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Abstract: Solar irradiance models contribute to mitigating the lack of measurement data at a ground
station. Conventionally, the models relied on physical calculations or empirical correlations. Recently,
machine learning as a sophisticated statistical method has gained popularity due to its accuracy
and potential. While some studies compared machine learning models with other models, a study
has not yet been performed that compares them side-by-side to assess their performance using the
same datasets in different locations. Therefore, this study aims to evaluate the accuracy of three
representative models for estimating solar irradiance using atmospheric variables measurement and
cloud amount derived from satellite images as the input parameters. Based on its applicability and
performance, this study selected the fast all-sky radiation model for solar applications (FARMS)
derived from the radiative transfer approach, the Hammer model that simplified atmospheric
correlation, and the long short-term memory (LSTM) model specialized in sequential datasets.
Global horizontal irradiance (GHI) data were modeled for five distinct locations in South Korea and
compared with hourly measurement data of two years to yield the error metrics. When identical
input parameters were used, LSTM outperformed the FARMS and the Hammer model in terms of
relative root mean square difference (rRMSD) and relative mean bias difference (rMBD). Training
an LSTM model using the input parameters of FARMS, such as ozone, nitrogen, and precipitable
water, yielded more accurate results than using the Hammer model. The result shows unbiased and
accurate estimation with an rRMSD and rMBD of 23.72% and 0.14%, respectively. Conversely, the
FARMS has a faster processing speed and does not require significant data to make a fair estimation.

Keywords: solar irradiance; global horizontal irradiance; physical model; semi-empirical model;
machine learning

1. Introduction

With photovoltaic technology leading the escalating integration of renewable sources
into domestic and industrial clusters, accurate estimation of global horizontal irradiance
(GHI) becomes an important challenge since it can easily correlate to solar generation
performance [1]. However, due to constant fluctuations in the weather and the earth’s
atmospheric conditions, estimating solar power generation is frequently unpredictable [2].

Solar radiation reaching the ground is scattered, absorbed, or transmitted by inter-
vening atmospheric variables such as ozone, ambient pressure, and precipitable water [3],
but in particular, the most prominent effect is due to clouds [4]. A moving cloud with
varying shading strength has been shown to change irradiance value by over 300 W/m2

in 0.1 s, implying that irradiance transitions produced by overpassing cloud shadows can
be significant and severe [5]. Thus, reliable data that describe atmospheric conditions and
cloudiness is essential to estimate GHI under certain times and locations.

Direct ground measurements with a pyranometer and pyrheliometer provide the
most reliable solar irradiance data. Presently, solar irradiance measurement technology has
progressed to real-time data that can be collected and monitored automatically. However,
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ground measurement systems are expensive and require careful maintenance. As a result,
ground measurement has limited spatial coverage, and the measurement database remains
inadequate to meet the needs of a solar power society. Despite some work attempting to
use conventional methodologies, such as interpolation, to overcome the limited spatial cov-
erage of direct measurement, the accuracy of the interpolated data is still inadequate [6,7].
Consequently, the data generally comes from an open-source database or an organization.

Although cloud cover is crucial observation data for global weather and climate,
ground-based automatic recording has not been conducted in various countries, including
Brazil, United States of America, and South Korea [8–10]. To put it another way, some cloud
cover data (octa or tenth) has only been recorded through the eyes of a human observer
and hence could be affected by the observer’s subjective judgment [11,12]. Observation
data recorded by an unskilled observer, in particular, will contain multiple inaccuracies,
lowering its quality [13,14].

Multiple studies have figured out a more reliable way to determine the cloud con-
ditions based on easily accessible data (i.e., satellite images) [15–17]. Compared with
human observation, the satellite-derived calculation is more precise when utilized for solar
applications. A simple satellite model uses the visible channel of the satellite to calculate a
cloud index (CI). The CI is then used to modulate a clear-sky global irradiance model. The
satellite’s ability to reliably access information in any location around the globe is another
notable feature of this method. Even though the absolute precision for any given location
may not be perfect, satellites have proven to be a more reliable source of cloud detection
than human observation.

The variability in cloud amount usually changes in each location, especially due to
the fact that the level of humidity changes according to the climate [18]. As stated by
Rubel et al. [19], the most widely used method of climate characterization is the work
of Wladimir Köppen [20,21]. Based on seasonal precipitation and temperature trend,
climates are classified into five main groups by the Köppen–Geiger climate classification.
All climates were given a letter to symbolize each group, subgroup, and temperature
conditions. Cwa, for example, denotes a temperate climate with dry winters and hot
summers. Figure 1 shows the climate classification for South Korea.

Figure 1. South Korea climate classification map based on the work of Wladimir Köppen and
Rudolf Geiger.
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Since each climate has its unique set of atmospheric conditions, the GHI model is
divided based on three approaches: physical, semi-empirical, and statistical modelling;
some results are summarized in Table 1. In order to avoid miscalculation due to less
essential parameters, most physical models use physics-based calculations and regressive
correlation. Once the coefficients of correlation equations have been determined, the model
is easy to implement. Over time, the solar irradiance measurement models have been
extensively revised. For example, Kasten et al. [22] proposed a model to connect cloud
amounts to GHI. More GHI parameters, such as temperature, humidity, wind speed, and
cloud level, were added by Zhang et al. [23]. Physical models that also simulate light
scattering and absorption by air molecules and that are solved using a radiative transfer
(RT) equation are called RT models (e.g., discrete ordinates RT [24], rapid RT model [25],
and moderate resolution atmospheric transmission [26]). Although RT models have an
adequate result in estimating solar irradiance, RT computations under certain cloudy skies
are substantially more computationally expensive than standard physical models due to
the complexity of solving the RT equation. As a result, a radiation model that inherits the
computation ability of a physical model is needed. The fast all-sky radiation model for
solar applications (FARMS) is one model that addresses these issues [27]. By precomputing
cloud transmittance and reflectance into simulated lookup tables, this model improves
on existing RT as it did not explicitly solve the RT equation for each cloud condition,
which consumes considerable computational resources. As a consequence, the model’s
computational time is greatly reduced.

Table 1. Summary of the physical, semi-empirical, and machine learning models to estimate solar irradiance.

Reference Year Area Köppen–Geiger
Classification

Number of
Locations Model RMSD

(W/m2)
rRMSD

(%)

Xie et al. [27] 2016 United States Temperate (Cfa) 1 Physical 130 -
Kim et al. [28] 2016 Korea Continental (Dwa) 4 Physical 146 57
Fu et al. [29] 2016 Asia Temperate (Cfa) 1 Physical 169 -

Hammer et al. [30] 2003 Europe
Temperate (Cfa Cfb, Cfc,

Csa, Csb)
Continental (Dfa, Dfb)

1 Semi-
empirical - 35

Perez et al. [15] 2002 United States

Temperate (All
subtypes)

Continental (All
subtypes)

10 Semi-
empirical 118 -

Rigollier et al. [31] 2004 Europe
Temperate (Cfa, Cfb, Cfc,

Csa, Csb)
Continental (Dfa, Dfb)

35 Semi-
empirical - 45

Aslam et al. [32] 2019 Korea Temperate (Cwa) 2 Machine
learning 113 -

Ramadhan et al. [33] 2021 Korea Temperate (Cwa) 1 Machine
learning 102 26

Garniwa et al. [34] 2021 Korea Temperate (Cwa) 1 Machine
learning 76 21

Several computational methods for estimating GHI from satellite observations have
been established in recent decades [6]. The Hammer model, developed after extensive field
analysis and data collecting, has been used in several European studies to collect solar
irradiance data for solar energy and daylight use [30]. In addition, recent developments in
machine learning allow for sophisticated statistical approaches. Machine learning models
are more accurate in complex physics because they estimate the mapping function from
input to output variables. Several machine learning models, especially for GHI, have been
successfully implemented [1]. Those methods that specialize in handling sequential or time-
series data, such as text, voice, and image, have had a lot of success. Since solar forecasting
is intrinsically based on sequential data, the most common models are the recurrent neural
network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and a
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convolutional neural network LSTM model. According to Ramadhan et al. [33], the LSTM
model is the best sequential data set for solar applications.

GHI estimation is a challenging task, and many significant and crucial steps need
consideration. Selecting the model for estimating GHI values is one of the essential steps in
obtaining an accurate result. Hence, this work proposes a direct examination of the accuracy
performance of the physical, semi-empirical, and machine learning models, using solar
irradiance observation data, satellite images, and atmospheric conditions, for two years in
Korea and at five different locations based on its Köppen–Geiger climate classifications.
The models in this paper were chosen based on their performances and input variables,
in which the FARMS, Hammer model, and LSTM model represent the physical, semi-
empirical, and machine learning models, respectively. The machine learning model uses
both the Hammer and the FARMS inputs.

2. Data Collection

The Korea Meteorological Administration (KMA) regularly measure solar irradiance
over the northern hemisphere, including the Korean peninsula. The KMA uses a pyra-
nometer to measure the amount of GHI at each station [9]. This study used in situ solar
irradiance measurements from five KMA station locations, as shown in Table 2. These
locations were chosen based on the Köppen–Geiger climate classification.

Table 2. Measurement locations based on the Köppen–Geiger climate classification.

Station Name Locations Köppen-Geiger Climate

Seoul 37.4580◦ N, 126.9511◦ E Cold, dry winter, hot summer (Dwa)
Gangneung 37.7710◦ N, 128.8670◦ E Cold, no dry season, hot summer (Dfa)

Gwangju 35.2282◦ N, 126.8431◦ E Temperate, no dry season, hot summer (Cfa)
Seosan 36.5385◦ N, 126.3301◦ E Temperate, dry winter, hot summer (Cwa)
Busan 37.3388◦ N, 127.2658◦ E Temperate, dry winter, hot summer (Cwa)

For model input, all KMA stations provided hourly cumulative GHI measurements
(MJ/m2) that were divided by 3600 s to yield hourly GHI averages (W/m2). The measure-
ment period for all KMA stations was from 1 January 2018 to 31 December 2019. Quality
control was used in this analysis based on the technique established by Gueymard and
Lave, to ensure accurate data from the ground measurements [35,36]. All accumulated
data needed to follow the criteria outlined below, or the data were marked as invalid:

• θz < 85◦;
• GHI > 0 W/m2;
• GHI < 1.5Gext cos1.2 θz+100 W/m2.

The solar zenith angle and extraterrestrial irradiance on a normal surface, respectively,
were denoted by θz and Gext. Data that did not follow the criteria were discarded. Note that
the GHI values at low sun elevation were removed using the θz < 85◦ criterion. As part of
the KMA, the National Meteorological Satellite Center (NMSC) generates Communication,
Ocean, and Meteorological Satellite (COMS) Level-1B data in five separate channels:

1. Visible (0.67 µm);
2. Shortwave infrared (3.7 µm);
3. Water vapor (6.7 µm);
4. Infrared (10.8 µm);
5. Infrared (12.0 µm).

The visible and infrared channels have horizontal resolutions of 1 and 4 km, re-
spectively; the image radius covered all of the chosen sites on the Korean peninsula
(32◦ N–40◦ N, 125◦ E–130◦ E) 291.92 km. The COMS images were collected hourly from
1 January 2018 to 31 December 2019.

The aerosol robotic network (AERONET) is a National Aeronautics and Space Admin-
istration (NASA) network of ground-based measurements that provides information on
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atmospheric conditions, such as ozone (O3), nitrogen concentration (N2), precipitable water
(WP), optical thickness (OT), Angstrom coefficient (α), Angstrom turbidity (β), and pressure
(P). The AERONET data have three levels of quality: level-1 data are raw measurement
data that have not been filtered or normalized, level-1.5 data are filtered data, and level-2
data are filtered data that have been quality checked. Level-2 data were arranged hourly for
a one-year period from 1 January 2018 to 31 December 2019. The AERONET measurement
of O3 was obtained according to a formula by Komhyr et al. [37], which uses ozone concen-
tration (CO3 ) and the ozone optical air mass (mO3 ) from a total ozone mapping spectrometer
(TOMS) [38]. Similarly, N2 calculation uses the nitrogen concentration (CN2 ) and nitrogen
coefficient (αN2) from an ozone monitoring instrument (OMI) [39]. A sun photometer
(Cimel CE-318-4) was used to measure WP at different wavelengths using interference
filters. Six filters were centered at 340, 380, 440, 670, 870, and 1020 nm. Since the majority
of the variables in the proposed models come from a wavelength of 940 nm, data from the
filters in the 870 to 1020 nm range were used. Further information and standardization of
calibration regarding this instrument can be found in Holben et al. [40,41]. The Angstrom
optical depth (AOD) at 935 nm was extrapolated using the angstrom coefficient and the
turbidity was derived by a linear regression of the AOD and wavelengths within 870 nm,
excluding the channels affected by water vapor [41]. To compute the local pressure, the
National Center for Environmental Prediction (NCEP) analyzed mean sea level pressure at
standard levels (1000, 925, 850, 700, and 600 hPa) and fitted to a quadratic function in loga-
rithmic space [42]. Error in the local pressure is generally less than two hPa. Additionally,
an aethalometer was used to determine the amount of optical thickness at seven different
wavelengths [43].

3. Global Horizontal Irradiance Estimation

Based on their accuracy, versatility, and popularity, three models for estimating GHI
was chosen in this study from three well-known methods: FARMS, the Hammer model,
and LSTM [27,30,44]. The FARMS formula is constructed by combining two calculations,
clear-sky and overcast, to estimate all-sky irradiance. The clear-sky computation is based
on the reference evaluation of solar transmittance, two bands (REST2) [45], which is a
simplified clear-sky RT model. In overcast conditions, the overcast computation is obtained
from the total of all transmittance and reflectance in direct and diffuse irradiance. To obtain
an all-sky irradiance value, the two calculations are combined using a cloud index value
as a dot product. The result of FARMS revealed a root mean square difference (RMSD) of
130.28 W/m2 and mean bias difference (MBD) of −5.40 W/m2.

The Hammer model was developed to estimate GHI using normalized satellite pic-
tures that create CI and the HELIOSAT method as a clear-sky model [23]. Based on the
work of Garniwa et al. [34], the accuracy of this model has an RMSD of 106.23 W/m2 and a
relative RMSD of 19.89%.

Despite its popularity, the RNN model commonly suffered from the vanishing and
exploding gradient problem since the network does not have a memory cell. Hochreiter,
et al. [44] presented an upgrade to the well-known RNN model, so the model was able to
learn the long-term reliance of information known as LSTM. The LSTM has an operation
within the cells that may recollect information for a long time while also forgetting some
information that is deemed unnecessary, thus solving both the vanishing and exploding
gradient problems. Based on a review by Rajaguguk, et al. [46], LSTM performs well in
the solar irradiance field with an RMSD of 1.39 kW and a mean average error of 0.61 kW.
Each model’s detailed inputs and procedures are listed below. For clarity and simplicity,
these selected models in three categories will be referred to as “FARMS”, “Hammer”, and
“LSTM”, respectively. The summary of each model is explained below.

3.1. Cloud Estimation

Some agencies, such as KMA, use human observation to scale cloud amounts with
an integer value from zero to ten because of its easy practice. Even though this method
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is convenient, it yields a lot of errors. To reduce these errors, a method to derive cloud
conditions was created. This method utilizes an abundant resource of satellite images
to select a single pixel and calculates it as a cloud amount, as shown in Figure 2. When
sunlight penetrates the atmosphere, clouds are the key factor attenuating solar irradiance.
A relative difference in the normalized pixel value between the lower and upper limits
of its dynamic range is then used to quantify the amount of cloud. The lower and upper
limits correspond to reflectances of the ground and the cloud layer, respectively.

Figure 2. Process of generating a cloud index from satellite images using pixel normalization.

The highest and lowest values of the satellite pixels (Csat) are denoted by Cmax and
Cmin, respectively. The CI value varies from zero to one, with zero indicating the darkest
state (clear-sky) and one indicating the brightest condition (overcast).

CI =
Csat − Cmin

Cmax − Cmin
(1)

3.2. FARMS

It is necessary to calculate both the clear- and cloudy-sky circumstances (denoted by
the superscripts clr and cld, respectively) to develop an RT model that can account for solar
radiation in all-sky situations. FARMS is based on a solar radiation model with a two-band
formulation, where i represents the variable for each band. Each clear-sky direct normal
irradiance (DNI) band is derived from the sum of individual transmittances as follows:

DNIclr = TRiTgiToiTniTwiTaiT0niµ (2)

where the band transmittances for Rayleigh scattering, evenly mixed gases absorption,
ozone (O3), nitrogen dioxide absorption (N2), precipitable water (WP), and aerosol extinc-
tion are TRi, Tgi, Toi, Tni, Twi, and Tai, respectfully, and µ is the value of the cosine zenith
angle. It also counts the extra-atmospheric irradiances at the mean sun–earth distance, E0ni.
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Note that TRi and Tai were affected by the pressure (P), Angstrom coefficient, and turbidity
(α and β).

For the case of clear-sky diffuse horizontal irradiance (DHI), assuming that the ground
is perfectly absorbent (i.e., with zero albedos), the formulation becomes:

Edpi = ToiTgiTwiTni

[
BRi(1 − TRi)T0.25

ai

]
+ BaFiTRi

(
1 − T0.25

asi

)
E0niµ (3)

where the function Fi is a correction factor to compensate for the multiple scattering and BRi
is the forward scattering fractions for Rayleigh extinction. Even though the contribution is
not significant under normal conditions, a backscattering contribution must be added to
get the real interaction between the DHI and the earth’s reflectance. When the scattering
effect is added, the formula becomes:

DHIclr = ρgiρsi(DNI clr + Edpi)/(1 − ρgiρsi

)
(4)

where ρgi and ρsi are the ground albedo and sky albedo, respectively. Finally, for clear-sky
circumstances, total solar irradiance equals the sum of diffuse solar irradiance and direct
solar irradiance, as is demonstrated by the following equation:

GHIclr= DNIclr+DHIclr (5)

Figure 3 shows a need for a solar irradiance formulation that is constructed with the
premise of considerable cloud accumulation as is required to calculate solar irradiance
for all situations fully. In order to calculate this scenario, the direct and diffuse radiation
must be separated using two subscript character notations (d or u). The character specifies
whether the incident radiation is direct (“d”) or diffuse (“u”) in nature. The second character
specifies the state of the outgoing radiation after atmospheric scattering, so “dd” signifies
incident and outgoing fluxes that are both direct and diffuse, respectively.

Figure 3. Procedure to derive solar irradiance using the FARMS architecture with a cloud index.
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The solar irradiance is computed by calculating the transmittance and reflectance of
each clear and cloudy condition, as well as the diffuse and direct state of the solar radiation.
The transmittance equation is shown below.

Tclr
uu= 2

1∫
0

µTclr
dd(µ) dµ (6)

Tclr
du =

Edpi

E0ni
(7)

Tclr
dd =

DNIclr
E0ni

(8)

Tcld
dd = e−

τ
µ (9)

Tcld
du = sTcld

du,p exp

−
(

log10
τ
τp

)2

D

 (10)

where Tcld
du,p and τP are the maximum of Tcld

du for each given solar zenith angle and cloud

optical thickness as Tcld
du reaches its maximum, D is a function related to the width of Tcld

du ,
and s is a scaling factor that adjusts Tcld

du when cloud optical thickness is large. The total
downward fluxes must be determined to obtain the GHI in these circumstances, so the
equation for the first order of total downward flux is as follows:

F1 = F0 cos θz

(
Tcld

dd Tclr
dt + Tcld

du Tclr
uu

)
(11)

where F0 denotes the radiative flux at top of the atmosphere. Using the Equation stated
above, it is straightforward to calculate the GHI for cloud scenarios using the follow-
ing equation:

GHIcld = F1

[
1 − Rs

(
Rclr

uu + Rcld
uu Tclr2

uu

)]−1
(12)

where Rs is the surface reflectance, Rclr
uu and Rcld

uu are the aerosol and cloud reflectance for
diffuse fluxes, respectively. Ultimately, using the following function, the cloud index is
used to derive GHI under all-sky conditions:

GHI = GHIcldCI+(1 − CI)GHIclr (13)

3.3. LSTM

The LSTM was proposed as a solution for RNN long-term information incapability.
Since the inner cells may carry information unmodified at will, LSTMs can remember
information for lengthy periods. The flow of the LSTM is comparable to that of the RNN.
However, the network has complete control over the state of the cell, and it may use specific
structures (called gates) to add, update, or remove information from the cell. An LSTM
unit is made of forget, input, and output gates as shown by Figure 4.



Energies 2021, 14, 7939 9 of 20

Figure 4. The structure of a long short-term memory neural network.

The forget gate determines whether information should be discarded or saved. The
input gate changes the state of the cells, and the output gate determines the hidden state.
The formula related to the LSTM gates are given as follow:

ft = σA

(
w f Xt + U f ht−1 + b f

)
(14)

it = σA(wiXt + Uiht−1 + bi) (15)

ot = σA(w0Xt + Uoht−1 + VoCt + bo) (16)

where Xt is the input vector to the memory cell at time, t and b are bias vectors for every
corresponding gates, w and U are weight matrices, and ft,it, and Ot are the values of the
input, forget, and output gates. The forget gate ( ft), input gate (it), and output gate (Ot) in
Equations (14)–(16) have values from 0 to 1 through the sigmoid function (σ). A value of
1 indicates that all input data passes through the gate, whereas a value of 0 indicates that
no data passes through [47]. An LSTM recognizes the importance of information using
backpropagation [48]. The LSTM then uses an internal memory unit to keep important
information of the past to boost its performance and further ensure that the vanishing
gradient and exploding gradient problems did not occur while training [49]. The formula
related to the LSTM memory cell is given as follow:

Ct = it ∗ St + ft ∗ St−1 (17)

St = tanh(wcXt + Ucht−1 + bc) (18)

ht = Ot ∗ tan h(Ct) (19)
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where St and Ct are the values of the candidate state of the memory cell and the state
of the memory cell at time t, respectively, and ht is the value of the memory cell at time
t. Equation (17) uses the values of the candidate state of the memory cells to calculate
new information at a time t, and the tan h function outputs a value between −1 and 1.
The memory state at the cell, controlled by the forget and input gates, is determined as a
variable Ct of time t according to Equation (16). Then, the specified values are converted to
outputs by multiplying them by Ot and the output becomes ht, as shown by Equation (19).

3.4. Hammer Model

Using satellite images and Linke turbidity, the Hammer model was developed to
estimate GHI (as is shown in Figure 5). A single pixel with an area of 1 km2 is taken from
the satellite images, and the pixel brightness defines its value in the range of 0 to 1024. This
pixel value is then normalized with the cosine zenith angle, resulting in a geometrically
aligned pixel value. This model’s process is visualized in Figure 5.

Figure 5. The approach of implementing a semi-empirical process using the Hammers model to
calculate GHI.

The Csat is calculated using Equation (20) from the normalized pixel value. Equation (1)
can be used to obtain the value of CI after obtaining the value of Csat, with C0 being the
correction factor and Craw as the raw satellite pixel data.

Csat =
Craw − C0

I0 cos θzε
(20)

With the conversion formula in Equation (21), the CI value is converted into the
clearness index kc.

CI ≤ −0.2 ; kc= 1.2
−0.2 < CI ≤ 0.8 ; kc= 1 − CI

0.8 < CI ≤ 1.1 ; kc= 2.0667 − 3.6667CI + 1.6667CI2

1.2 < CI ; kc= 0.05

(21)

The clear-sky model is typically used as the basis for calculating the GHI value in all
conditions. The Linke turbidity (accounts for atmospheric conditions) is an essential input
parameter in the clear-sky model. The Linke turbidity is also useful for calculating the
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degree of attenuation owing to absorption and scattering in the atmosphere. In this investi-
gation, the Linke turbidity was calculated using the model developed by Remund et al. [50].

TL =
(

1.8498 + 0.2425Wp − 0.0203Wp
2
)
+
(

12.427 + 0.3153Wp − 0.0254Wp
2
)

β (22)

After obtaining the value TL, the values of two of the most important solar irradi-
ance components (DNI and DHI) can now be determined. The Hammer model uses the
following formula to find DNI and DHI:

DHIclr = Gextε
[
0.0065+(−0.045 + 0.0646TL) cos θz + (0.014 − 0.00326TL) cos2 θz

]
(23)

DNIclr = Ioε cos θz exp(−0.8662TLδR AM) (24)

The two components are then added together to form the clear-sky GHI:

GHIclr= DNIclr cos θz+DHIclr (25)

Finally, the GHI value for all-sky conditions can now be calculated by multiplying the
GHI clear-sky and clearness index:

GHI =kcGHIclr (26)

3.5. Model Performance Criteria

In this study, the following metrics were used to calculate the difference rate between
the measurements and models. The degree of dispersion of the model against the measure-
ment can be determined using the root mean square difference (RMSD). The overestimation
or underestimation of the model against the measurement can be determined using the
mean bias difference (MBD). When the RMSD and MBD values are low, the model is
regarded as a good model. However, because of the differences between RMSD and MBD,
it is tough to claim that a model should be good if only one of them is low. The relative root
mean square difference (rRMSD) and relative mean bias difference (rMBD) values were
also presented, which can be used to evaluate the accuracies in different cities and models
as well as the results from other studies.

RMSD =

√
1
n

n

∑
i=1

(
Ppred − Pmeas

)2
(27)

rRMSD =

√
1
n

n
∑

i=1

(
Ppred − Pmeas

)2

1
n

n
∑

i=1
Pmeas

100% (28)

MBD =
1
n

n

∑
i=1

(
Ppred − Pmeas

)
(29)

rMBD =

1
n

n
∑

i=1

(
Ppred − Pmeas

)
1
n

n
∑

i=1
Pmeas

100% (30)

4. Result Analysis

The findings were analyzed using multiple metrics with the same dataset, such as
data inputs, locations, and accuracy. The results were analyzed in different sections that
focused on data inputs, locations, and metrics.
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This paper evaluated the performance of the proposed techniques using observed
datasets for solar irradiance in Korea. The KMA provided these data sets. The datasets
included global sun irradiance measurements with a one-hour resolution for six different
locations in Korea over a one-year period. As mentioned, these sites are distributed from
the north to the south of Korea, where each site represents a different climate zone.

Figure 6 shows the variability in GHI measurements at all five locations when the sky
is clear, partially cloudy, and overcast. The graphs exhibit the highest potential GHI value
in each site and the effect of cloud conditions. The scales of 1055.55 W/m2 in Busan at 13:00
on 21 May 2019, and 13.88 W/m2 in Seoul at 18:00 on 27 May 2019, reflect the maximum
and minimum values, respectively. Figure 7 shows the distribution of solar irradiance
measurement throughout South Korea.

Figure 6. The variability in GHI measurements for clear-sky, partially cloudy, and overcast day: (a) Gangneung (23, 31, and
12 May 2019 for clear, partially cloudy, and overcast); (b) Gwangju (21, 17, and 27 May 2019); (c) Seosan (21, 25, and 27 May
2019); (d) Busan (21, 8, and 27 May 2019); (e) Seoul (2, 20, and 27 May 2019).
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Figure 7. Spatial distribution map of South Korea based on global horizontal irradiance measurement data in the year 2018.

The KMA weather measurement data were used to derive the solar irradiance using
the FARMS, Hammer, and LSTM models. Each model flow process was shown in Section 3
and demonstrates how each input influences the output solar irradiance in each model.
These inputs are exported to the LSTM as training, validation, and test sets, using the
same inputs to generate the FARMS and Hammer models. Table 3 summarizes the input
variables utilized in the FARMS, Hammer, and LSTM models.

Table 3. Summary of the data input for the GHI models.

Model Data Input

FARMS CI, P, OT, O3, N2, Wp, θz, α, β
Hammer Csat, TL, θz, θsat, θback

LSTM-FARMS CI, P, OT, O3, N2, Wp, θz, α, β
LSTM-Hammer Csat, TL, θz, θsat, θback

This part is devoted to examining each model’s output in all the appropriate locations.
As each site has its climate, the model’s reliability performance may be determined by
comparing the results with other locations using four different metrics. In the original work,
the FARMS claims a low RMSD error of approximately 130.28 W/m2 with the selected
datasets from 2009 to 2012 [27]. This study confirms that the FARMS performed with an
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average error of 138.97 W/m2 (the lowest error of 125.34 W/m2 occurred in Seoul and the
highest error of 148.75 W/m2 occurred in Seosan). It has a relative RMSD of 32.06% and
33.57%, respectively. This study’s results indicate that FARMS is a fast-processing FARMS
with a computation time of roughly 1.02 s and good accuracy even when varied climate
conditions are used. The relative error using the Hammer model in every city was tested.
The results show that in Korea, the maximum and minimum values of rRMSD were 32.78%
in Gwangju and 29.32% in Busan, respectively. This study confirms that this particular
method delivers steady and reliable results, as there is not a large gap between the extrema.
While the bias error may have a larger value than expected, this is a predictable result since
the pixel correction sometimes has extreme error for one or two cases; this can inflate the
bias error (as it did in Busan). In most cases, however, it has a value below 10%.

LSTM performs with an R2 above 0.90, as is shown in Figures 8 and 9. However,
the best result occurs when LSTM is paired with FARMS, resulting in an R2 of 0.981 in
Gangneung. This is the most stable location compared with the other locations. On the
other hand, the LSTM–Hammer has a lower correlation, with an R2 of 0.973; this occurred
since the Hammer model required Csat as an input, in which the pixel value is subjected
to overestimation.

Figure 8. Scatterplots of the LSTM-predicted GHI with FARMS input, in which the red curves represent the linear regression
fits and the letter indicates the location: (a) Gangneung; (b) Gwangju; (c) Seosan; (d) Busan; (e) Seoul.
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Figure 9. Scatterplots of the LSTM-predicted GHI with Hammer input, in which the red curves represent the linear
regression fits and the letter indicates the location: (a) Gangneung; (b) Gwangju; (c) Seosan; (d) Busan; (e) Seoul.

Table 4 is a compilation of the results from each location using four different metrics.

Table 4. FARMS, Hammer, and LSTM for estimating the GHI model in each location.

Location Model RMSD (W/m2) rRMSD (%) MBD (W/m2) rMBD (%)

Seoul

FARMS 125.34 32.06 18.14 4.64
LSTM-FARMS 100.64 25.74 0.54 0.14

Hammer 119.65 30.61 34.28 8.77
LSTM-Hammer 114.39 29.26 9.85 2.52

Gangneung

FARMS 134.23 31.57 11.95 2.81
LSTM-FARMS 103.07 24.24 2.38 0.56

Hammer 136.14 32.02 36.22 8.52
LSTM-Hammer 121.85 28.66 9.69 2.28

Seosan

FARMS 148.75 33.57 4.53 1.02
LSTM-FARMS 114.40 25.82 1.46 0.33

Hammer 138.64 31.29 18.87 4.26
LSTM-Hammer 124.29 28.05 2.53 0.57
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Table 4. Cont.

Location Model RMSD (W/m2) rRMSD (%) MBD (W/m2) rMBD (%)

Gwangju

FARMS 140.19 32.52 13.58 3.15
LSTM-FARMS 102.26 23.72 3.84 0.89

Hammer 141.29 32.78 37.80 8.77
LSTM-Hammer 123.33 28.61 7.55 1.75

Busan

FARMS 146.37 32.78 32.82 7.35
LSTM-FARMS 110.60 24.77 5.49 1.23

Hammer 130.91 29.32 32.68 7.32
LSTM-Hammer 130.43 29.21 4.55 1.02

When utilized in temperate, dry winter, and hot summer climates, such as Busan
and Seosan, the FARMS is subjected to a significant bias and accuracy error due to the
broader range of temperatures throughout the year and more distinct seasonal fluctuations
in these locations, which significantly impact pressure and precipitable water. The Hammer
model tends to overestimate cities with no dry season. Since the Hammer model simplifies
atmospheric conditions, which rely primarily on precipitable water, the estimation becomes
less accurate as the value fluctuates, resulting in larger rMBD. The LSTM, unlike the FARMS
and the Hammer models, was less affected by the change in climate. Because the LSTM
model is based on the correlation of each parameter, it can adapt to the characteristics of
various environments.

In Seoul, LSTM using input from FARMS has the lowest rRMSD error compared to
other methods, making it the most suitable for that location. Note that LSTM–FARMS has
a higher RMSD metric error than LSTM using the Hammer model’s input parameters. This
is because Seoul has a cold winter and a dry summer, meaning there is a large gap between
the maximum and minimum value of its optical thickness. This could affect the output
for LSTM–FARMS, but not for LSTM–Hammer. Hammer’s method does not count optical
thickness as a singular input; it counts as one of the Linke turbidity parameters.

When paired with LSTM–FARMS, Gangneung has the lowest error value; however,
when utilizing the same method, Gangneung has the greatest value of MBD error compared
with the other cities. This is because the method to retrieve the CI value depends on the
pixel value of each location since Gangenung is located near the ocean, and the sky is
clear most of the time. This resulted in a determination that most CI data were clear-sky
data. This is not an issue for the FARMS or Hammer models. However, one cloudy day
in Gangenung (even though it is rare) can be overestimated when employing the LSTM,
resulting in a greater MBD error. Unlike Gangneung, Seosan has a relatively low bias
error but has the highest RMSD of all the locations. This is due to Seosan having a high
GHI average compared with the other cities, but has a lower variability between clear-sky,
partially cloudy, and overcast cases, as shown in Figure 6. This condition made it easy to
overestimate the value of GHI when the sky condition is clear, resulting in a higher average
error for this specific location when using both Hammer and FARMS input.

Gwangju has the lowest RMSD error value of all the locations. This was not surprising,
as Gwangju has the highest GHI average compared with other locations, making it easier
to predict in a clear-sky scenario. It is also easier to see the changes caused by the number
of clouds since the value will drastically decrease compared with the normal situation.
The lowest value for relative RMSD happens in Busan using the LSTM–FARMS method,
as Busan is one of the most stable locations compared with the other cities. This result is
strongly correlated to the estimation of this study.

5. Conclusions

Three representatives of physical, semi-empirical, and machine learning models (i.e.,
FARMS, Hammer, and LSTM) that estimate GHI based on atmospheric and cloud informa-
tion were evaluated. The models were compared using the same two-year dataset in Korea
with hourly measurements from five different locations. This study demonstrated that the
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LSTM was selected as the most appropriate model for deriving the GHI in Korea in terms
of the RMSD and the MBD. Major findings can be summarized as follows.

1. Compared to the Hammer model, the FARMS provides a more precise estimation
because the FARMS takes advantage of more detailed information of atmospheric
conditions. On the other hand, the Hammer model is more accessible since the input
parameters are fewer and commonly measured by an open-access organization.

2. In general, the LSTM outperforms the FARMS and the Hammer model in estimating
GHI. In comparison to the slight improvement in rRMSD, the improvement in rMBD
by the LSTM is significant. The rMBD value less than 1% indicates that long-term
means of GHI can be accurately estimated.

3. The LSTM using the FARMS input parameters produces the best accuracy, with a
difference in rRMSD of 4.44% compared to its Hammer model counterpart.

4. Based on the climate, the FARMS was subjected to considerable bias and error in
locations with a temperate, dry winter, and hot summer climate due to the distinct
seasonal fluctuations. On the other hand, the Hammer model tends to overestimate in
the cities with no dry season since the value of precipitable water varies. Conversely,
the LSTM was primarily unaffected by the change in climate.

This study concludes that the machine learning model performs well regardless of the
climate conditions compared to the physical and semi-empirical models. Nevertheless, the
advantages of physical and semi-empirical models, such as the lack of training data, ease
of implementation, and faster calculation, should also be considered when an estimation
model is chosen.
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Nomenclature

AM Air mass
CI Cloud index
Csat Satellite pixel value
C0 Normalized satellite pixel value
Craw Raw satellite pixel value
Gext Extraterrestrial irradiance
kc Clearness index
P Local pressure, hPa
T Temperature, ◦C
TL Linke turbidity
O3 Ozone, atm-cm
OT Optical thickness, cm
N2 Nitrogen, atm-cm
WP Precipitable water, cm
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Greek Symbols
θback Backscattering angle, deg
θsat Satellite zenith angle, deg
θz Solar zenith angle, deg
ε Normalized variation of the sun-to-earth distance from its mean value
ρ Albedo
δR Rayleigh optical thickness
α Angstrom coefficient
β Angstrom turbidity
Subscripts
clr Clear case
cld Cloudy case
Abbreviations
DHI Diffuse Horizontal Irradiance, W/m2

DNI Direct Normal Irradiance, W/m2

GHI Global Horizontal Irradiance, W/m2

RNN Recurrent Neural Network
LSTM Long Short-Term Memory
MBD Mean Bias Differences (W/m2)
RMSD Root Mean Square Differences (W/m2)
rMBD Relative Mean Bias Differences (%)
rRMSD Relative Root Mean Square Differences (%)
FARMS Fast All-sky Radiation Model for Solar applications
RT Radiative Transfer
KMA Korea Meteorological Administration
COMS Communication, Ocean, and Meteorological Satellite
NASA The National Aeronautics and Space Administration
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