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Abstract: Real-time energy management strategy (EMS) plays an important role in reducing fuel
consumption and maintaining power for the hybrid electric vehicle. However, real-time optimization
control is difficult to implement due to the computational load in an instantaneous moment. In
this paper, an Approximate equivalent consumption minimization strategy (Approximate-ECMS) is
presented for real-time optimization control based on single-shaft parallel hybrid powertrain. The
quadratic fitting of the engine fuel consumption rate and the single-axle structure characteristics
of the vehicle make the fitness function transformed into a cubic function based on ECMS for
solving. The candidate solutions are thus obtained to distribute torque and the optimal distribution
is got from the candidate solutions. The results show that the equivalent fuel consumption of
Approximate-ECMS was 7.135 L/km by 17.55% improvement compared with Rule-ECMS in the
New European Driving Cycle (NEDC). To compensate for the effect of the equivalence factor on fuel
consumption, a hybrid dynamic particle swarm optimization-genetic algorithm (DPSO-GA) is used
for the optimization of the equivalence factor by 9.9% improvement. The major contribution lies in
that the Approximate-ECMS can reduce the computational load for real-time control and prove its
effectiveness by comparing different strategies.

Keywords: real-time energy management strategy; single-shaft parallel hybrid powertrain; computa-
tional load; approximate-ECMS; DPSO-GA

1. Introduction

In recent years, with the development of the automobile industry, the automobile
has improved human life, but at the same time, it has also caused a significant increase
in traffic energy consumption and the aggravation of urban haze. Achieving low energy
consumption and low emissions has become the mainstream trend in the development
of the automobile industry nowadays. Comprehensive existing industrial base, hybrid
electric vehicle (HEV), and electric vehicle (EV) have become one of the best solutions to the
problem at this stage [1,2]. The powertrain of HEV drives the vehicle through an electric
motor to avoid the inefficient and polluting operation of the engine. The engine/motor
hybrid mode optimizes output performance (e.g., acceleration and hill-climbing capability)
for heavy-duty or high-power requirements [3,4]. For HEV architectures, the energy
management strategy (EMS) is crucial. The main goal of the EMS is to meet the driver’s
traction requirements while maintaining the battery charge and optimizing driveline
efficiency, fuel consumption, emissions, etc. More importantly, the real-time control of EMS
is meaningful for HEV [5,6]. Therefore, how to develop a suitable EMS to achieve effective
and fast power distribution for real-time control has been the theme and focus of attention.

At present, energy management control strategies can be divided into two different
approaches: rule-based and optimization-based [7,8]. Rule-based control is characterized
by fast rule design and easy implementation and has been widely used in real-time control
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of hybrid vehicles. The operating modes of the vehicle are classified into three modes
according to the vehicle speed, battery SOC, and demand power: electric mode, the engine
drive mode, and the hybrid drive mode [9–11]. However, the set of rules usually relies on
the experience of engineers, known mathematical models, a large amount of experimental
data, etc. The method has very limited improvement in fuel-saving performance. For
hybrid systems with nonlinear time-varying characteristics, fuzzy control is an effective
way to solve its real-time energy management problem [12]. Denis et al. proposed a
fuzzy-based EMS, proven to be effective, which focused on driving conditions for plug-in
hybrid electric vehicles (PHEV) [13]. Since fuzzy controller does not require high accuracy
in modeling and measurement of controlled targets, it can improve the robustness and
adaptability of rule control. However, there is no mature law to follow when designing the
affiliation function and fuzzy rules that play a decisive role in its control effect, and it can
only rely on the designer’s own knowledge and experience. Therefore, the optimization-
based PMP and various intelligent methods for EMS are major areas of interest [14].

EMS based on optimization for vehicle simulation can be divided into two areas: global
optimization and real-time optimization. Dynamic programming (DP) is widely applied in
the EMS as a typical global optimization algorithm. The optimal control algorithm obtained
from DP is the most representative energy management strategy based on optimal control
theory. It transforms a multi-stage optimal decision problem into multiple single-stage
optimal decision problems. Under the premise that the whole road working condition is
known, the continuous state and control variables are discretized and the cost functions of
all possible control sequences at each stage are calculated, and finally, the optimal solution is
solved in reverse using the Bellman optimality principle [15]. In the literature [16,17], power
distribution can be achieved using the DP approach for a fixed driving cycle. However,
DP can only be optimized offline for a fixed driving cycle and the high computational cost
of DP makes real-time control impossible [18,19].

For real-time applications, optimized fuel consumption needs to be performed quickly
at each period. The equivalent consumption minimization strategy (ECMS) has received
a lot of attention from researchers [20], which defines an equivalence factor to convert
the equivalent fuel consumption from electricity consumption and power distribution
which can be applied with at minimum the equivalent fuel consumption. ECMS was
first proposed by Paganelli as a method for solving minima and was applied to hybrid
powertrain energy management [21]. In Ref. [22], Geng, B., Mills, J.K., et al. proposed
transient optimal energy management to minimize the equivalent fuel consumption. This
strategy treats energy as an equivalent factor and battery power as a state variable, and
updates the equivalent factor in real-time as the vehicle is driven. The equivalent factor
is updated in real time as the vehicle is driven, and the output power of the motor and
engine is corrected in real-time to achieve the goal of fuel-saving. Gao et al. applied ECMS
to real-time to optimal control of PHEV and obtained better fuel economy and power
retention performance [23]. In Refs. [24,25], the Approximate Pontryagin minimization
principle (PMP) was applied to the suboptimal EMS. The real-time optimization strategy
based on instantaneous equivalent fuel consumption minimization control can obtain
the instantaneous optimal hybrid powertrain energy allocation for fuel economy and
emissions in the current state of the vehicle. However, it needs to calculate the available
power output combinations of the hybrid powertrain for each control step, which has a
large computational load and high hardware real-time requirements.

Due to its fast convergence, low computational effort for a variety of applications such
as system identification, network optimization, and power systems [26,27], the particle
swarm algorithm (PSO) is suitable for real-time control. In Ref. [28], based on the CD
strategy, the PSO is applied to the PHEV to optimize the control strategy parameters
to maximize the fuel economy. Simulation results demonstrate that this method has a
significant improvement in fuel economy without loss of vehicle performance. In Ref. [29],
PSO was applied to real-time control of the vehicle to achieve online power distribution,
and the improved particle swarm algorithm (IPSO) was used to improve the operation
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speed of the algorithm with good results. In Ref. [30] Wang et al. applied a nonlinear
model predictive control strategy based on particle swarm optimization to optimize fuel
consumption in a series-parallel hybrid bus. In Ref. [31], Chen proposed that a dynamic
particle swarm algorithm be applied based on ECMS for PHEV to realize torque distribution
and gear output.

Although the PSO shows a great advantage in power distribution, the optimization-
seeking iteration process still affects the computational load in real-time and the equivalence
factor has an impact on fuel economy for ECMS [32]. Because of this, establishing fast and
effective EMS is critical to improving fuel economy for real-time applications.

To reduce the computational load and improve fuel economy, this paper makes the
following contribution. First, for the characteristics of the single-shaft parallel hybrid
powertrain, Approximate-ECMS is proposed to reduce the computational load. The engine
is fitted with a quadratic function for the fuel consumption rate and the fitness function is
transformed into a cubic function by introducing a power assignment factor on the power
distribution for solving based on ECMS. The second contribution concerns considering the
equivalence factor, a hybrid DPSO-GA algorithm is presented for Approximate-ECMS to
improve fuel economy. Finally, results showed that Approximate-ECMS have a great im-
provement in fuel economy compared with rule-ECMS and could reduce the computational
load compare with PSO-ECMS. These findings prove Approximate-ECMS effectiveness.

2. Hybrid Powertrain System Configuration and Modeling
2.1. Hybrid Powertrain Configuration

In this paper, the parallel hybrid powertrain’s structure is shown in Figure 1. The
engine and the motor are installed on the same shaft, and the motor can be driven as a
power source or recovered as a generator. The transmission system uses a six-speed AMT
transmission to adjust the power source operating point. The clutch is located between
the engine and the drive motor to realize the switching of multiple drive modes. Parallel
hybrid electric vehicles have five typical operating modes: pure electric vehicle mode,
engine drive mode, hybrid drive mode, regenerative braking mode, and drive charging
mode. The objective of vehicle energy management is torque distribution. The torque
distribution of the engine and motor is realized through mode switching to improve the
fuel economy.
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Engine
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Gear

Inverter

Motor
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Inverter
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Figure 1. Hybrid powertrain structure.

2.2. System Modeling
2.2.1. Engine Model

The engine model is built based on a spark gasoline engine. The energy management
strategy (EMS) of a hybrid power system is related to engine fuel consumption Q f uel .



Energies 2021, 14, 7919 4 of 22

Considering the complex dynamic characteristics of the engine, the fuel consumption
model is simplified and written as:

Q f uel = Te ·ωe · BSFC(t) · ∆t/3600 =
·

m f uel ∆t (1)

where Te and ωe are the engine torque and speed, respectively, m f uel is the mass flow
rate, BSFC(t) is the brake-specific fuel consumption (BSFC) of the engine, the BSFC uses
a two-dimensional look-up table method and determines engine torque and speed in
Figure 2.

BSFC(t) = f unction(Te, ωe) (2)
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Figure 2. BSFC map of the engine.

2.2.2. Motor Model

To better adjust the engine operating point, a permanent magnet synchronous motor is
used as a driving motor. It is selected as a motor for driving or as a generator for charging.
The motor power can be written as

Pm =

{
Tm ·ωm/ηm, (Tm > 0)
Tm ·ωm · ηm, (Tm < 0)

(3)

where Tm and ωm are the motor torque and speed, respectively. When Tm is positive,
the motor works as a motor. On the contrary, when Tm is negative, the motor work as a
generator. ηm is the motor efficiency in Figure 3, which is obtained according to the Tm
and ωm.
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Figure 3. Efficiency map of the motor.

2.2.3. Battery Model

Battery charging and discharging are complex electrochemical reactions [33]. It is
difficult to obtain accurate battery performance only through empirical formulas. The
battery model can be built by combining experiments with empirical formulas, which is
more accurate. Thus, the battery can be seen as an equivalent circuit of a voltage and a
resistor as shown in Figure 4. According to the equivalent circuit of the battery internal
resistance model [34], the voltage at battery terminals is written as

Vbatt = Ebatt − IbattRbatt (4)

where Ebatt, Ibatt and Rbatt are the open-circuit voltage, charge/discharge current, and
internal resistance, respectively. Furthermore, the SOC rate of change and power can be
described by the following equation:{ ·

SOC = −Ibatt/Qbatt
Pbatt = Ebatt Ibatt − I2

battRbatt
(5)

where Pbatt andQbatt are output power and the capacity of the battery, respectively. Accord-
ing to Equations (4) and (5),the SOC rate of change can be expressed by

·
SOC =

−Ebatt+
√

E2
batt − 4PbattRbatt

2QbattRbatt
(6)

where Pbatt > 0 represents discharging and Pbatt < 0 represents charging. To simplify the
battery model, the temperature changes and battery aging are ignored. The open-circuit
voltage and the internal resistance are related to the battery SOC, as shown in Figure 5.
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Figure 5. Internal resistance and open-circuit voltage.

2.2.4. Longitudinal Dynamics Model

The energy management strategy is related to the vehicle longitudinal dynamic model.
Thus, lateral dynamics and steering dynamics are neglected. The relationship between Tw
and the coupling torque of two power sources is shown as:

Tw = (Te + Tm)iAMTi0ηT + Tbrake (7)

where Tw is output torque to drive, iAMT and i0 are the reduction ratio of AMT and final
gear ratio, respectively, ηT is the transmission efficiency. Tbrake is the braking torque.
According to the longitudinal dynamics of the vehicle, the Tw can be expressed as:

Tw = (mg f sin θ + mg cos θ +
1
2

CDρAv2 + δm
dv
dt

) · Rw (8)

where Rw is the wheel radius, m g CD ρ and A are the vehicle mass, gravity acceleration, air
drag coefficient, air density, and frontal area, respectively, θ f δ and v represent road grade,
rolling resistance coefficient, rotating mass coefficient, and vehicle velocity, respectively.
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2.2.5. Driver Model

The driver model employs a proportional-integral (PI) controller. The speed error ∆v
between the reference speed vd of the driving cycle and actual speed va is used as input
to the controller. If ∆v is positive, the controller outputs the required drive torque Td, if
negative, the controller outputs Tb, the required brake torque.

Td = Thy[kp(vd(t)− va(t)) + kI
∫ t

0 (vd(t)− va(t))dt] vd(t)− va(t) > 0 (9)

Tb = Tbrk[kp(vd(t)− va(t)) + kI
∫ t

0 (vd(t)− va(t))dt] vd(t)− va(t) < 0 (10)

where Thy and Tbrk are the maximum drive torque and maximum braking torque, respec-
tively; kp and kI represent proportional gain value and integral gain value, respectively.

3. Energy Management Control Strategies
3.1. Energy Management-Based Ruled

Rule-based energy management strategy (Rule-EMS) is more dependent on engi-
neering experience and work patterns and is not influenced by precise minimization or
optimization. Most rule-based control policies control the system in an “if-else” fashion and
maintain load balancing within the system. According to the literature [29], the rule-based
policy design consists of six patterns, as shown in Table 1.

Table 1. Operating modes and rule-based control.

Operation Mode Conditions Torque Distribution

1. Stop mode Ne = 0&&Td = 0 Te = 0, Tm = 0
2. Motor-only mode 0 < Ne < 1800 Te = 0, Tm = Td
3. Engine-only mode 1800 < Ne < 2300 Te = Td, Tm = 0
4. Hybrid mode Ne > 2300 Te = 0.7∗Td, Tm = 0.3∗Td
5. Recharging mode 0.3 < SOC < 0.5 Te = Td + 20, Tm = −20

6. Regenerative braking mode Td < 0&&SOC < SOCup

I f Td < Tm_ max, Td=Tm
I f Td > Tm_ max,
Td = Tm_ max + Tmechanic

3.2. Approximate-ECMS Strategy
3.2.1. Power Allocation Factor

The power allocation factor is introduced as a control variable for energy management,
which plays a role to adjust the engine’s best working line dynamically to get a better fuel
economy. It is defined as follows:

kp_split = Pe/Pd = Te ∗ Ne/Td ∗ Nd (11)

As it is a single-axis tandem structure and the two power sources are located in front
of the gearbox, the engine speed is the same as the motor speed.

Nd = Ne = Nm (12)

The motor torque and engine torque can be written as

Te = kp_split ∗ Td, Tm = (1− kp_split) ∗ Td (13)

3.2.2. Basic of ECMS

The central idea of a real-time optimization algorithm is to calculate the fuel con-
sumption and power consumption corresponding to all combinations of engine and motor
output torques that meet the driver’s demand torque at each moment of the vehicle driving
process. The instantaneous fuel consumption is expressed as the equivalent fuel consump-
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tion of engine fuel consumption and power consumption. Additionally, the motor output
torque is adjusted to obtain the minimum value of this instantaneous fuel consumption.
Finally, the combination of engine and motor output torque corresponding to this minimum
value is used as the working point [35]. Therefore, equivalent fuel consumption can be
expressed as in the following equation:

J(x, u) =
∫ t f

t0

·
meqdt =

∫ t f

t0

·
[m f uel(x, u) +

·
mbatt(x, u)]dt (14)

·
x = f (x, u) (15){

xmin ≤ x ≤ xmax
umin ≤ u ≤ umax

(16)

where
·

mbatt represents the battery fuel consumption rate, x and u are the state and control
variables, respectively. t0 and t f are the initial time and final time.{

x = SOC
u = Tm

(17)

For the above optimal control strategy objective function, the constrained problem is
transformed into an unconstrained problem solved using the principle of minimal values.
According to Pontryagins Minimum Principle (PMP), the Hamiltonian can be expressed by
the following equation.

H(x, u, λ, t)=
·

m f (u, t) + λt ∗
·

SOC(t) (18)

where λ(t) indicates the co-state. In a hybrid powertrain, the electric motor and engine are
mixed to meet the driver’s demand torque, so the amount of fuel consumed by the car has
a direct effect on the battery power PB. At a certain demand power, the increase of battery
power has a decrease in fuel consumption. Further, the Hamiltonian can be rewritten as

H(x, u.λ, t) =
·

m f (PB) + λ(t) · f (x, PB) (19)

The regular Hamiltonian equation is as follows:

·
x =

∂H
∂λ

= f (x, PB) (20)

·
λ(t) = −

∂H
∂x

= −λ(t)
∂ f
∂x

= −∂H(SOC(t), PB, λ(t))
∂SOC

(21)

From Figure 5 the open-circuit voltage and internal resistance of the battery pack
are constant values, which are not related to SOC. According to the principle of minimal
values, the optimal co-state is obtained by

·
λ∗(t) = −

·
λ∗(t)

∂ f
∂x

= 0 (22)

Therefore, λ∗(t) is constant. It is shown that a globally optimal solution can be
generated when the co-state λ∗(t) is a constant.

H(x∗, λ∗, u∗, t) = min H(x∗, λ∗, u, t) (23)

where the superscript ∗ indicates the optimal. Then the Hamiltonian function can be
transformed into a cost function, which is further written as
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H =
·

m f +
S(t)
Qlhv

PB (24)

where S(t) is defined as the equivalent factor (EF),

S(t) =

{
Schg =

ηm_driveηB_dis
ηe

PB > 0
Sdis = ηm_genηB_chgηe PB < 0

(25)

PB =

{
Pmηm_driveηB_chg charing

Pm
ηm_driveηB_dis

discharing (26)

where Pm is the motor power, Schg and Sdis are EFs in the driving and generating mode,
respectively, ηm_drive and ηm_gen are the working efficiency of the electric motor in driving
and generating mode, respectively, ηm_drive and ηm_gen are the working average efficiency of
the electric motor in driving and generating mode, respectively, ηB_dis and ηB_chg represent
the battery charging and discharging average efficiency, ηe is the average working efficiency
of the engine, Qlhv is the fuel low calorific value. From Equation (24), the equivalent factor
has a direct effect on torque distribution between engine and motor.

3.2.3. Approximate-ECMS

The control strategy based on the minimal value principle transforms global optimiza-
tion into instantaneous optimization, so theoretically the control strategy can be applied
to real-time control. However, the Hamiltonian function is a complex function of the
control variable u(t) and the search for the optimal control needs to be spread over the
entire control variable domain. The control strategy based on the principle of minimal
values requires a large amount of computation and time, which makes it difficult to realize
real-time control in practice. Therefore, an approximate minimum value principle real-time
control strategy is proposed to reduce the search time by simplifying the optimal control
variable search space based on fitting the instantaneous engine fuel consumption. Unlike
previous studies, the Approximate-ECMS is innovatively applied in this study based on
the characteristic of the vehicle’s single-axis parallel-type structure. The engine fuel con-
sumption rate curve is shown in Figure 6. The engine fuel consumption rate (be) curve is
represented by a quadratic function fit and curve with torque at a determined speed.

be = aTe
2 + bTe + c (27)

·
m f uel = be ∗ Pe/1000/3600 (28)

where a, b, and c are the quadratic function fitting coefficients. By introducing the power
allocation factor kp_split, the mass flow rate can be expressed as

·
m f uel = [a(kp_split ∗ Td)

2 + b(kp_split ∗ Td) + c] ∗ (kp_split ∗ Td) ∗ Ne/9550/1000/3600 (29)
·

m batt = ( Sdis
Qlhv
∗ Pm ∗ 1

ηm_driveηB_chg
)/9550/1000/3600; SOC > SOCtar

·
m batt = (

Schg
Qlhv
∗ Pm ∗ ηm_driveηB_chg)/9550/1000/3600; SOC < SOCtar

(30)

When S(t) = Sopt , the motor efficiency and battery efficiency are set to be fixed. p =
Sopt
Qlhv
∗ 1

ηm_driveηB_dis
SOC > SOCtar

p =
Sopt
Qlhv
∗ ηm_driveηB_chg SOC < SOCtar

(31)

The p has a constant value. The equivalent fuel consumption for the electric power
from the battery

·
m batt can be written as
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{ ·
m batt = p ∗ Tm ∗ Nm/9550/1000/3600
·

m batt = p ∗ 1− kp_split ∗ Td ∗ Nm/9550/1000/3600
(32)

At a certain point in the driving cycle, the speed and required torque are given. Thus,
the equivalent fuel consumption equation can be transformed into a cubic function on
the power distribution. According to the fitted curve of engine fuel consumption rate
(be) in Figure 6, it can be seen that the curve is an open-up quadratic function. Therefore,
a > 0 , further A > 0 . Based on the graph and properties of the cubic function, when the
discriminant ∆ > 0, the function has extreme values in the case of A > 0. The extreme
value points are x1 and x2, respectively. When the discriminant ∆ < 0, the function does
not have extreme values and is a monotonic increasing function. The above mentioned can
be referred to the Figures 7 and 8.
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Figure 8. The image and properties of cubic function.

·
m equ =

·
m f uel +

·
m batt (33)

We replace the cubic function on kp_split with f (kp_split) for further rewriting

·
m equ(kp_split) = f (kp_split)Nd/9550/1000/3600 (34)

A = a ∗ Td
2, B = b ∗ Td, C = c− p, D = p (35)

where A, B, C, and D are the f (kp_split)’s coefficients.

f (kp_split) = A ∗ k3
p_split + B ∗ k2

p_split + C ∗ kp_split + D (36)

The derivation of the above equation gives:

f ′(kp_split) = 3Ak2
p_split + 2Bkp_split + C (37)

∆ = (2B)2 − 4 ∗ (3A)C (38)

When ∆ > 0, x1 is the maximum value, x2 is the minimum value. x 1 = (−2B−
√
((2B)2 − 4(2A)C))/(2 ∗ 3A)

x 2 = (−2B +
√
((2B)2 − 4(2A)C))/(2 ∗ 3A)

(39)

According to Equation (10), kp_split is the ratio of engine torque to demand torque.
Since both the engine and motor have limits, kp_split are also limited. When SOC > SOCtar,
the range kp_split is as in Equation (40). When ∆ > 0, four candidates (1− Tm_ max/Td
,1,x1,x2) or (Te_ min/Td ,1,x1,x2) are calculated by Equation (33) and are chosen minimum
as the optimal control for each time step.

3.2.4. Flow Diagram of the Approximate-ECMS

The flow chart of the Approximate-ECMS optimization process is shown in Figure 9.
This strategy includes three steps. The first step is to derive the current fitting coefficients
from the fitting database based on the current demand torque and speed. In the second
step, the electrical power is transformed into equivalent fuel consumption by applying the
equivalent factor. Thus a functional model on power distribution factor is developed. By
calculating the discriminant, it is determined whether it is greater than zero. We compare
the equivalent fuel consumption under the candidate solution and obtain the optimal
power allocation factor corresponding to the optional Hamiltonian quantity. The optimal
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power allocation factor is translated into the respective engine torque and motor torque.
The engine torque command and motor torque command are sent to the power source.
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Figure 9. Flow diagram of the Approximate-ECMS.

4. Equivalent Factor Optimization Based on DPSO-GA

The equivalence factor is a crucial parameter of the ECMS strategy and its magnitude
determines the distribution of vehicle drive power between the engine and battery. The
objective function of ECMS is to minimize the total equivalent fuel consumption of the
system, but if only the total equivalent fuel consumption is considered, it will inevitably
lead to the difficulty of maintaining the battery power balance. From the perspective of
maintaining the battery power balance, the difference between the SOC termination value
and the target value should be minimized [36,37]. Therefore, the optimization of ECMS is
a multi-objective optimization problem, which requires to keep the total equivalent fuel
consumption and the difference between the SOC termination value and target value at the
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same time. The Approximate-ECMS calculation process shows that the main variables in
the calculation of total equivalent fuel consumption are the equivalence factor and power
allocation factor.

According to the literature [31], to achieve the global SOC variation law, the SOC
penalty factor is introduced to realize the optimal power assignment based on the difference
between the actual SOC and the target SOC. The SOC linear penalty function is expressed
as follows:

δ(SOC) = 1− β× (
SOC(t)− SOCtar

SOC(t)− SOClow
)× 2 (40)

where β denotes a coefficient which is selected according to experience, β = 0.2, δ(SOC)
is the SOC penalty factor, SOC(t) is the battery SOC at time t, SOClow and SOCtar are low
SOC and the target SOC of battery, respectively. The relationship between the penalty
value, and SOC(t) of the battery is shown in Figure 10. With the increase of the SOC, the
penalty factor value decreased, when β was fixed.

0.4 0.5 0.6 0.7 0.8 0.9 1

Battery_SOC

0.6

0.8

1

1.2

1.4

1.6

(S
O

C
)

Figure 10. The SOC linear penalty function.

The equivalence factor can be expressed as Equation (42). From the equation, it is clear
that the initial value of the equivalent factor affects the overall change of the equivalence
factor. Therefore, it is necessary to optimize the initial value of the equivalent factor.

Sopt = δ(SOC)s0 (41)

where s0 is the initial value of the equivalent factor

4.1. Hybrid DPSO-GA-Based Optimization Algorithm

Among optimization algorithms, particle swarm algorithm and genetic algorithm
are commonly used population-based algorithms, but they both have advantages and
disadvantages [38,39]. The particle swarm optimization algorithm is simple to operate
and fast to compute, but the particles with low adaptation values are slow to update
and contribute little to the particle population. While genetic algorithms are relatively
complex, crossover and mutation operations lead to individual variation. In other words,
an individual with poor fitness may become a more adaptive individual through crossover
and mutation. Hybrid algorithms based on particle swarm-genetic algorithms combine
particle swarm algorithms and genetic algorithms to maintain the advantages of both. In
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this section, the dynamic particle swarm algorithm optimization and genetic algorithm
strategy are applied to optimize the equivalent factor.

4.1.1. Basic Principle of Dynamic Particle Swarm Optimization

PSO is a simulation of the predatory behavior of a flock of birds searching for food
randomly. There is an exchange of information between birds. The distance between the
current position and the food is determined by estimating its fitness value. Searching
the area of the bird currently closest to food is the easiest and most efficient way to find
food. PSO is inspired by this model and used to solve optimization problems. The PSO
algorithm is a type of evolutionary algorithm, which starts from a set of random solutions
and iterates to find the optimal solution. In each iteration, the particle updates itself by
two extremes. The first one is the optimal solution of the particle itself and the other
one is the current optimal solution of the whole population [31]. In finding the two
optimal values, the particle updates its velocity and position according to the following
Equations (42) and (43).

vt+1
id

= ω ∗ vt
id + c1r1(pid − xt

id) + c2r2(pgd − xt
id)

xt+1
id

= xt
id + vt

id
(42)

where ω is the inertia weight; t is the number of current iterations; d is the particle
dimension, and xt

id are the velocity and position of the i-th particle in the d-th dimension
at time t; c1 and c2 are the learning factors; r1 and r2 are random numbers within [0,1];
pid is the best position of the i-th particle in the d-th dimension; gid is the best position of
all particles.

In the PSO, the inertia weight ω is the most important parameter. Increasing the value
ω can improve the global search ability of the algorithm, and decreasing the value ω can
improve the local search ability of the algorithm. Therefore, designing reasonable inertia
weight is the key to avoid falling into local optimum and search efficiently. In this paper,
the dynamic inertia weight is adopted to improve the PSO performance. The dynamic
inertia weight is determined by the following equation.

ω =

{
ωmin − (ωmax−ωmin)∗( fi− fmin)

favg− fmin
fi ≤ favg

ωmax fi > favg
(43)

where ωmax and ωmin are the maximum and minimum inertia weights, respectively. fi is
the fitness value of i-th particle. favg and fmin denote the average and minimum fitness
values of all current particles, respectively. The above equations show that the inertia
weight changes with the change of particle fitness value. When the particle fitness values
are scattered, the inertia weight is reduced; when the particle fitness values are consistent,
the inertia weight is increased.

4.1.2. Procedures of DPSO-GA

In the hybrid particle swarm algorithm, the dynamic particle swarm algorithm is
used as the main body, and the cross-variance operation is introduced in the particle
update. When performing a particle update, the adaptation degree of the particles is first
determined. The particles with higher fitness values are updated by the particle swarm
algorithm, and the velocity of each particle, also called potential solution, changes toward
the global optimum (g-best) and the optimum of its personnel (p-best) of contemporary
particles. In general, each particle adjusts its position based on its experience and that of
its neighbors, including the current velocity, position, and the most favorable previous
position. Conversely, particles with lower adaptation values are updated by crossover
and mutation based on genetic algorithms [40]. The process of the hybrid particle swarm
algorithm is shown in Figure 11.
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Figure 11. The process of the hybrid particle swarm algorithm.

1. Initialize particle swarm including swarm number N, particle position xid, and ve-
locity vid. Initialize xid and vid of the particles, which are the initial value of the
equivalent factor s0 and its variation, respectively.

2. The objective function: The goal of optimization is to achieve equivalent fuel con-
sumption under typical driving cycles and to keep the difference between the final
value of and the target value of SOC to a minimum, as shown in Equation (44).

Jtoal =
∫ T

0

·
meqdt + β

∣∣∣SOC f inal − SOCtar

∣∣∣ (44)

where Jtotal is the objective function;
·

meq is the instantaneous fuel consumption
obtained from Equation (13); T is the end time of driving cycles, and SOCtar are the
final and target value of SOC, respectively; β is the weighting factor.
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3. Select particles based on ranked fitness and update: After initializing the particle
swarm, the particle fitness is ranked according to the objective function. The func-
tion with high fitness is selected for particle swarm algorithm update based on
Equation (43) and for low fitness values a genetic algorithm update is performed.

4. End: Set the termination condition. If the termination condition is not satisfied,
execute steps 2–3 until the particle search satisfies the termination condition. Then
obtain the best solution.

5. Simulation Results and Discussion

In this study, four different EMS were simulated for a hybrid powertrain system,
including Rule-EMS, Basic-ECMS, PSO-ECMS, and Approximate-ECMS. These results
are presented in this section and they are analyzed and compared, further illustrating
the effectiveness of the proposed Approximate-ECMS strategy. To further obtain a good
fuel-saving strategy, the results of the optimized equivalence factors were compared, thus
demonstrating the effect of the initial equivalence factors on fuel saving.

5.1. Model and Settings of the Vehicle

The model of the vehicle was built on the MATLAB/Simulink platform. The sampling
time was set to a fixed sampling time of 0.01 s and the Bogacki–Shampine solver was
selected. Approximate-ECMS is programmed as an S function block in the torque splitting
layer of the VCU. The parameters of the vehicle are listed in Table 2.

Table 2. The parameters of the vehicle.

Component Parameters Value

Engine
Engine type 1.9L.SI

Maximum Power 63 kW @ 5500 rpm.
Peak Torque 145 Nm @ 2000 rpm.

Motor Motor type Permanent magnet motor
Maximum power 25 kW

Battery Battery type Lithium–ion
Capacity 25 Ah

Vehicle

Vehicle mass 1350 kg
Radius of tire 0.282 m

Vehicle front area 2 m2

Rolling resistance coefficient 0.014
Aerodynamic drag coefficient 0.335

5.2. Comparison of Rule-EMS, Basic-ECMS, PSO-ECMS, and Approximate-ECMS

Figures 12–14 shows the simulation results during the NEDC driving cycle. The
simulation results at SOCinit = 0.7. As shown in the first row of Figure 12, the actual
velocity (Va) tracks the demand velocity (Vd) very well for the test NEDC driving cycle.
As shown in the first row of Figure 12, the actual velocity (Va) tracks the demand velocity
(Vd) very well for the test NEDC driving cycle due to the proper selection of the PI control
parameters for the drive model in Equations (10) and (11). The speed tracking is very
good (within ±0.5 km/h), which means that the following simulation results based on
four EMS are plausible. In the second row, power allocation factor (kp_split) results for
Rule-EMS control based on Table 1 are presented. It can be seen that during acceleration
the motor drive alone works at low-speed demand and the engine alone works at medium
speed. Combined motor and engine drive working at high speed. The third row shows the
Basic-ECMS online simulation results according to the PMP in Equation (23). Allocation of
the optimal engine and motor torque at moderate speed and high speed by minimizing
equivalent fuel consumption. The fourth row is the online assignment of the PSO-ECMS
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proposed in the literature [23]. The fifth row is the Approximate-ECMS mentioned along
with this paper. The simulation results of Approximate-ECMS are very similar to PSO-
ECMS. However, PSO-ECMS uses more electric power at high speeds. The motor works
alone when the speed is less than the engine’s minimum speed with sufficient power. Since
the method of quadratic root-finding used by Approximate-ECMS is within the constraint,
the simulation is faster than PSO-ECMS.

0 200 400 600 800 1000 1200

0

50

100

150

V
el

o
ci

ty
(k

m
/h

)

NEDC driving cycle

0 200 400 600 800 1000 1200

0

0.5

1

A
lf

a

Rule-EMS

0 200 400 600 800 1000 1200

0

0.5

1

A
lf

a

Basic-ECMS

0 200 400 600 800 1000 1200

0

0.5

1

A
lf

a

PSO-ECMS

0 200 400 600 800 1000 1200

0

0.5

1

A
lf

a

Approximate-ECMS

Figure 12. Speed profiles, Rule-EMS, Basic-ECMS, PSO-ECMS, and Approximate-ECMS at
SOCinit = 0.7.
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Figure 13. /hlSpeed profiles, Torque of Rule–EMS, Basic–ECMS, PSO–ECMS, and Approximate–
ECMS at SOCinit = 0.7.

In order to illustrate the different aspects of these four EMS, the torque results for
the four cases are shown in Figure 13. For the Rule-EMS control in the first row, the
demand torque is distributed to the engine and motor according to the demand speed.
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The motor provides torque at low speed. At medium speed the engine offers torque.
Engine and motor together provide torque at high speed. As for Basic-ECMS, PSO-ECMS,
and Approximate-ECMS, the torque distribution is based on the power allocation factor
kp_split. From the second to the fourth row above it can be seen that demanded torque
distribution is approximately the same at low velocity. When the demand speed is less than
the minimum engine speed or the motor is in recovery mode, the demand torque motor is
provided alone. Thus, during deceleration, kp_split is zero. During acceleration, as kp_split
increases, it indicates that the engine is providing more power to save electricity. The fifth
row shows the SOC change trajectory of four cases. As can be seen, in the low and medium
speed region, the motor consumption is lower due to the active engine involvement with
Basic-ECMS, PSO-ECMS, and Approximate-ECMS control. Therefore, in the Rule-EMS
control, SOC decreases faster. After 1000 s, due to active motor assistance, the SOC of
Basic–ECMS, PSO–ECMS, and Approximate–ECMS control decrease faster than Rule–EMS
control.

Figure 14 illustrates the efficient operation of the engine during four EMS control
processes. In the Rule-EMS control process, the engine mostly operates in a low-efficiency
region, where the BSFC is mostly within 340–450 g/kW.h. With Basic-ECMS, PSO-ECMS,
and Approximate-ECMS control, the engine mostly runs in a more efficient region where
the BSFC is within approximately 280–400 g/kW.h and the small part of the engine works
at the BSFC 240–280 g/kW h. The operating points of the motor are located in the effective
region (between 75% and 85% efficiency) in the rule-based control case. The distribution of
the operating points in the PSO-ECMS and Approximate-ECMS cases is similar. Most of
these points are located in the effective region, where the operating points are concentrated
around 88%. The engine operating point of the Approximate-ECMS control as a whole
is closer to the optimal operating area than the other strategies. Since the end SOC of
each strategy is approximately the same as the Figure 13, the Approximate-ECMS control
conserves more energy.

(a) (b)

Figure 14. Operation points for (a) engine and (b) motor during NEDC driving cycle.

Table 3 shows the accumulated equivalent fuel consumption during the NEDC driving
cycle. In the NEDC cycle, the final values of equivalent fuel consumption Meq(L/km) under
Rule-EMS, Basic-ECMS, PSO-ECMS, and Approximate-ECMS are [8.3876, 7.1443, 7.0884,
7.1354]. The comparison between Rule-EMS control and Approximate-ECMS resulted
in a 17.55% improvement in fuel consumption Me(L/km). It is apparent from this table
that the PSO-ECMS is better than Basic-ECMS and Approximate-ECMS, which is due
to the discretization increments in the online Basic-ECMS. The discretization increments
of parameters are limited because of the simulation equipment such as the computer’s
CPU and memory. In summary, the Approximate-ECMS is more effective than Rule-EMS,
Basic-ECMS, PSO-ECMS. However, the Approximate-ECMS is based on the fixed motor
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efficiency and battery efficiency and the motor efficiency affects the results. Therefore, we
move on to discussing the S0 next.

Table 3. Fuel consumption in the simulation of SOCinit = 0.7 for NEDC driving cycle.

Strategy Meq (L/km) Me (L/km) Meq Improved(%)

Rule-EMS 8.387 6.037 0
Basic-ECMS 7.144 4.793 17.40
PSO-ECMS 7.088 4.734 18.32

Approximate-ECMS 7.135 4.787 17.55

5.3. Optimization of S0 Based on DPSO-GA

To compensate for the effect of changing motor efficiency on the result of Approximate-
ECMS, DPSO-GA is used to optimize the initial equivalent factor S0. We initialize particle
swarm including swarm number 50 and the number of iterations of the hybrid DPSO-GA
algorithm is set to 100 times. S0 is set to [0,4]. The energy consumption using optimization
in NEDC is calculated and shown in Table 4 and Figure 15. The optimal S0 can improve
the energy economy by 9.04% compared to the before optimization. From Figure 14, the
final value of SOC is a little larger than before optimization, indicating that the engine is
more involved in torque delivery. It is also clear that the engine operating point is close to
the optimized region (240–280 g/kW h).
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Figure 15. Comparison optimization during NEDC driving cycle. (a) SOC change trajectory. (b) Op-
eration points for engine. (c) Meq change trajectory.

Table 4. Comparison of optimization results.

S0 Meq (L/km) Me (L/km) ∆SOC Meq Improved

Before optimization 2.75 7.135 4.787 0.0541 0
After optimization 3.10 6.499 4.354 0.1205 9.04%
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6. Conclusions

In this paper, Approximate-ECMS is proposed for real-time control under the single-
shaft parallel hybrid powertrain, which considers both the fuel economy and computational
load. Combined with the structural characteristics of the single-shaft parallel hybrid pow-
ertrain, the equivalent fuel consumption equation is fitted to the objective function by
introducing the power allocation factor. Then it is solved numerically for candidate so-
lutions to reduce computational load. To compensate for the effect of changing motor
efficiency on the result of Approximate-ECMS, DPSO-GA is used to optimize the initial
equivalent factor to obtain the best initial equivalence factor Sopt to improve the fuel econ-
omy for the NEDC driving cycle. The results show that the equivalent fuel consumption of
Approximate-ECMS was 7.135 L/km by 17.55% improvement compared with Rule-ECMS
in the New European Driving Cycle (NEDC). In addition, the results of Approximate-
ECMS are close to Basic-ECMS and PSO-EMS. However, simulation time is faster than
Basic-ECMS and PSO-EMS. This indicates that the Approximate-ECMS is an effective
solution to optimize fuel economy and computational load for real-time control.

The accuracy improvement of fitting function is a crucial issue for improving control
effects of Approximate-ECMS, which has been arranged in future directions. Further-
more, to adapt to different driving cycles, equivalence factor changes in real-time control
should be considered to improve fuel economy. Last but not least, hardware-in-the-loop
experiments and vehicle experiments can be performed to validate the effectiveness of the
strategy in future research.
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