerator polynomial of the transfer function for the ith input series,
δi(B)—denominator polynomial of the transfer function for the ith input series,
ki—the pure delay for effect of xi,t. at time t.

Other variants include the multivariate approach, e.g., vector ARIMA (VARMA).
When d is a fraction rather than an integer, the process is called fractionally integrated
ARMA (ARFIMA or FARIMA). There are also models like ARCH/GARCH (generalized
auto-regressive conditional heteroskedasticity) to deal with data with nonconstant auto-
correlated variance. Commonly applied ARIMA based time series modeling approaches
are hybrids derived from models of the same family, e.g., AR-GARCH—AR models with
GARCH residuals or based on models with dissimilar assumptions, e.g., ARIMA and
neural networks. In the case of energy load prediction, it is justified to use the Reg-ARIMA
compound of regression and ARIMA time series errors, for example, hourly temperature
data as a regressor [17].

Glossary of all abbreviations and acronyms used in this article can be found in Table 1.

Table 1. List of abbreviations and acronyms used in this article.

Abbreviation Meaning

ACF Autocorrelation Functions
AIC Akaike Information Criterium
ANN Artificial Neural Network
AR Auto-Regressive
ARCH Auto-Regressive Conditional Heteroskedasticity
ARFIMA Fractionally Integrated ARMA
AR-GARCH AR Models with GARCH Residuals
ARIMA Auto-Regressive Integrated Moving Average
ARIMAX Auto-Regressive Integrated Moving Average with Exogenous Variable
ARMA Auto-Regressive and Moving Average
BIC Bayesian Information Criteria
ESM Exponential Smoothing Models
FARIMA ARFIMA
FPE Final Prediction Error
FRM Fuzzy Regression Models
GARCH Generalized Auto-Regressive Conditional Heteroskedasticity
LTLF Long-Term Load Forecasting
MA Moving Average
MAE Mean Absolute Error
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Table 1. Cont.

Abbreviation Meaning

MAPE Mean Absolute Percentage Error
MLR Multiple Linear Regression
MTLF Medium-Term Load Forecasting
MW Megawatt
NSR Noise to Signal Ratio
PACF Partial Autocorrelation Functions
SARIMA Seasonal Auto-Regressive Integrated Moving Average
STLF Short-Term Load Forecasting
SVM Support Vector Machines
VARMA Vector ARIMA
VSTLF Very Short-Term Load Forecasting

3. Background Literature

In the last dozen or so years, Clarivate WoS, the Scopus database, and IEEE Xplore
have recorded several hundred publications each year, in which key words include the
terms ARIMA and “electricity” or “energy” and “volume” or “demand”, “consumption”,
“power”, “load”. The number of relevant publications from the last 10 years reported by
different scientific databases is presented in Figure 1.
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ARIMA models are among the most popular forecasting techniques in the energy
sector alongside artificial neural network (ANN), support vector machines (SVM), and
uncertainty solving approaches under discrete data such as grey or fuzzy [18] or rough [19]
and are often employed in hybrid approaches [20]. A large group of articles focuses
on comparing or combining approaches. The models used are, among others: noted
earlier neural networks [21–24], linear regression with ARIMA [21,25], Holt-Winters or
exponential smoothing [21,26], and seasonal and trend decomposition using loess [27],
metabolic grey model [28], or data mining [29]. Often it is the hybrid approaches that are
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indicated as providing better accuracy. However, approaches to increase predictability also
include, for example, innovative data filtering methods [30].

Considering applied areas, ARIMA is used to forecast energy issues at various levels of
data aggregation, based on timeseries or panel data of a group of countries, e.g., the EU [31],
individual countries [26], sectors of the economy [31–33], institutions [25,34], or production
processes [22]. Among the articles that forecast the demand/consumption/load of energy
in general, a popular subject is modelling the generation/consumption of energy from
renewable sources. Forecasts address the development of renewable energy consumption
in total [35] or from particular sources, i.e., wind [36–38], hydropower [39–41], solar [42],
thermal [43], or biogas [44]. ARIMA models are also used for modelling and forecasting
that are inextricably linked with energy CO2 generation [45–47]. Another area is price
forecasting [48] or a volatility index [49].

Considering the topic of this paper, the authors focus the literature review on the
class of ARIMA models used in electric load forecasting. ARIMA models employed in
load forecasting and modelling tasks identified in the literature are shown in Table 2. Data
used to construct and verify a model, type of forecast, ARIMA model specification, and the
source publication are presented.

Table 2. Identified ARIMA models used in load forecasting.

No Year Data/Forecast ARIMA Model Publications

1 2021

10-year monthly load, Electricité Du
Cambodge, Cambodia ARIMA(2,0,2)(4,0,2)12 Nop and Qin [50]

Multi-step, monthly load one-year ahead

2 2020

47-month daily load of household, France
ARIMA(1,0,2) Mpawenimana et al. [51]Multi-step, daily load 7, 14, 28, and

31 days ahead

3 2020
3-year daily 10 a.m. load, SLDC, Assam (a) ARIMA(1,2,2)

(b) ARIMA(0,1,1)(0,1,1)7 Goswami and Kandali [52]
Multi-step, daily 10 a.m. load one-year ahead

4 2020

10-year daily load, Karnataka, India Twelve models, each for a certain month
January ARIMA(8,1,1)

February ARIMA(5,4,1)
March ARIMA(9,1,1)
April ARIMA(5,5,1)
May ARIMA(1,6,1)
June ARIMA(4,3,1)
July ARIMA(3,3,1)

August ARIMA(8,2,1)
September ARIMA(3,3,1)

October ARIMA(2,6,1)
November ARIMA(9,1,1)
December ARIMA(5,3,1)

Gupta and Kumar [53]
Multi-step, daily load month-wise one-year ahead

5 2020
10-year monthly load, Shaoxing, China

ARIMA(12,2,9) Wang et al. [54]
Multi-step, monthly load one-year ahead

6 2020

1-year hourly load, Mahakam East
Kalimantan, Indonesia

ARIMA (0,1,1)(0,1,1)24(0,1,1)336 Dinata et al. [55]One-step, hourly load from one-week to
one-month ahead

Multi-step, hourly load from one-week to
one-month ahead

7 2019

3-day 5 min interval load, Sichuan
Province, China

ARIMA(2,2) Yang and Yang [56]
Multi-step, 5 min load 30 min ahead for

one day

8 2019

126-weak daily load, Taiwan Power
Company, Taiwan

ARIMA(1,1,1)(1,1,1)7 Yu, Hsu and Yang [57]
Daily load one-day ahead

Multi-step, daily load one-week ahead
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Table 2. Cont.

No Year Data/Forecast ARIMA Model Publications

9 2019
3-year daily load, agriculture, PG&E, US

ARIMA(0,1,0)(1,1,1)12 Noureen et al. [32]
Multi-step, monthly load one-year ahead

10 2019

14-year daily load, Toronto Canada General model
(a) ARIMA(2,0,8)

Seven models, each for
a certain day of week (b):

Mon ARIMA(0,1,10);
Tue ARIMA(0,1,10);
Wed ARIMA(0,1,12);
Thu ARIMA(0,1,10);

Fri ARIMA(0,1,9);
Sat ARIMA(0,1,10);
Sun ARIMA(0,1,9)

Tang, Yi and Peng [58]
Multi-step, daily load one-week ahead

11 2019

3-month 15 min load, Builders
Temporary Supply ARIMA(2,1,1) Amin and Hoque [59]

Multi-step, 15 min load one day ahead

12 2018

One-week 15 min load, Shiqu, Ganzi
State, China ARIMA(13,1,15) Zou et al. [60]

Multi-step 15 min load 12 h ahead

13 2017
N/A The most commonly used seasonal ARIMA is

probably the ARIMA(0,1,1)(0,1,1)
Kuster, Rezgui, and

Mourshed [6]N/A

14 2017
2-year hourly peak load, TX, US Three seasonal periods are defined as 24, 168,

and 8766 for daily, weekly, and annually
effect respectively

Eljazzar and
Hemayed [61]Multi-step, hourly peak load two years ahead

15 2017
2-year hourly load, southern region, India

ARIMA(4,0,1)24(2,1,2)168 Karthika, Margaret, and
Balaraman [62]Multi-step, hourly load one day ahead

16 2016

20-year monthly load, Regional Transmission
Organization, US ARIMA(1,1,1)

Khuntia, Rueda, and
van der Meijden [63]

Multi-step, monthly load one year ahead

17 2012

2-year half-hourly load, Java-Bali Indonesia
ARIMA(0,1,1)(0,1,1)7 Suhartono et al. [64]Multi-step, half-hourly load two weeks ahead

separately for each half-hour of a day

18 2009
6-year monthly load data, China

ARIMA(4,1,4) Wei and Zhen-gang [65]
Multi-step, monthly load six months ahead

19 2009

One-week, 5 min load, substations located at
Andradina, Ubatuba, and Votuporanga, Brazil

ARIMA(3,2,2)(0,1,1)12
ARIMA(4,2,2)(0,1,1)12
ARIMA(3,2,2)(0,1,1)12

de Andrade and
da Silva [66]

Multi-step, 5 min load twelve steps ahead

20 2006
33-year daily load, UK

ARIMIA(1,1,1)
Hor, Watson, and

Majithia [67]Multi-step, daily load four years ahead

21 2006
1-year 15 min load, Hebei province, China

ARIMA(2,2,3) He, Zhu, and Duan [68]
Multi-step, 15 min load one day ahead

22 2005

2-month 15 min load of distribution
substations, Bialystok, Poland ARIMA(0,1,1)(0,1,1)96 Nazarko Jurczuk, and

Zalewski [69]
Daily load profile modelling

23 2004
1-year 15 min load, Hebei area, China ARIMA(2,2,3) Ran-chang Lu et al. [70]
Multi-step, 15 min load one day ahead

24 1999

6-month 1 h load series, Red Electrica de
Espana, Spain Logarithmic transformation

ARIMA(1,1,0)(1,1,1)24(0,1,1)168 Juberias et al. [71]
Multi-step, hourly load one day ahead
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Table 2. Cont.

No Year Data/Forecast ARIMA Model Publications

25 1995

1-year 5 min, Taipower, Taiwan Commercial load ARIMA(1,0,0)(2,1,1)24
Office load ARIMA(2,0,0)(1,0,0)168(0,1,1)24
Industrial load, logarithmic transformation

ARIMA(1,0,2)
Residential load, logarithmic transformation

ARIMA([1,4,5],00)(0,1,1)24

Cho, Hwang, and
Chen [72]Multi-step, hourly load one week ahead

The review synthesized in Table 2 is a clear indication of the number and the variety
of ARIMA models employed in load forecasting tasks. Single seasonal models (models
1,3b,8,9,13,17,19,22,25), double seasonal models (models 6,24,25), as well as models with-
out a seasonal component (models 2,3a,4,5,7,10–12,16,18,20–23,25) are used. They may
contain the AR and MA affixes or only the MA affix (models 3b,6,10b,13,17,22). They
also may or may not include differencing (models 1,2,10a). Values determining the order
of AR and MA components and the degree of differencing vary considerably. Closer
analysis leads to the conclusion that the model type is closely tied with the length of the
output time series and the load probing period, as well as the forecast step and horizon.
ARIMA models are used to forecast the electric load with different time horizons: VSTLF
(models 7,11,12,17,19,21,23), STLF (models 2,4,6,7,8,10,11,12,15,17,20,21,23,24,25), MTLF
(1–5,9,16,18,20), and LTLF (14,20). Some models have been used to prepare mixed forecasts
like VSTLF-STLF (models 7,11,12,17,21,23), STLF-MTLF (models 2,4,6,20), MTLF-LTLF
(models 14,16,20), and STLF-MTLF-LTLF (model 20). ARIMA models are most frequently
used in STLF, MTLF, and VSTLF forecasting tasks, less frequently in LTLF tasks. Typically,
the model type has been selected on the basis of a preliminary analysis of the load curve in
order to assess the occurrence of trend and seasonality and next on the basis of the ACF
and PACF function plots. Sometimes the model selection was more mechanical; it was
based on the comparison of many models to a chosen criterion function without deeper
inspection of the time series structure (e.g., models 2,4,18,21).

Review of ARIMA models employed in electric load forecasting points at the im-
portance of proper model identification. Unfortunately, none of the cited studies have
studied the impact of noise (and its level) in the load time series on the adequacy of model
identification and its predictive capacity. The authors have encountered only a few studies
indirectly related to this problem [7,8,73,74]. In paper [7] a pattern recognition technique
was used to examine the influence of noise on the one-step ahead time-series forecasting in
the case of the exponential smoothing with non-linear neural networks methods. Results
of studying different forecasting techniques (nearest neighbors, artificial neural networks,
ARIMA, fuzzy neural networks, and nearest neighbors combined with differential evolu-
tion) from the perspective of their susceptibility to random fluctuation were presented in
work [8]. Paper [73] provides the analysis of the possibility to reconstruct the attractor of a
noise affected time series using a hybrid approach of nonparametric regression and optimal
transformations. Two algorithms that estimate the noise level in a time series are exhibited
in article [74]. In work [75], a data-filtering method for short-term load forecasting was
proposed. It was demonstrated that statistical data-prefiltering improved the efficiency of
STLF forecasting in the case of ARIMA models as well as the artificial neural networks.

In this paper the authors embrace the unexplored problematic of the robustness of
ARIMA model identification in the case of time series affected by white noise of different
noise to signal ratios (NSR) [8].

4. Research Methodology and Experiment Design

A dedicated research process was designed to study the tolerance to noise of ARIMA
models in electrical load forecasting. Its logic and main stages are presented in Figure 2.
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The designed research process consists of the following stages: (i) review of the
scientific literature related to the methods in electrical load forecasting, which resulted
in (ii) the identification of methods used in electrical load forecasting; (iii) review of the
scientific literature related to the applications of ARIMA method in load forecasting, which
resulted in (iv) the specification of ARIMA models employed in electrical load forecasting;
(v) review of the scientific literature related to the noise impact on time-series forecasting.
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The literature review fed into the (vi) experiment design, which was the basis of the
conducted (vii) simulation study that concluded with (viii) the final research report.

The simulation experiments play a key role in the study. The flow diagram of the
experiment process is also presented in Figure 2. The starting point is (1) the graphic
analysis of the electric load time series obtained from measurement data. It allows (2) to
assess the time series with a view on the occurrence of trend and seasonal components, and
consequently to decide on the needed transformations. The length of the seasonal periods
is determined by (3) analyzing the periodogram and the time series attractors. The next
step is (4) the determination of the ACF and PACF functions of the time series. This allows
us to (5) specify the ARIMA model class and (6) estimate its parameters. The next step is
(7) the analysis of model fit with the MSE and AIC criteria. The ARIMA model constructed
in this process is used to (8) generate a clean time series model, which is treated as a
reference in further study. In the following steps, (9) the reference time series is additively
disturbed with noise of different levels measured by the ratio of the standard deviations of
the signal and noise (NSR—noise to signal ratio). For each noise level, the identification of
the ARIMA model of the disturbed time series is performed together with the assessment
of its predictive capacity by setting the 95% confidence interval.

The designed experiment allows us to evaluate the stability of an identified ARIMA
model class and to assess the changes in the model’s predictive capacity in relation to the
occurrence of different levels of white nose in the time series.

5. Simulation Results
5.1. ARIMA Model Identification

Energy load is a stochastic data series with values that depend on many factors: type
of receivers; atmospheric conditions; time of the day, month, and year; sports and cultural
events; and many other random events affecting the operation of receivers. In this paper, an
hourly load time series registered in the Polish Power System (PPS) between 6 July 2020 and
27 September 2020 (12 weeks—2016 observations) is considered. The data were collected
from Polish Power System Operation—Load of Polish Power System (https://www.pse.pl/
(accessed on 1 June 2021)). Basic characteristics of the data used in this study are presented
in Table 3.

Table 3. Basic characteristics of data used in the study.

Characteristic Value

Period of load data collection 6 July 2020—27 September 2020 (12 weeks)

Number of observations 2016

Mean load 18,134.96 MW
Minimum load value 11,903.98 MW
Maximum load value 23,222.25 MW
Load standard deviation 2810.35 MW

The plot of the studied time series is presented in Figure 3.
Two seasonal components (daily and weekly; lower load on weekends) as well as

a slight linear trend are clearly visible in the time series. A periodogram was used to
illustrate the harmonic structure of the data in more detail [76].

Two dominant periods, 24 h (1 day) and 168 h (1 week), are clearly visible in the
periodogram (Figure 4), which indicates the daily and weekly seasonality of the load time
series. This is quite a typical pattern in European countries [77,78].

https://www.pse.pl/
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Reconstructions of the studied load time series in two-dimensional phase-spaces (Yt,
Yt−1), (Yt, Yt−24), and (Yt, Yt−168) are presented in Figure 5a–c, respectively. It may be
noticed that the attractor is quite easy to distinguish in both cases. This implies good
forecastability of the time series [79].
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Time series differencing is a standard procedure to remove the nonstationary compo-
nents (trend and seasonality) from data. Trend is removed by single differencing (linear
trend) or multiple differencing (equal to the degree of the polynomial describing the trend)
with lag 1. Seasonal components are eliminated through seasonal differencing with the lag
corresponding to the number of observations in the seasonal cycle [9]. In the case of the
analyzed load time series, differencing with lag 1, 24, and 168 was carried out. ACF and
PACF function plots for the differenced time series (d = 1, D24 = 1, D168 = 1) are presented
in Figure 6.
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ACF function plot (significant values for delays 1, 24, and 168) and PACF function
plot (combination of exponential decays starting from delays 1, 24, and 168) indicate the
ARIMA(0,1,1)(0,1,1)24(0,1,1)168 model.

The ARIMA(0,1,1)(0,1,1)24(0,1,1)168 model is stationary and reversible. It may be
expressed in the form of the backward shift notation as in Equation (7):

(1 − B)
(

1 − B24
)(

1 − B168
)

Yt = (1 − θ1B)
(

1 − Θ1B24
)(

1 − ϑ1B168
)

et (7)

For the purpose of modelling and forecasting, Equation (7) may be transformed into
Equation (8):

Yt = Yt−1 + Yt−24 − Yt−25 + Yt−168 − Yt−169 − Yt−192 + Yt−193 − θ1et−1 − Θ1et−24 + θ1Θ1et−25 − ϑ1et−168
+θ1ϑ1et−169 + Θ1ϑ1et−192 − θ1Θ1ϑ1et−193 + et

(8)

Estimation of the model parameters θ1, Θ1, ϑ1 was carried out with the maximum like-
lihood approach via nonlinear least squares using Marquardt’s method, with computations
performed in SAS Studio software. The following values were obtained:

θ1 = 0.20261, with std. error 0.02220,

Θ1 = 0.72873, with std. error 0.01864,

ϑ1 = 0.72605, with std. error 0.02359.

The model described by Equation (9) was used to generate a reference (clean) load
time series that was the basis for further simulations:

Yt = Yt−1 + Yt−24 − Yt−25 + Yt−168 − Yt−169 − Yt−192 + Yt−193 − 0.20261et−1 − 0.72873et−24
+0.20261 × 0.72873et−25 − 0.72605et−168 + 0.20261 × 0.72605et−169
+0.72873 × 0.72605et−192 − 0.20261 × 0.72873 × 0.72605et−193 + et

(9)
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The reference (clean) time series of hourly load values is presented in Figure 7.
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5.2. Simulation of the Impact of Random Noise

In the next step, the time series (signal) generated with use of Equation (9) was
additively disturbed by white noise with zero mean (µ = 0) and standard deviation equal
to the product of NSR ratio multiplied by the signal standard deviation:

σnoise = NSRσsignal (10)

where:

σnoise—inference noise standard deviation,
σsignal—signal standard deviation,
NSR—noise to signal ratio.

Signal standard deviation σsignal was determined for the time series remainders
(Equation (9)), i.e., after concluding the differencing operation (d = 1, D24 = 1, D168 = 1).

In Figure 8, the weekly load time series repeatedly disturbed with white noise with
standard deviation (Equation (10)) determined for various NSR values from 10% to 500%
is presented.

After the time series was additively disturbed, the ARIMA model parameters were
re-estimated and the values of residual mean square (RMS) and the Akaike information
criterion (AIC) were recalculated. Results of the calculations for NSR = 10%, 20%, 30%,
50%, 100%, and 200% are compiled in Table 4.

Simulation results indicate that, in the case of the analyzed time series, disturbances
not exceeding NSR = 20% do not cause significant alterations in parameter estimation.
The observed changes in parameters Θ1 and ϑ1 values do not exceed the 95% confidence
interval of the reference model parameter estimation. Parameter θ1 only slightly exceeds
that interval. RMS and AIC values do not change significantly, either. Increasing the
disturbance level above 30% causes more significant changes in the values of the estimated
parameters and in the RMS and AIC values. Parameters were not estimated for noise levels
higher than NSR = 200% because the ϑ1 parameter value was above the irreversibility
boundary of the model in that case.

The behavior of ACF and PACF functions is worth attention. Their plots for different
noise levels are presented in Figure 9. As can be seen, the patterns still suggest MA
seasonal process rather than AR. The obtained research results lead to the conclusion
that the reaction of the load time series to random disturbances is relatively small. The
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functions of AC and PAC do not change significantly at all tested levels of disturbance,
always indicating the original type of model. The changing values of estimated parameters
indicate that the series is recognized as of the same type, but completely different due to
the parameters’ values.

Energies 2021, 14, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 7. Reference (clean) load time series. 

5.2. Simulation of the Impact of Random Noise 

In the next step, the time series (signal) generated with use of Equation (9) was 

additively disturbed by white noise with zero mean ( = 0) and standard deviation equal 

to the product of NSR ratio multiplied by the signal standard deviation: 

𝜎𝑛𝑜𝑖𝑠𝑒 = 𝑁𝑆𝑅𝜎𝑠𝑖𝑔𝑛𝑎𝑙 (10) 

where: 

𝜎𝑛𝑜𝑖𝑠𝑒 —inference noise standard deviation, 

𝜎𝑠𝑖𝑔𝑛𝑎𝑙 —signal standard deviation, 

NSR —noise to signal ratio. 

Signal standard deviation 𝜎𝑠𝑖𝑔𝑛𝑎𝑙  was determined for the time series remainders 

(Equation (9)), i.e., after concluding the differencing operation (d = 1, D24 = 1, D168 = 1). 

In Figure 8, the weekly load time series repeatedly disturbed with white noise with 

standard deviation (Equation (10)) determined for various NSR values from 10% to 500% 

is presented.

 

Figure 8. Noise-disturbed load time series. Figure 8. Noise-disturbed load time series.

Table 4. Simulation experiment results.

Level of Disturbance
(NSR) Parameters Std. Error p-Value 95% Confidence

Interval RMS AIC

Model
σsignal = 289.5 MW

θ1 = 0.20261 0.02382 <0.0001 0.15592 0.24930
179.9524 21,704.73Θ1 = 0.72873 0.01860 <0.0001 0.69227 0.76519

ϑ1 = 0.72605 0.02588 <0.0001 0.67533 0.77677

NSR = 10%
Model + N(0; 29)

θ1 =0.21643 0.02368 <0.0001 0.17002 0.26284
184.8383 21,799.42Θ1 = 0.72698 0.01863 <0.0001 0.69047 0.76349

ϑ1 = 0.74025 0.02647 <0.0001 0.68837 0.79213

NSR = 20%
Model + N(0; 59)

θ1 = 0.28279 0.02307 <0.0001 0.23757 0.32801
200.8707 22,085.67Θ1 = 0.74010 0.01829 <0.0001 0.70425 0.77595

ϑ1 = 0.76365 0.02692 <0.0001 0.71089 0.81641

NSR = 30%
Model + N(0; 87)

θ1 = 0.35262 0.02239 <0.0001 0.30873 0.39650
221.5301 22,413.83Θ1 = 0.76606 0.01763 <0.0001 0.73151 0.80061

ϑ1 = 0.77243 0.02739 <0.0001 0.71875 0.82611

NSR = 50%
Model + N(0; 145)

θ1 = 0.46077 0.02104 <0.0001 0.41953 0.50201
270.3925 23,070.28Θ1 = 0.78613 0.01738 <0.0001 0.75207 0.82019

ϑ1 = 0.77771 0.02718 <0.0001 0.72444 0.83098

NSR = 100%
Model + N(0; 290)

θ1 = 0.68715 0.01615 <0.0001 0.65550 0.71880
395.6171 24,487.19Θ1 = 0.83840 0.01525 <0.0001 0.80851 0.86829

ϑ1 = 0.94662 0.09050 <0.0001 0.76924 1.12400

NSR = 200%
Model + N(0; 580)

θ1 = 0.84442 0.01165 <0.0001 0.82159 0.86725
661.1075 26,260.64Θ1 = 0.89227 0.01441 <0.0001 0.86403 0.92051

ϑ1 = 0.99989 45.70017 0.9825

In the next step, the models developed for the reference model and the disturbed time
series were used to calculate forecasts. Multi-step forecast 6 h ahead was prepared for each
model. Obtained forecasts with the 95% confidence interval are compiled in Table 5 and
illustrated in Figure 10.
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Increasing the noise level enlarges the forecast confidence interval (lowers the accu-
racy), but obtained results are quite surprising. Forecasts for all noise levels are fairly
consistent. Practically all forecasts made on the basis of the models derived from the
disturbed time series fit within the 95% confidence interval of the forecast made on the
basis of the reference model. It may be assumed that up to NSR = 30%, the model and
its estimation is not very noise sensitive. Increasing the noise beyond this level signifi-
cantly increases the width of the forecast confidence interval. Only increasing the noise
level to NSR = 200% makes the model irreversible. This level of disturbance changes the
possibilities of discovering the patterns of the energy load time series.
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Table 5. ARIMA forecasts for the periods of 6 h (t = 2017, 2018, 2019, 2020, 2021, 2020) for 28 September 2020.

Level of Disturbance
(NSR)

Hour of
28 September 2020 Forecast

95% Confidence Interval

From To

NSR = 0
Model

1 14,569.2799 14,216.5795 14,921.9802
2 14,231.1726 13,780.0701 14,682.2751
3 14,074.4136 13,542.8222 14,606.0040
4 14,116.8656 13,515.4628 14,718.2684
5 14,552.4516 13,888.5380 15,216.3652
6 15,601.6356 14,880.6105 16,322.6607

NSR = 10%
Model + N(0; 29)

1 14,551.6886 14,189.4121 14,913.9651
2 14,202.3811 13,742.1356 14,662.6266
3 14,056.7153 13,515.9681 14,597.4626
4 14,099.6095 13,488.8810 14,710.3380
5 14,544.8341 13,871.3574 15,218.3109
6 15,570.5080 14,839.6505 16,301.3655

NSR = 20%
Model + N(0; 58)

1 14,647.8067 14,254.1075 15,041.5060
2 14,239.7803 13,755.2924 14,724.2682
3 14,078.4536 13,517.6881 14,639.2190
4 14,183.4656 13,555.6223 14,811.3089
5 14,556.4968 13,868.0807 15,244.9128
6 15,640.8009 14,896.7270 16,384.8749

NSR = 30%
Model + N(0;87)

1 14,589.3005 14,155.1095 15,023.4915
2 14,265.3775 13,748.1437 14,782.6113
3 14,156.0002 13,567.3240 14,744.6765
4 14,189.9685 13,537.6275 14,842.3095
5 14,627.1028 13,916.7806 15,337.4251
6 15,659.0319 14,895.1165 16,422.9473

NSR = 50%
Model + N(0; 145)

1 14,334.9439 13,804.9843 14,864.9036
2 13,984.5530 13,382.4542 14,586.6518
3 13,749.7201 13,083.2452 14,416.1949
4 13,784.8641 13,059.7058 14,510.0223
5 14,203.5181 13,424.0823 14,982.9539
6 15,435.2713 14,605.0991 16,265.4435

NSR = 100%
Model + N(0; 290)

1 14,146.3251 13,370.9299 14,921.7203
2 14,264.9867 13,452.5307 15,077.4426
3 14,028.2346 13,180.3362 14,876.1329
4 14,113.0099 13,231.0924 14,994.9275
5 14,410.1252 13,495.4529 15,324.7976
6 15,543.8580 14,597.5639 16,490.1521

NSR = 200%
Model + N(0; 580)

1 14,379.1325 13,083.3855 15,674.8794
2 14,358.8916 13,047.5563 15,670.2269
3 14,624.8744 13,298.1340 15,951.6149
4 14,357.8940 13,015.9252 15,699.8628
5 14,853.3425 13,496.3162 16,210.3688
6 15,746.6589 14,374.7404 17,118.5774
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6. Discussion

The main problem of time series modelling with ARIMA models is specifying the
class (autoregressive and moving average) and the order of non-seasonal differencing, and
the number of seasons and the order of seasonal differencing. Identification of ARIMA
models is not strictly codified, and it depends to a large extent on the empirical knowledge
and the intuition of a researcher and the quality of fit of the tested models. The basis for
the identification is the analysis of ACF and PACF plots. In many cases, a given time series
may be described by different ARIMA models. The autoregressive and moving average
components may cancel each other’s effect. There is also a relationship between the degree
of differencing and the order of autoregression and moving average. The over-differencing
of the series can be compensated for by considering the additional term of autoregression
in the model, the under-differencing by the additional term of the moving average. The
possibility of the correct identification and estimation always depends on the presence and
variance of random noise. For this reason, it is important to define the disturbance level,
which determines the possibility of applying specified models.

The designed and executed simulation experiment allowed us to evaluate the ro-
bustness of ARIMA models to noise in their ability to predict electrical load time series.
This research activity follows an established research practice that consists of simulating
various aspects of power system performance under changing noise intensity [80]. In the
study, an idealized ARIMA model of electrical loads was disturbed by noise of different
levels. The model parameters were then re-estimated and new forecasts were calculated.
The experiment has provided many interesting observations. It may be concluded that
the reaction of the ARIMA model to random disturbances of the modeled time series is
relatively weak. ACF and PACF functions do not change significantly at all tested levels of
disturbance, generally indicating the original type of model. However, changing values
of the estimated parameters indicate that the series is recognized as of the same type, but
with different parameter values. The correctness of the estimation stage of a given type of
ARIMA model depends to a large extent on the level of random disturbances present in the
series. The presence of disturbance over 30%, and strongly over 100% of standard deviation
significantly influences the RMSE, AIC, and the width of the forecast confidence interval.

ARIMA models are frequently used in load forecasting. They are flexible and well
interpretable. Obtained results constitute a valuable advice regarding the mode of conduct
in practical applications of ARIMA in load modeling and forecasting. They reaffirm the
key importance of data preprocessing stage in the ARIMA model implementation. It is
also recommended to carry out a preliminary time series evaluation with regard to the
noise presence and the possible noise filtering before the ARIMA model identification and
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estimation. The authors consider it reasonable to introduce two additional phases to the
standard ARIMA model development process: noise level identification and signal filtering.
Thus, the process of ARIMA modelling would cover eight consecutive phases: (i) pre-
liminary analysis, (ii) noise level identification, (iii) signal filtering, (iv) transformation,
(v) identification, (vi) estimation, (vii) testing, and (viii) application.

Too high of a noise-to-signal ratio may be a premise for the choice of other forecasting
methods based on, e.g., machine learning or other artificial intelligence methods.

Certain limitations of the presented results must be also acknowledged. First of all,
only one load time series describing the whole power system was analyzed. Consequently,
such a time series was characterized by a large share of systematic components with
well specified features and parameters. Second, simulations were carried out only for a
single class of ARIMA model. Third, the considerations were limited to STLF forecasting.
Identified limitations point at the possible directions of further research. They should
concern the load of various elements (fragments) of the power system at different hierarchy
levels. Different ARIMA model classes should be considered. Calculations of forecasts with
various time horizons would also be valuable. It would be desirable to compare the results
obtained in this study to other simulations based on data from different time periods,
different forecast horizons, different power systems (and their sections), and different
ARIMA model classes. In this paper, authors focus on the electric load processes, but the
proposed methodology may as well be applied to study time series presenting observable
data of other origins.

7. Conclusions

The obtained simulation results presented in this paper lead to the following conclusions:

• Noise loading of the signal significantly affects the identification of the time series
ARIMA model type and the estimation of its parameters,

• The accuracy of the prediction of electrical loads strongly depends on the noise level
in the observed signal,

• The observed time series of the electrical load should be carefully examined for the
presence and the level of noise in the signal before the prediction is performed,

• Usefulness of extending the classic Box–Jenkins approach by the preliminary time
series filtration is proven.

Despite the identified limitations, which partly result from the size constraints of
this paper, it is justified to claim that the presented research contributes to the theory
and practice of electric load forecasting, allowing for the preparation of more precise
forecasts. Effectively, better forecasting decreases uncertainty and leads to better informed
decisions at different hierarchical management levels of the power system, thus making the
energy policy more robust to uncertainty, better aligned with the Goal 7 of the Sustainable
Development Goals [81], and more environmentally viable.
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