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Abstract: Inference is investigated for a multicomponent stress-strength reliability (MSR) under
Type-II censoring when the latent failure times follow two-parameter Rayleigh distribution. With
a context that the lifetimes of the strength and stress variables have common location parameters,
maximum likelihood estimator of MSR along with the existence and uniqueness is established. The
associated approximate confidence interval is provided via the asymptotic distribution theory and
delta method. Meanwhile, alternative generalized pivotal quantities-based point and confidence
interval estimators are also constructed for MSR. More generally, when the lifetimes of strength
and stress variables follow Rayleigh distributions with unequal location parameters, likelihood and
generalized pivotal-based estimators are provided for MSR as well. In addition, to compare the
equivalence of different strength and stress parameters, a likelihood ratio test is provided. Finally,
simulation studies and a real data example are presented for illustration.

Keywords: multicomponent stress-strength model; rayleigh distribution; likelihood estimation;
generalized pivotal estimation; asymptotic theory

1. Introduction and Notation

Stress-strength model plays a substantial role in lifetime studies and engineering appli-
cations, where the system survives if its strength is greater than a certain amount of stress
imposed. The stress-strength reliability (SSR) parameter R is defined as R = P(Y < X),
where X represents the random strength of the system and Y is the random stress applied
to the system. In the last few years, the stress-strength model has been widely used in vari-
ous fields such as reliability engineering, seismology, hydrology, economics, and survival
analysis among others, and inference for SSR has been discussed by many authors. See, for
example, the works of by Eryilmaz [1], Kundu and Raqad [2], Krishnamoorthy and Lin [3],
Mokhlis et al. [4], and Wang et al. [5]. In a conventional study, inference for SSR has focused
on the system with a sole component. However, many systems are composed of multiple
components to achieve their functions. Therefore, the SSR has been extended to the case of
a multicomponent system. There are many classical multicomponent systems in practice,
and some classical ones include a series system, parallel system, or combinations of these
two systems. Generally, a multicomponent system consists of k independent and identically
distributed (i.i.d.) strength components with a common stress, and the system functions
when at least s(1 ≤ s ≤ k) components simultaneously survive. In literature, this system is
referred to as the s-out-of-k: G system, which includes a conventional series system and
parallel system as its special cases. In reliability engineering and lifetime studies, many
examples can be viewed as multicomponent systems. For example, in a communication
system with three transmitters, the average message load may be such that at least two
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transmitters must be operational at all times otherwise critical messages may be lost. Thus,
the transmission subsystem functions as a 2-out-of-3: G system. Another example in the
aircraft industry is where the Airbus A-380 has four engines and the airplane is capable of
flying if and only if at least two of its four engines are functioning, is referred as a 2-out-of-4
41 G system.

For the s-out-of-k G multicomponent system, suppose the k components of the sys-
tem have strengths following k i.i.d. random variables, X1, X2, . . . , Xk, with the common
cumulative distribution function (CDF), F(·), and each component experiences a random
stress Y of CDF G(·). Following Bhattacharyya and Johnson [6], the multicomponent
stress-strength reliability (MSR): parameter Rs,k is given by

Rs,k = P(at least s of the (X1, X2, . . . , Xk) exceed Y)

=
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(t)]i[F(t)]k−idG(t). (1)

The ls-out-of-k G system has raised much attention and the associated reliability
estimation of the multicomponent system has been widely discussed by many researches.
For instance, Dey et al. [7], Kayal [8], Kizilaslan [9,10], Kizilaslan and Nadar [11], Nadar and
Kizilaslan [12], and Rao et al. [13], when the underlying distributions follow Kumaraswamy,
Chen, a class of inverse exponentiated, proportional reversed hazard rate model, bivariate
Kumaraswamy, bivariate Weibull, bathtub-shaped, and Burr XII, respectively.

The Rayleigh distribution is widely applied to model an event in reliability because of
its linear and increasing failure rate function. Let T be the random variable of Rayleigh
distribution, whose CDF and probability density function (PDF) are given by:

F(t; λ, α) = 1− e−λ(t−α)2
and f (t; λ, α) = 2λ(t− α)e−λ(t−α)2

, t > α, (2)

where λ > 0 and α > 0 are the rate and location parameters, respectively. Hereafter,
Rayleigh distribution with parameters α and λ will be denoted by RL(λ, α). RL(λ, 0)
was initially introduced by Rayleigh [14] in acoustics problems related to the studies of
physics. The extended RL(λ, α) by inserting the location parameter α ≥ 0 provides more
flexibility of the probability modeling on date observations that could have positive support.
Since then, it has been shown as an important distribution modeling for skewed datasets.
The structural properties of this distribution are related to some common distributions
such as gamma, Weibull, chi-square, Rice, and extreme value models. Several authors
have discussed Rayleigh distribution under different cases. For example, some recent
contributions by Ahrari et al. [15], Dey et al. [16], Fundi et al. [17], and Ghani and Isa [18].

In statistical inference, sample size is an important issue in data analysis, which
sometimes has such a strong effect on the validity of the associated results. Since modern
products always feature high reliable and a long life cycle, it is frequently impossible to
obtain complete failure times for all test units in practice, the datasets collected often lack
sufficient samples, and the associated conventional likelihood-based inferential results
may not have targeted statistical properties. Motivated by previous reasons, the main
goal of this study is to discuss different inferential methods for MSR Rs,k when the latent
strength and stress random variables have common and unequal Rayleigh parameters. The
main contributions of this paper are presented as follows. Firstly, when the latent strength
and stress failure times follow two-parameter Rayleigh distributions, the multicomponent
stress-strength model is considered under censored data scenario. Secondly, under com-
mon and unequal location parameter cases, the existence and uniqueness of maximum
likelihood estimators of the unknown strength and stress parameters are established, and
the associated estimates for stress-strength reliability are obtained in consequence. Finally,
comparing with traditional likelihood-based estimation, alternative novelty generalized es-
timates for MSR are proposed where the performance of the proposed generalized method
appears superior than the classical likelihood results. In addition, after a comprehensive lit-
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erature retrieval, it is worth mentioning that the estimation of the multicomponent Rayleigh
stress-strength model was also discussed by Rao [19], and some difference between the
aforementioned and our paper should be discriminated here for clarity. In Rao’s [19] discus-
sion, the author has just provided the maximum likelihood and moment estimations of the
reliability for a multicomponent system when the latent stress and strength lifetimes follow
one-parameter Rayleigh under complete data. Whereas, in our studies the innovative dif-
ference lies in that the results were extended to the multicomponent stress-strength model
based on two-parameter Rayleigh distribution under censored data. Furthermore, as men-
tioned above, besides the likelihood-based estimators with the existence and uniqueness
for strength and stress parameters established, alternative generalized point and interval
estimates are also proposed for comparison. In addition, previous conventional likelihood
and generalized inferential approaches are both discussed under common and unequal
strength and stress parameters cases, respectively. Furthermore, unlike the natural way
for computing maximum likelihood estimators via taking direct derivatives for likelihood
equation in Rao’s [19] work, a profile likelihood approach is used for maximum likelihood
estimation in our discussion for two-parameter Rayleigh models, which is more efficient
and concise in a computational procedure. Therefore, comparing with Rao’s [19] work,
there are significant differences from the perspectives of both inferential methods and
lifetime models in these two papers. To the best of our knowledge, no work has been
carried out to study the pivotal quantities-based generalized estimates for MSR parameter
Rs,k based on two-parameter Rayleigh strength and stress distributions when the failure
times are obtained under Type-II censoring.

This rest of this paper is organized as follows. In Section 2, the strength and stress
samples are described, and the likelihood function is given. Section 3 presents different
inferential approaches to estimate MSR parameter Rs,k when latent strength and stress
lifetime models have a common parameter. Correspondingly, estimation is also discussed
based on unequal Rayleigh parameters in Section 4. In order to compare the equivalence
of the strength and stress location parameters, a testing problem of interested parameters
is presented in Section 5. Simulation studies and a real data example are provided in
Section 6 for illustration. Finally, Section 7 gives some concluding remarks.

2. Model Description and Likelihood Function

Suppose that n s-out-of-k G systems are put on a life-test experiment, each system
contains k i.i.d. strength components subject to a common stress. Based on the failure
mechanism of the s-out-of-k G system, failure samples for strength and stress variables are
observed as follows,

Observed strength variables Observed stress variables X11 X12 · · · X1s
...

...
. . .

...
Xn1 Xn2 · · · Xns

 and

 Y1
...

Yn

 (3)

where {Xi1, Xi2, . . . , Xis} are independent first s strength samples for the ith system and Yi
is the associated common stress variable, i = 1, 2, . . . , n. Let the lifetimes of the i.i.d. system
components be distributed according to CDF FX(·) and PDF fX(·) and the associated stress
variables have the distribution with PDF fY(·). The joint density function of (3) can be
expressed as:

L(data) ∝
n

∏
i=1

(
s

∏
j=1

fX(xij)

)
[1− FX(xis]

k−s fY(yi). (4)

Regarding the advantages of the likelihood function (4), one could observe that when
s = 1, it refers to the likelihood function for MSR with a conventional series system and in
the case of s = k, it is the likelihood function for the parallel system.
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3. Estimation of MSR with Common Location Parameters

In this section, estimation is considered for MSR parameter Rs,k when the strength
and stress variables have the common Rayleigh location parameter α, where α satisfies
condition 0 < α < min{min{xij}

j=1,...,s
i=1,...,n, y(1)}. Two different approaches are proposed to

establish point and interval estimates for MSR.
Let X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} be the strength variables of RL(λ1, α) and

Y = (Y1, Y2, . . . , Yn) be the associated stress variables of RL(λ2, α). Based on (1) and (2), the
MSR parameter Rs,k under this case can be written as:

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(t; λ1, α)]i[F(t; λ1, α)]k−idF(t; λ2, α)

=
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)jλ2

(i + j)λ1 + λ2
. (5)

3.1. Likelihood Based Inference for MSR

In this subsection, maximum likelihood estimator (MLE) together with existence and
uniqueness is established, and the associated approximate confidence interval (ACI) is also
constructed based on the large sample theory and delta technique.

3.1.1. Maximum Likelihood Estimation

From (2) and (4) and based on the observed sample (3), the likelihood function of
λ1, λ2, α can be expressed as:

L1(λ1,λ2, α) ∝
n

∏
i=1

(
s

∏
j=1

f (xij; λ1, α)

)
[1− F(xis; λ1, α)]k−s f (yi; λ2, α)

∝ λns
1 λn

2

(
n

∏
i=1

s

∏
j=1

(xij−α)

)(
n

∏
i=1

(yi − α)

)
· exp

{
−λ2

n

∑
i=1

(yi − α)2

}

· exp

{
−λ1

(
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

)}
(6)

and the associated log-likelihood function is given by:

`1(λ1, λ2, α) ∝ ns ln λ1 + n ln λ2 +
n

∑
i=1

s

∑
j=1

ln(xij − α) +
n

∑
i=1

ln(yi − α)

− λ1

(
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

)
− λ2

n

∑
i=1

(yi − α)2. (7)

Theorem 1. Suppose the strength and stress failure times follow Rayleigh distributions with
parameters (λ1, α) and (λ2, α), respectively. For given α, MLEs of λ1 and λ2 exist which can be
obtained as:

λ̇1 =
ns

∑n
i=1 ∑s

j=1(xij − α)2 + (k− s)∑n
i=1(xis − α)2

λ̇2 =
n

∑n
i=1(yi − α)2 .

(8)

Proof. See Appendix A.

From (8), substituting λ̇1 = λ1(α) and λ̇2 = λ2(α) into (7), the profile log-likelihood
function of α is obtained as:



Energies 2021, 14, 7917 5 of 23

`11(α) ∝ −ns ln

[
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

]
− n ln

[
n

∑
i=1

(yi − α)2

]

+
n

∑
i=1

s

∑
j=1

ln(xij − α) +
n

∑
i=1

ln(yi − α). (9)

Theorem 2. The MLE α̂ of α uniquely exists, which can be obtained from the following equation:

n

∑
i=1

s

∑
j=1

1
xij − α

+
n

∑
i=1

1
yi − α

− 2n ∑n
i=1(yi − α)

∑n
i=1(yi − α)2

−
2ns[∑n

i=1 ∑s
j=1(xij − α) + (k− s)∑n

i=1(xis − α)]

∑n
i=1 ∑s

j=1(xij − α)2 + (k− s)∑n
i=1(xis − α)2 = 0. (10)

Proof. See Appendix B.

Since the MLE α̂ does not have explicit form in the non-linear Equation (10), it can be
obtained by using an iterative procedure such as the Newton–Raphson method. Then, the
MLEs of λ1 and λ2 can be obtained from (8) respectively as:

λ̂1 =
ns

∑n
i=1 ∑s

j=1(xij − α̂)2 + (k− s)∑n
i=1(xis − α̂)2 ,

λ̂2 =
n

∑n
i=1(yi − α̂)2 .

Therefore, the MLE of MSR parameter Rs,k can be obtained from (5) as:

R̂s,k =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)jλ̂2

(i + j)λ̂1 + λ̂2
.

3.1.2. Approximate Confidence Interval

Since it is difficult to pursue the exact distribution of the MLE for Rs,k, the exact confi-
dence interval cannot be obtained either. In this subsection, an ACI for Rs,k is constructed
based on large sample theory and delta method.

The Fisher information matrix of parameter η = (λ1, λ2, α) is given by:

I(η) =


− ∂2`1

∂λ2
1

− ∂2`1
∂λ1∂λ2

− ∂2`1
∂λ1∂α

− ∂2`1
∂λ1∂λ2

− ∂2`1
∂λ2

2
− ∂2`1

∂λ2∂α

− ∂2`1
∂λ1∂α − ∂2`1

∂λ2∂α − ∂2`1
∂α2


where the second derivatives could be obtained directly of which the detailed expressions
are omitted here for concision.

Theorem 3. When n→ ∞,
√

nη̂ −
√

nη
d−→ N(0, nI−1(η)), where d−→ means ‘distributed as’.

Proof. Using the asymptotic properties of MLEs and multivariate central limit theorem,
the result can be proven.

Based on Theorem 3, the following result for MSR is provided.

Theorem 4. Let Rs,k be the MSR parameter defined in (5), when n→ ∞, one has:

√
nR̂s,k −

√
nRs,k

d−→ N(0, nU(η)),
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where U(η) =
(

∂Rs,k
∂η

)T
I−1(η)

(
∂Rs,k

∂η

)
and ∂Rs,k

∂η =
(

∂Rs,k
∂λ1

, ∂Rs,k
∂λ2

, ∂Rs,k
∂α

)T
.

Proof. See Appendix C.

Replacing η by its MLE η̂, for arbitrary 0 < γ < 1, an ACI of Rs,k can be constructed
from Theorem 4 as: (

R̂s,k − zγ/2

√
V̂ar(R̂s,k), R̂s,k + zγ/2

√
V̂ar(R̂s,k)

)
,

where V̂ar(R̂s,k) =
(̂

∂Rs,k
∂η

)T

V̂ar(η̂)
(̂

∂Rs,k
∂η

)
, V̂ar(η̂) = I−1(η̂) and

̂(∂Rs,k

∂η

)
=

(
∂Rs,k

∂λ1
,

∂Rs,k

∂λ2
,

∂Rs,k

∂α

)T∣∣∣
η=η̂

.

The ACI obtained by previous procedure may have a negative lower bound. In order
to overcome this drawback, the logarithmic transformation and delta methods can be used
to obtain the asymptotic normality distribution of ln R̂s,k as:

ln R̂s,k − ln Rs,k√
Var(ln R̂s,k)

d→ N(0, 1).

Therefore, a 100(1− γ)% ACI of Rs,k obtained via this manner can be constructed as: R̂s,k

exp
(

zγ/2

√
V̂ar(ln R̂s,k)

) , R̂s,k exp
(

zγ/2

√
V̂ar(ln R̂s,k)

),

where V̂ar(ln R̂s,k) = V̂ar(R̂s,k)/R̂2
s,k.

3.2. Pivotal Based Inference for MSR

A series of pivotal quantities are constructed based on the random samples of Rayleigh
stress and strength in this subsection. Then pivotal quantities based estimators for MSR
parameter Rs,k are proposed correspondingly.

Theorem 5. Let X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} be the strength variable from RL(λ1, α)
and pivotal quantities be:

PX
1 (α) = 2

n

∑
i=1

s−1

∑
j=1

ln

[
(k− s)(Xis − α)2 + ∑s

r=1(Xir − α)2

(k− j)(Xij − α)2 + ∑
j
r=1(Xir − α)2

]

and

QX
1 (λ1, α) = 2λ1

n

∑
i=1

{
(k− s)(Xis − α)2 +

s

∑
r=1

(Xir − α)2

}
.

Then PX
1 (λ) and QX

1 (λ1, α) are statistically independent and follow chi-square distributions
with 2n(s− 1) and 2ns degrees of freedom, respectively.

Proof. See Appendix D.



Energies 2021, 14, 7917 7 of 23

Theorem 6. Let Y = (Y1, Y2, . . . , Yn) be the stress variable from RL(λ2, α),

PY
1 (α) = 2

n−1

∑
j=1

ln

 ∑n
r=1(Y(r) − α)2

(n− j)(Y(j) − α)2 + ∑
j
r=1(Y(r) − α)2


and

QY
1 (λ2, α) = 2Mn = 2λ2

n

∑
r=1

(Y(r) − α)2,

where y(j) is jth order statistic of Y. Then PY
1 (α) and QY

1 (λ2, α) are statistically independent and
have chi-square distributions with 2(n− 1) and 2n degrees of freedom, respectively.

Proof. See Appendix E.

In order to construct pivotal quantities, another useful lemma is also provided below.

Lemma 1. For arbitrary values a and b with t < a < b, function K(t) =
(

b−t
a−t

)2
increases in t.

Proof. The result is obvious and the proof is omitted.

Corollary 1. Pivotal quantities PX
1 (α) and PY

1 (α) both increase in α.

Proof. See Appendix F.

Based on Theorems 5 and 6, using independent property of PX
1 (α) and PY

1 (α), pivotal quantity:

P1(α) = PX
1 (α) + PY

1 (α)

= 2
n

∑
i=1

s−1

∑
j=1

ln

[
(k− s)(Xis − α)2 + ∑s

r=1(Xir − α)2

(k− j)(Xij − α)2 + ∑
j
r=1(Xir − α)2

]

+ 2
n−1

∑
j=1

ln

 ∑n
r=1(Y(r) − α)2

(n− j)(Y(j) − α)2 + ∑
j
r=1(Y(r) − α)2


follows the chi-square distribution with 2(ns− 1) degrees of freedom. It is also deduced
from Corollary 1 that P1(α) increases in α.

For a given P1 ∼ χ2
2(ns−1), equation P1(α) = P1 has an unique solution in terms of α

which is denoted by h1(P1; X, Y) and can be obtained by the bisection method. Moreover,
from Theorem 5, one has:

λ1 =
QX

1
HX

1 [α]
and HX

1 [α] = 2
n

∑
i=1

{
(k− s)(xis − α)2 +

s

∑
r=1

(xir − α)2

}
.

Following the substitution method of Weerahandi [20], a generalized pivotal quantity,
namely SX

1 , can be constructed by substituting h1(P1; X, Y) for α in the expression of λ1
as follows:

SX
1 =

QX
1

2 ∑n
i=1{(k− s)(xis − h1(P1; x, y))2 + ∑s

r=1(xir − h1(P1; x, y))2}

=
∑n

i=1
{
(k− s)(xis − h1(P1; X, Y))2 + ∑s

r=1(xir − h1(P1; X, Y))2}
∑n

i=1{(k− s)(xis − h1(P1; x, y))2 + ∑s
r=1(xir − h1(P1; x, y))2} · λ1

=
QX

1
HX

1 [h1(P1; x, y)]
,
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where (x, y) denotes the observation of sample (X, Y). It is noted that the distribution of SX
1

is free of any unknown parameters in its first expression, and that S1 reduces to λ1 when
(X, Y) = (x, y). Therefore, SX

1 is a generalized pivotal quantity for parameter λ1. Similarly,
from Theorem 6, a generalized pivotal quantity for parameter λ2 could be constructed as:

SY
1 =

QY
1

HY
1 [h1(P1; x, y)]

with HY
1 [α] = 2

n

∑
r=1

[
y(r) − α

]2
and QY

1 ∼ χ2
2n.

Therefore, a generalized pivotal quantity for Rs,k can be constructed as:

W1 =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

1 + (i + j)QX
1

QY
1

HY
1 [h1(P1;x,y)]

HX
1 [h1(P1;x,y)]

.

Correspondingly, a procedure to estimate Rs,k is provided as Algorithm 1 .

Algorithm 1: Pivotal based estimation for Rs,k with common parameter.

Step 1 Generate a realization p1 of P1 from chi-squared distribution with 2(ns− 1) degrees of
freedom. Then an observation h1 of h1(P1; X, Y) can be obtained from the equation
P1(λ) = p1.

Step 2 Generate random data for QX
1 and QY

1 from chi-squared distribution with 2ns and 2n
degrees of freedom, respectively. Then compute W1.

Step 3 Repeat Step 1 and 2 N times, one can obtain N values of W1 as W(1)
1 , W(2)

1 , . . . , W(N)
1 .

Step 4 Two types of point estimators are proposed here. One natural generalized point estimator
for Rs,k is given by:

Ŕs,k =
1
N

N

∑
j=1

W(j)
1 .

Moreover, an alternative point estimator utilizing Fisher Z transformation is given as:

ŔF
s,k =

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
1

1−W(j)
1

]}
− 1

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
1

1−W(j)
1

]}
+ 1

.

Step 5 Arrange all estimates of W1 in ascending order as W [1]
1 , W [2]

1 , . . . , W [N]
1 . For arbitrary 0 < γ < 1,

a series of 100(1− γ) confidence intervals of Rs,k can be constructed as (W [j]
1 , W [j+N−[Nγ+1]]

1 ),
j = 1, 2, . . . , [Nγ], where [t] denotes the greatest integer less than or equal to t. Therefore,
a 100(1− γ)% generalized confidence interval (GCI) of Rs,k can be constructed as the j∗th
one satisfying:

W [j∗+N−[Nγ+1]]
1 −W [j∗ ]

1 =
[Nγ]
min
j=1

(W [j+N−[Nγ+1]]
1 −W [j]

1 ).

Besides previous proposed generalized estimates, some applications are provided
as complementary.

Remark 1. Using pivotal quantity P1(α), for arbitrary 0 < γ < 1, a 100(1 − γ)% exact
confidence interval for α is given by:(

h1(χ
1−γ/2
2(ns−1); X, Y), h1(χ

γ/2
2(ns−1); X, Y)

)
,

where χ
γ
k denotes the right-tail 100γ% quantile of the chi-square distribution with k degrees

of freedom.
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Meanwhile, 100(1−γ)% exact confidence regions for (α, λ1) and (α, λ2) could be constructed
from (P1(α), QX

1 (λ1, α)), and (P1(α), QY
1 (λ2, α)) as follows:(α, λ1) : h1(χ

1−
√

1−γ
2

2(ns−1); X, Y) < α < h1(χ
1+
√

1−γ
2

2(ns−1); X, Y),
χ

1−
√

1−γ
2

2ns
HX

1 [α]
< λ1 <

χ
1+
√

1−γ
2

2ns
HX

1 [α]


and(α, λ2) : h1(χ

1−
√

1−γ
2

2(ns−1); X, Y) < α < h1(χ
1+
√

1−γ
2

2(ns−1); X, Y),
χ

1−
√

1−γ
2

2n
HY

1 [α]
< λ2 <

χ
1+
√

1−γ
2

2n
HY

1 [α]

,

respectively.

Remark 2. Consider null hypothesis H0 and alternative hypothesis H1 listed as follows:

(a) H0 : α ≤ α0 ↔ H1 : α > α0,

(b) H0 : α ≥ α0 ↔ H1 : α < α0,

(c) H0 : α = α0 ↔ H1 : α 6= α0.

For arbitrary 0 < γ < 1, the decision rule to reject null hypothesis H0 in (a), (b), (c) can be
expressed as:

(a)′
{

P1(α0) ≥ χ
γ
2(ns−1)

}
, (b)′

{
P1(α0) ≤ χ

γ
2(ns−1)

}
,

(c)′
{

P1(α0) ≤ χ
γ/2
2(ns−1), or P1(α0) ≥ χ

1−γ/2
2(ns−1)

}
,

respectively.

4. Estimation for MSR with Unequal Parameters

In this section, inference for MSR parameter Rs,k is studied under unequal location pa-
rameters, i.e., strength variable X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} comes from RL(λ1, α1)
with 0 < α1 < min{xi1}n

i=1, and the associated stress variable Y = {Y1, Y2, . . . , Ys} follows
RL(λ2, α2) with 0 < α2 < y(1).

In this case, denote α0 = max{α1, α2} with α1 6= α2 and the MSR parameter Rs,k is
given by:

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(t; λ1, α1)]

i[F(t; λ1, α1)]
k−idF(t; λ2, α2)

=
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

∫ 1

1−e−λ2(α0−α2)
2 e
−λ1(i+j)

(
α2−α1+

√
− ln(1−u)

λ2

)2

du.

4.1. Likelihood Based Inference for Rs,k

From (2) and (4), the likelihood function of λ1, α1 and λ2, α2 can be expressed as:

L2(λ1, α1,λ2, α2) ∝
n

∏
i=1

(
s

∏
j=1

f (xij; λ1, α1)

)
[1− F(xis; λ1, α1)]

k−s f (yi; λ2, α2)

∝ λns
1 λn

2

(
n

∏
i=1

s

∏
j=1

(xij − α1)
n

∏
i=1

(yi − α2)

)
exp

{
−λ2

n

∑
i=1

(yi − α2)
2

}

· exp

{
−λ1

n

∑
i=1

s

∑
j=1

(xij − α1)
2 − λ1(k− s)

n

∑
i=1

(xis − α1)
2

}
(11)
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and the associated log-likelihood function can be written as:

`2(λ1, α1, λ2, α2) ∝ ns ln λ1 + n ln λ2 +
n

∑
i=1

s

∑
j=1

ln(xij − α1) +
n

∑
i=1

ln(yi − α2)

− λ1

{
n

∑
i=1

s

∑
j=1

(xij − α1)
2 + (k− s)

n

∑
i=1

(xis − α1)
2

}
− λ2

n

∑
i=1

(yi − α2)
2. (12)

Following similar processes to prove Theorems 1 and 2, the following results can
be proved.

Theorem 7. Let the latent strength and stress failure times follow Rayleigh distributions with
parameters (λ1, α1) and (λ2, α2), respectively. Then MLEs λ̌1, λ̌2, α̌1, α̌2 of λ1, λ2, α1, α2 uniquely
exist and are given by:

λ̌1 =
ns

∑n
i=1 ∑s

j=1(xij − α̌1)2 + (k− s)∑n
i=1(xis − α̌1)2

λ̌2 =
n

∑n
i=1(yi − α̌2)2 ,

with α̌1 and α̌2 being the solutions of the following equations:

n

∑
i=1

s

∑
j=1

1
xij − α1

−
2ns
[
∑n

i=1 ∑s
j=1(xij − α1) + (k− s)∑n

i=1(xis − α1)
]

∑n
i=1 ∑s

j=1(xij − α1)2 + (k− s)∑n
i=1(xis − α1)2 = 0,

n

∑
i=1

1
yi − α2

− 2n ∑n
i=1(yi − α2)

∑n
i=1(yi − α2)2 = 0.

Using the invariant property of maximum likelihood estiamtion, the MLE of MSR
parameter Rs,k is given by:

Řs,k =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

∫ 1

1−e−λ̌2(α̌0−α̌2)
2 e
−λ̌1(i+j)

(
α̌2−α̌1+

√
− ln(1−u)

λ̌2

)2

du

with α̌0 = max{α̌1, α̌2}.
The observed Fisher information matrix of parameter ν = (λ1, α1, λ2, α2) is given by:

J(ν) =


− ∂2`2

∂λ2
1
− ∂2`1

∂λ1∂α1
0 0

− ∂2`2
∂λ1∂α1

− ∂2`1
∂α2

1
0 0

0 0 − ∂2`2
∂λ2

2
− ∂2`2

∂λ2∂α2

0 0 − ∂2`2
∂λ2∂α2

− ∂2`2
∂α2

2


where the second derivatives could be obtained directly of which the detailed expressions
are omitted here for concision.

Therefore, following a similar procedure to develop Theorem 4 and replacing ν by its
MLE ν̂, for arbitrary 0 < γ < 1, an ACI of Rs,k can be constructed as:(

Řs,k − zγ/2

√
Ṽar(Řs,k), Řs,k + zγ/2

√
Ṽar(Řs,k)

)
,
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where

Ṽar(Řs,k) =

(
∂̃Rs,k

∂ν

)T

Ṽar(η̌)

(
∂̃Rs,k

∂ν

)
, Ṽar(ν̌) = J−1(ν̌),

and

∂̃Rs,k

∂ν
=

(
∂Rs,k

∂λ1
,

∂Rs,k

∂α1
,

∂Rs,k

∂λ2
,

∂Rs,k

∂α2

)T∣∣∣
ν=ν̌

.

Moreover, an alternative 100(1− γ)% ACI of Rs,k is given by: Řs,k

exp
(

zγ/2

√
Ṽar(ln Řs,k)

) , Řs,k exp
(

zγ/2

√
Ṽar(ln Řs,k)

),

where Ṽar(ln Řs,k) = Ṽar(Řs,k)/Ř2
s,k.

4.2. Pivotal Based Inference for Rs,k

Following Theorems 5 and 6, one directly has:

Theorem 8. Let X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} and Y = {Y1, X2, . . . , Yn} be in-
dependent strength and stress variables from RL(λ1, α1) and RL(α2, α2), respectively. Denote
pivotal quantities:

PX
2 (α1) = 2

n

∑
i=1

s−1

∑
j=1

ln

[
(k− s)(Xis − α1)

2 + ∑s
r=1(Xir − α1)

2

(k− j)(Xij − α1)2 + ∑
j
r=1(Xir − α1)2

]
,

QX
2 (λ1, α1) = 2λ1

n

∑
i=1

{
(k− s)(Xis − α1)

2 +
s

∑
r=1

(Xir − α1)
2

}
,

and

PY
2 (α2) = 2

n−1

∑
j=1

ln

 ∑n
r=1(Y(r) − α2)

2

(n− j)(Y(j) − α2)2 + ∑
j
r=1(Y(r) − α2)2

,

QY
2 (λ2, α2) = 2λ2

n

∑
r=1

(Y(r) − α2)
2.

Then,

• PX
2 (α1) ∼ χ2

2n(s−1), QX
2 (λ1, α1) ∼ χ2

2ns are statistically independent;

• PY
2 (α2) ∼ χ2

2(n−1), QY
2 (λ2, α2) ∼ χ2

2n are statistically independent.

Similar to the process in Section 3, for given PX
2 ∼ χ2

2n(s−1) and PY
2 ∼ χ2

2(n−1), denote

h2(PX
2 ; X) and h2(PY

2 ; Y) as the solutions of equations PX
2 (λ) = PX

2 and PY
2 (λ) = PY

2 , respec-
tively. Using the substitution method of Weerahandi [20], generalized pivotal quantities
for λ1 and λ2 can be constructed respectively as:

SX
2 =

QX
2

HX
2 [h2(PX

2 ; x)]
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with QX
2 ∼ χ2

2ns and

HX
2 [α1] = 2

n

∑
i=1

{
(k− s)(xis − α1)

2 +
s

∑
r=1

(xir − α1)
2

}
,

whereas,

SY
2 =

QY
2

HY
2 [h2(PY

2 ; y)]
with QX

2 ∼ χ2
2n, HY

2 [α2] = 2
n

∑
r=1

(Y(r) − α2)
2.

Therefore, denote h3(x, y) = max
{

h2(PX
2 ; x), h2(PY

2 ; y)
}

, a generalized pivotal quan-
tity for Rs,k can be expressed as:

W2 =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

∫ 1

1−exp{−SY
2 (h3(x,y)−h2(PY

2 ;y))2}

exp

−SX
2 (i + j)

(
h2(PY

2 ; y)− h2(PX
2 ; x) +

√
− ln(1− u)

SY
2

)2
du.

Furthermore, the following Algorithm 2 is provided to obtain the aformentioned
generalized estimates of Rs,k under unequal parameters.

Algorithm 2: Pivotal based estimation for Rs,k with unequal parameters

Step 1 Generate a realization p21 of PX
2 from the chi-squared distribution with 2n(s− 1)

degrees of freedom. Then an observation h21 of h2(PX
2 ; X) can be obtained from the

equation PX
2 (λ1) = p21. Similarly, generate a realization p22 of PY

2 from chi-squared
distribution with 2(n− 1) degrees of freedom, and an observation h22 of h2(PY

2 ; Y)
is obtained from the equation PY

2 (λ2) = p22.
Step 2 Generate random data for QX

2 and QY
2 from the chi-squared distributions with 2ns

and 2n degrees of freedom, respectively. Then compute W2.
Step 3 Repeat Step 1 and 2 N times, one can obtain N values of W2 as W(1)

2 , W(2)
2 , . . . , W(N)

2 .
Step 4 A natural generalized estimator R̀s,k and a Fisher Z transformation based estimator

R̀F
s,k for Rs,k can be constructed as:

R̀s,k =
1
N

N

∑
j=1

W(j)
2 and R̀F

s,k =

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
2

1−W(j)
2

]}
− 1

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
2

1−W(j)
2

]}
+ 1

.

Step 5 Arrange all estimates of W2 in ascending order as W [1]
2 , W [2]

2 , . . . , W [N]
2 . For arbitrary

0 < γ < 1, a series of 100(1− γ) confidence intervals of Rs,k can be constructed as

(W [j]
2 , W [j+N−[Nγ+1]]

2 ), j = 1, 2, . . . , [Nγ]. Therefore, a 100(1− γ)% GCI of Rs,k can
be obtained as the j∗th one satisfying:

W [j∗+N−[Nγ+1]]
2 −W [j∗ ]

2 =
[Nγ]

min
j=1

(W [j+N−[Nγ+1]]
2 −W [j]

2 ).

Similarly, some applications are also presented below.
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Remark 3. For arbitrary 0 < γ < 1, a 100(1− γ)% exact confidence interval for α1 and α2 is
given by:(

h2(χ
1−γ/2
2n(n−1); X), h2(χ

γ/2
2n(s−1); X)

)
and

(
h2(χ

1−γ/2
2(n−1); Y), h2(χ

γ/2
2(n−1); Y)

)
,

respectively. Furthermore, exact confidence regions for (λ1, α1) and (λ2, α2) are constructed as:(α1, λ1) : h2(χ
1−
√

1−γ
2

2n(s−1); X) < α1 < h2(χ
1+
√

1−γ
2

2n(s−1); X),
χ

1−
√

1−γ
2

2ns
HX

2 [α1]
< λ1 <

χ
1+
√

1−γ
2

2ns
HX

2 [α1]


and (α2, λ2) : h2(χ

1−
√

1−γ
2

2(n−1) ; Y) < α2 < h2(χ
1+
√

1−γ
2

2(n−1) ; Y),
χ

1−
√

1−γ
2

2n
HY

2 [α2]
< λ2 <

χ
1+
√

1−γ
2

2n
HY

2 [α2]

,

respectively.

Remark 4. For i = 1, 2, consider the following null hypothesis H0 and alternative hypothesis H1:

(d) H0 : αi ≤ αi0 ↔ H1 : αi > αi0,

(e) H0 : αi ≥ αi0 ↔ H1 : αi < αi0,

( f ) H0 : αi = αi0 ↔ H1 : αi 6= αi0.

Therefore, under significance level 0 < γ < 1, the decision rule to reject null hypothesis H0 in
(d), (e), ( f ) for α1 and α2 can be expressed as:

(d)′
{

PX
2 (α10) ≥ χ

γ
2n(s−1)

}
,

(e)′
{

PX
2 (α10) ≤ χ

γ
2n(s−1)

}
,

( f )′
{

PX
2 (α10) ≤ χ

γ/2
2n(s−1), or PX

2 (α10) ≥ χ
1−γ/2
2n(s−1)

}
,

and

(d)′′
{

PY
2 (α20) ≥ χ

γ
2(n−1)

}
,

(e)′′
{

PY
2 (α20) ≤ χ

γ
2(n−1)

}
,

( f )′′
{

PY
2 (α20) ≤ χ

γ/2
2(n−1), or PX

2 (α20) ≥ χ
1−γ/2
2(n−1)

}
.

respectively.

Remark 5. It is worth noting that for both common and unequal parameter cases, for computational
purposes, the value of s from the s-out-of-k system must be at least 2, else the previous proposed
pivotal quantities PX

i and QX
i , i = 1, 2 cannot be constructed with s = 1. Under this situation,

the strength variables X11, X21, . . . , Xn1 can be viewed as an i.i.d. sample of size n from lifetime
distribution with CDF F(t; α, λ) = 1− e−kλ(t−α)2

. As an alternative approach, one could construct
the following pivotal quantities:

PX
i (α(·)) = 2

n−1

∑
j=1

ln

 ∑n
r=1(X(r1) − α(·))2

(n− j)(X(j1) − α(·))2 + ∑
j
r=1(X(r1) − α)2
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and

QX
i (λ1, α(·)) = 2λ1

n

∑
r=1

(X(r1) − α(·))2,

which have the chi-square distributions with 2(n− 1) and 2n degrees of freedom respectively, where
α(·) = α or α1 under common and unequal parameter cases respectively, and X(11), X(21), . . . , X(n1)
are the order statistics of X11, X21, . . . , Xn1 in ascending order. Therefore, previous generalized
point and confidence interval estimates could be obtained as well.

5. Testing Problem

In previous two sections, reliability analysis is discussed for MSR parameter Rs,k
under common and unequal location parameter cases. One may be interested in testing
whether the strength and stress parameters α1 and α2 from Rayleigh distributions are equal.
Here we present the likelihood ratio test to compare the equivalence between parameters
α1 and α2.

The hypothesis test problem is stated as:

H0 : α1 = α2 = α vs H1 : α1 6= α2.

For large n, the likelihood ratio statistic has the following property:

−2{`2(λ̂1, λ̂2, α̂)− `2(λ̂1, λ̂2, α̂1, α̂2)} → χ2
1. (13)

Hence, the likelihood ratio test can be constructed by using the asymptotic distri-
bution of −2{`2(λ̂1, λ̂2, α̂)− `2(λ̂1, λ̂2, α̂1, α̂2)} and H0 is rejected when −2{`2(λ̂1, λ̂2, α̂)−
`2(λ̂1, λ̂2, α̂1, α̂2)} > c∗, where c∗ satisfies P

(
χ2

1 > c∗
)

size of the test.

6. Numerical Illustration
6.1. Simulation Studies

In this section, simulation experiments are presented to evaluate the proposed meth-
ods. The performance of different estimates for MSR parameter Rs,k is investigated by the
following four criteria quantities:

• Mean square error (MSE) of different point estimates represented by R̄s,k, of Rs,k,
which is computed by 1

N ∑(R̄s,k − Rs,k)
2;

• Average absolute bias (AB) of different point estimates R̄s,k of Rs,k, which is calculated
as 1

N ∑ |R̄s,k − Rs,k|;
• Coverage probability (CP) of different (1− γ)% confidence intervals of Rs,k, which

is defined as the probability that the estimated confidence interval contains the true
value of the parameters;

• Average width (AW) of different (1− γ)% confidence intervals of the parameter Rs,k.

For different choices of Rayleigh parameters values λ1, α1, λ2, α2 and sample sizes
n, s, k, the simulation was conducted for 10, 000 runs. All aforementioned different estimates
for MSR parameter Rs,k were calculated, and the associated criteria quantities were obtained
based on 10,000 simulation runs. The simulation results are reported in Table 1–4, where
the significance level for interval estimates is given as γ = 0.95.
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Table 1. ABs and MSEs (within bracket) for Rs,k with common parameters.

(λ1, λ2, α) (s, k) n R̂s,k Ŕs,k ŔF
s,k

(1.5,0.8,2) (3,7) 5 0.1142 [0.0296] 0.1121 [0.0271] 0.1078 [0.0263]
10 0.0817 [0.0161] 0.0712 [0.0152] 0.0705 [0.0143]
30 0.0785 [0.0086] 0.0602 [0.0078] 0.0582 [0.0070]
50 0.0530 [0.0077] 0.0483 [0.0036] 0.0477 [0.0035]

(5,10) 5 0.1125 [0.0200] 0.1059 [0.0172] 0.1050 [0.0189]
10 0.0768 [0.0093] 0.0701 [0.0090] 0.0698 [0.0088]
30 0.0638 [0.0072] 0.0633 [0.0065] 0.0631 [0.0062]
50 0.0473 [0.0054] 0.0456 [0.0033] 0.0445 [0.0030]

(1.8,1,1.5) (3,7) 5 0.1260 [0.0214] 0.1117 [0.0198] 0.1106 [0.0186]
10 0.0897 [0.0125] 0.0809 [0.0103] 0.0800 [0.0100]
30 0.0674 [0.0076] 0.0579 [0.0057] 0.0568 [0.0053]
50 0.0483 [0.0051] 0.0477 [0.0048] 0.0473 [0.0039]

(5,10) 5 0.1088 [0.0188] 0.1048 [0.0169] 0.1038 [0.0158]
10 0.0749 [0.0112] 0.0754 [0.0088] 0.0749 [0.0086]
30 0.0642 [0.0052] 0.0537 [0.0045] 0.0535 [0.0043]
50 0.0470 [0.0046] 0.0433 [0.0036] 0.0431 [0.0030]

Table 2. AWs and CPs (within bracket) for Rs,k with common parameters.

(λ1, λ2, α) n
(s, k) = (3, 7) (s, k) = (5, 10)

ACI GCI ACI GCI

(1.5,0.8,2) 5 0.6243 [0.6258] 0.6168 [0.6633] 0.4440 [0.7195] 0.4347 [0.7626]
10 0.3421 [0.7133] 0.2554 [0.7632] 0.3241 [0.8051] 0.3176 [0.8124]
30 0.2074 [0.8127] 0.1550 [0.8458] 0.1398 [0.8221] 0.1106 [0.8598]
50 0.1583 [0.8781] 0.1236 [0.8971] 0.1168 [0.9014] 0.1034 [0.9237]

(1.8,1,1.5) 5 0.4633 [0.7122] 0.4624 [0.7857] 0.3954 [0.7763] 0.3825 [0.8766]
10 0.4148 [0.8272] 0.6307 [0.8531] 0.3570 [0.8844] 0.3371 [0.9074]
30 0.2171 [0.8788] 0.2009 [0.8874] 0.1886 [0.8957] 0.1648 [0.9253]
50 0.1546 [0.9252] 0.1354 [0.9229] 0.1446 [0.9410] 0.1265 [0.9421]

Table 3. ABs and MSEs (within bracket) for Rs,k with unequal parameters.

(λ1, α1, λ2, α2) (s, k) n Řs,k R̀s,k R̀F
s,k

(1.2,1.5,1.4,2) (3,7) 5 0.1728 [0.0496] 0.1086 [0.0413] 0.0984 [0.0317]
10 0.1331 [0.0333] 0.0867 [0.0171] 0.0849 [0.0143]
30 0.0649 [0.0094] 0.0506 [0.0063] 0.0460 [0.0054]
50 0.0445 [0.0036] 0.0309 [0.0021] 0.0306 [0.0018]

(5,10) 5 0.1668 [0.0475] 0.0863 [0.0188] 0.0816 [0.0100]
10 0.1557 [0.0271] 0.0663 [0.0088] 0.0610 [0.0082]
30 0.0553 [0.0076] 0.0409 [0.0034] 0.0394 [0.0031]
50 0.0362 [0.0025] 0.0347 [0.0022] 0.0339 [0.0020]

(1.6,1,1.5,1.2) (3,7) 5 0.1618 [0.0477] 0.1058 [0.0245] 0.0955 [0.0210]
10 0.1226 [0.0323] 0.0728 [0.0113] 0.0681 [0.0101]
30 0.0580 [0.0089] 0.0396 [0.0028] 0.0387 [0.0027]
50 0.0374 [0.0028] 0.0300 [0.0015] 0.0295 [0.0015]

(5,10) 5 0.1557 [0.0456] 0.0904 [0.0200] 0.0786 [0.0169]
10 0.1025 [0.0251] 0.0604 [0.0084] 0.0548 [0.0074]
30 0.0450 [0.0060] 0.0315 [0.0019] 0.0303 [0.0018]
50 0.0299 [0.0019] 0.0231 [0.0010] 0.0225[0.0009]
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Table 4. AWs and CPs (within bracket) for Rs,k with unequal parameters.

(λ1, λ2, α1, α2) n
(s, k) = (3, 7) (s, k) = (5, 10)

ACI GCI ACI GCI

(1.2,1.5,1.4,2) 5 0.6625 [0.7056] 0.4336 [0.7756] 0.4728 [0.7856] 0.3799 [0.8015]
10 0.3743 [0.8043] 0.3527 [0.8262] 0.3677 [0.8322] 0.2581 [0.8424]
30 0.2662 [0.8445] 0.2520 [0.8668] 0.1425 [0.8710] 0.1150 [0.8872]
50 0.1415 [0.8620] 0.1382 [0.8813] 0.1355 [0.8896] 0.1042 [0.9105]

(1.6,1,1.5,1.2) 5 0.5477 [0.8419] 0.3100 [0.8552] 0.3260 [0.8473] 0.2479 [0.8574]
10 0.2530 [0.8623] 0.2514 [0.8686] 0.1110 [0.8662] 0.1014 [0.8893]
30 0.1127 [0.8803] 0.1110 [0.8878] 0.0984 [0.9121] 0.0910 [0.9269]
50 0.1100 [0.8972] 0.0814 [0.9010] 0.0656 [0.9271] 0.0518 [0.9355]

Based on the simulation results displayed in Table 1 and 3, it is observed that as the
effective sample sizes n or (s, k) or their combination increase, ABs and MSEs of point
estimates of MSR parameter Rs,k decrease under both common and unequal location param-
eter cases, respectively. It verifies the consistency properties of all the proposed methods.
One could also observe that both likelihood and pivotal estimates have a satisfactory
performance in terms of ABs and MSEs. Under a fixed effective sample size, the pivotal
quantities-based generalized point estimates Ŕ and ŔF have smaller ABs and MSEs than
those of MLEs R̂ under a common location parameter case where R̀F is superior to Ŕ. Simi-
lar phenomenon also appears among estimates R̀, R̀F, and Ř under an unequal parameter
case in term of ABs and MSEs. Taking Table 2 and 4 into consideration, one also observed
that the AWs of ACIs and GCIs are getting smaller as the effective sample size increases,
and correspondingly the associated CPs increase when the sample size increases under
both common and unequal location parameter cases. In general, the CPs of the proposed
GCIs are more close to the nominal level than ACIs. Under a fixed sample size, the GCIs
have smaller AWs and larger CPs than those of ACIs in most situations. Therefore, one
can draw conclusions from this simulation results that the pivotal estimates perform better
than conventional likelihood-based point and interval results in terms of criteria quantities.

6.2. Real Data Illustration

In this section, the monthly water capacity of the Shasta reservoir in California,
USA during the months of August, September, and December from 1980 to 2015 (see
http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA, accessed on 19 September 2021)
is discussed to illustrate the utilization of the proposed procedures. Suppose that k = 5,
n = 6, Y1 is the capacities of December 1980, and X11, . . . , X15 are the capacities of August
from 1981 to 1985; Y2 is the capacities of December 1986, X21, . . . , X25 are the capacities
of August from 1987 to 1991 and so on. For illustration, all of the values are divided by
3,014,878 (the mean of water capacity) and the transformed data are obtained as:

Observed complete strength data Observed complete stress data

0.4238 0.5579 0.7262 0.8112 0.8296
0.2912 0.3634 0.3719 0.4637 0.4785
0.5381 0.5612 0.7226 0.7449 0.7540
0.5249 0.6060 0.6686 0.7159 0.7552
0.3451 0.4253 0.4688 0.7188 0.7420
0.2948 0.3929 0.4616 0.6139 0.7951

 and



0.7009
0.6532
0.4589
0.7183
0.5310
0.7665


For the above-transformed data, one can refer to Kizilaslan and Nadar [11] for more

details, whereas the complete monthly water capacity of the Shasta reservoir in California,
USA between 1981 to 1985 is provided in Appendix G.

Before progressing further, we check whether the Rayleigh distribution could be used
to fit these real life data. The Kolmogorov-Smirnov (K-S) distances and the corresponding
p-values (within brackets) are 0.1754(0.2802) and 0.2703(0.6841), respectively. Moreover,

http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
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the empirical cumulative distributions plot and overlay the theoretical Rayleigh distribu-
tion, the probability-probability (P-P) and the Quantile-Quantile (Q-Q) plots are shown in
Figure 1, which also imply that the Rayleigh distribution can be used as a proper model
to fit this dataset. Therefore, it is noted that the Rayleigh distribution fits the transformed
dataset well and can be used as a proper model.
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Figure 1. Empirical distribution and fitted Rayleigh distribution, P-P, and Q-Q plots based on
real data.

Based on previous complete strength and stress data, a MSR censored observation of
the 3-out-of-5 G system can be constructed as:

Strength data of X Stress data of Y

0.4238 0.5579 0.7262
0.2912 0.3634 0.3719
0.5381 0.5612 0.7226
0.5249 0.6060 0.6686
0.3451 0.4253 0.4688
0.2948 0.3929 0.4616

 and



0.7009
0.6532
0.4589
0.7183
0.5310
0.7665

.

The associated point and interval estimates for MSR parameter Rs,k are presented in
Table 5 under both common and unequal location parameter cases, where the significance
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level γ is taken to be 0.05 and the associated interval lengths are obtained in squared
brackets. It is observed that the point estimates are close to each other and the GCIs of Rs,k
perform better than associated ACIs in terms of interval length.

Table 5. Estimates of Rs,k based on the real data set.

Common Parameter Case

R̂s,k Ŕs,k ŔF
s,k ACI GCI

0.4766 0.5208 0.4971 (0.4551,0.5231)[0.0680] (0.4687,0.4995)[0.0308]

Unequal parameter case

Řs,k R̀s,k R̀F
s,k ACI GCI

0.5525 0.5662 0.5776 (0.4439,0.6532)[0.2093] (0.4851,0.6530)[0.1579]

Moreover, for comparing the equivalence between strength and stress location param-
eters, α1 and α2, the likelihood ratio statistic and p-value are 7.4508 and 0.0063, respectively.
There is sufficient statistical evidence to reject the null hypothesis α1 = α2 at a 0.05 signifi-
cance level. Therefore, it is recommended that the strength and stress are from Rayleigh
distributions with unequal parameters α1 and α2 under this monthly capacity data.

7. Concluding Remarks

Inference for a multicomponent stress-strength model is studied when the latent
strength and stress random variables follow Rayleigh distributions in this paper. The
existence and uniqueness of the MLE for MSR parameter Rs,k have been established under
common and unequal location parameter situations. ACIs are also provided by using a
large sample theory and delta technique. Alternatively, a series of pivotal quantities are
constructed and correspondingly the generalized pivotal-based estimators for the Rayleigh
MSR parameter Rs,k are proposed as well. From simulation results and the real life example,
it is observed that the proposed procedures work quite well under the given sampling
scheme, and that the proposed pivotal quantities-based generalized estimates perform
better than conventional likelihood-based point and confidence interval estimates under
both common and unequal location parameter cases, respectively. Although the inference
is discussed under Type-II censored data, the methodologies proposed in this work can be
extended to other data types, such as complete data, progressively Type-II censored data,
and progressively first-failure Type-II censored data with proper modification.
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Appendix A. The Proof of Theorem 1

For fixed n, s, k and given α, taking derivatives of `1(λ1, λ2, α) with respect to parame-
ters λ1, λ2 and setting them to zero, one can obtain the conditional MLEs λ̇1, λ̇2 of λ1, λ2

directly. Moreover, using inequality ln t ≤ t− 1 for t = λi
λ̇i
(> 0), i = 1, 2, one has:

ln λ1 ≤
λ1

ns

[
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

]
− 1 + ln λ̇1, (A1)

and

ln λ2 ≤
λ2

n

[
n

∑
i=1

(yi − α)2

]
− 1 + ln λ̇2. (A2)

Ignoring the constant terms and substituting inequalities (A1) and (A2) into the log-
likelihood function (7), one further has:

`1(λ1, λ2, α) ≤ λ1

{
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

}
− ns + ns ln λ̇1

+ λ2

n

∑
i=1

ln(yi − α)2 − n + n ln λ̇2 +
n

∑
i=1

s

∑
j=1

ln(xij − α) +
n

∑
i=1

ln(yi − α)

− λ1

(
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

)
− λ2

n

∑
i=1

(yi − α)2.

Since,

ns = λ̇1

{
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

}
and n = λ̇2

n

∑
i=1

(yi − α)2,

following inequality can be obtained as:

`1(λ1, λ2, α) ≤ ns ln λ̇1 + n ln λ̇2 +
n

∑
i=1

s

∑
j=1

ln(xij − α) +
n

∑
i=1

ln(yi − α)

− λ̇1

(
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

)
− λ̇2

n

∑
i=1

(yi − α)2

= `1(λ̇1, λ̇2, α).

Equality holds iff λ1 = λ̇1 and λ2 = λ̇2. This completes the proof.

Appendix B. The Proof of Theorem 2

Based on (9), taking derivatives of `11(α) and setting it to zero, one has:

∂`11(α)

∂α
= −

n

∑
i=1

s

∑
j=1

1
xij − α

−
n

∑
i=1

1
yi − α

+
2n ∑n

i=1(yi − α)

∑n
i=1(yi − α)2

+
2ns[∑n

i=1 ∑s
j=1(xij − α) + (k− s)∑n

i=1(xis − α)]

∑n
i=1 ∑s

j=1(xij − α)2 + (k− s)∑n
i=1(xis − α)2 = 0,

then the result is obtained.
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Ignoring the constant terms, we write (7) as:

`1(λ1, λ2, α) = ns ln λ1 + n ln λ2 +
n

∑
i=1

s

∑
j=1

ln(xij − α) +
n

∑
i=1

ln(yi − α)

− λ1

(
n

∑
i=1

s

∑
j=1

(xij − α)2 + (k− s)
n

∑
i=1

(xis − α)2

)
− λ2

n

∑
i=1

(yi − α)2.

From the above expression, it is observed that the domain of λ1, λ2, α is defined as
(0,+∞)× (0, ∞)× (0, t0) with t0 = min{min{xi1}n

i=1, min{yi}n
i=1}. Next, we will show the

maximum of `1(λ1, λ2, α) exists and is unique in (0,+∞)× (0, ∞)× (−∞, t0). Regarding
this, it is observed that:

∂2`1(λ1, λ2, α)

∂λ2
1

= − ns
λ2

1
< 0,

∂2`1(λ1, λ2, α)

∂λ2
2

= − n
λ2

1
< 0,

∂2`1(λ1, λ2, α)

∂α2 = −
n

∑
i=1

s

∑
j=1

1
(xij − α)2 −

n

∑
i=1

1
(yi − α)2

− 2λ1[(n− 1)s + k]− 2λ2n < 0.

Therefore, for fixed λ1(α) and λ2(α), `1(λ1, λ2, α) is a strictly concave function of
α(λ1, λ2).

Furthermore, for fixed λ1(α) and λ2(α), it is noted that:

lim
α→−∞

`1(λ1, λ2, α) = −∞ and lim
α→t0

`1(λ1, λ2, α) = −∞

and for fixed α one also has:

lim
λ1→0

`1(λ1, λ2, α) = −∞, lim
λ1→+∞

`1(λ1, λ2, α) = −∞,

lim
λ2→0

`1(λ1, λ2, α) = −∞, lim
λ2→+∞

`1(λ1, λ2, α) = −∞.

Therefore, `1(λ1, λ2, α) is an unimodal function with respect to α for given λ1(α) and
λ2(α). Furthermore, it is seen that:

lim
λ1→0,λ2→0,

α→−∞

`1(λ1, λ2, α) = −∞, lim
λ1→0,λ1→0,

α→t0

`1(λ1, λ2, α) = −∞,

lim
λ1→+∞,λ2→+∞,

α→−∞

`1(λ1, λ2, α) = −∞, lim
λ1→+∞,λ1→+∞,

α→t0

`1(λ1, λ2, α) = −∞,

Suppose (λ0
1, λ0

2, α0) ∈ (0, ∞) × (0, ∞) × (−∞, t0) and l(λ0
1, λ0

2, α0) = d. Consider
the set:

C = {(λ1, λ2, α) : (λ1, λ2, α) ∈ (0, ∞)× (0, ∞)× (−∞, t0), l(λ1, λ2, α) ≥ d}.

Obviously, C is a closed and bounded set, then set C is compact. Since `1(λ1, λ2, α) is a
continuous function of parameters λ1, λ2, and α. Therefore, `1(λ1, λ2, α) has a maximum in
set C denoted `1(λ

m
1 , λm

2 , αm) at parameters (λm
1 , λm

2 , αm). Next, we will show (λm
1 , λm

2 , αm)
is unique. Note that for (λ1, λ2, α) ∈ (0, ∞)× (0, ∞)× (−∞, t0), one respectively has:

`1(λ
m
1 , λm

2 , αm) > `1(λ
m
1 , λ2, αm) > `1(λ1, λ2, αm) > `1(λ1, λ2, α) for αm > 0,

and

`1(λ
m
1 , λm

2 , αm) > `1(λ
m
1 , λm

2 , 0) > `1(λ
m
1 , λm

2 , µ) > `1(λ1, λ2, µ) for αm ≤ 0,
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where the MLE of (λ1, λ2, α) reduces to (λ1, λ2, 0) for the second case and is unique.
Therefore, the assertion is completed.

Appendix C. The Proof of Theorem 4

Based on Theorem 1 and delta method [21], Rs,k(η̂) can be written as:

Rs,k(η̂) = Rs,k(η) +

(
∂Rs,k(η)

∂η

)T

(η̂ − η) +
1
2
(η̂ − η)T

(
∂2Rs,k(η

∗)

∂η

)
(η̂ − η)

≈ Rs,k(η) +

(
∂Rs,k(η)

∂η

)T

(η̂ − η), (A3)

using the Taylor series expansion and the differential mean value theorem, where ∂Rs,k(η)
∂η

and ∂2Rs,k(η)
∂η denotes the matrices of the first and second derivatives for Rs,k with respect to

η, and η∗ is some proper value between η and η̂. Then expression (A3) could be rewritten as:

Rs,k(η̂)− Rs,k(η) ≈
(

∂Rs,k(η)

∂η

)T

(η̂ − η),

which implies that Rs,k(η̂) → Rs,k(η) when n → ∞ by using η̂ → η from Theorem 1.
Moreover, from (A3), since the variance of Rs,k(η̂) can be written as:

Var[Rs,k(η̂)] ≈ Var

[
Rs,k(η) +

(
∂Rs,k(η)

∂η

)T

η̂ −
(

∂Rs,k(η)

∂η

)T

η

]

= Var

[(
∂Rs,k(η)

∂η

)T

η̂

]
=

(
∂Rs,k(η)

∂η

)T

Var[η̂]
(

∂Rs,k(η)

∂η

)
.

Therefore, using the central limit theory and Theorem 1, one has:

Rs,k(η̂)− Rs,k(η)
d→ N

(
0,
(

∂Rs,k(η)

∂η

)T

Var[η̂]
(

∂Rs,k(η)

∂η

))
,

and the assertion is shown by normalization.

Appendix D. The Proof of Theorem 5

For 0 < α < min{min{xi1}n
i=1, y(1)}, since Xi1, Xi2, . . . , Xis are the first s order statis-

tics of size k from Rayleigh distribution, then quantities Tij = λ1(Xij − α)2, j = 1, 2, . . . , s
can be viewed as the Type-II censored data from standard exponential distribution with
mean one. Using the lack of memory property of the standard exponential distribution, it is
seen that quantities Zi1 = kTi1, Zi2 = (k− 1)(Ti2− Ti1), · · · , Zis = (k− s + 1)(Tis − Ti(s−1))
are i.i.d. samples from the standard exponential distribution with mean 1(see Lawless [22]).

For i = 1, 2, . . . , n, let Wij = ∑
j
r=1 Zir = λ1{(k − j)(Xij − α)2 + ∑

j
r=1(Xir − α)2},

j = 1, 2, . . . , s, one could conduct from Stephens [23] and Viveros and Balakrishnan [24]

that Ui1 = Wi1
Wis

, Ui2 = Wi2
Wis

, . . . , Ui(s−1) =
Wi(s−1)

Wis
are order statistics from the uniform

distribution between 0 to 1 with sample size s− 1. Moreover, Ui1 < Ui2 < · · · < Ui(s−1)

are also independent with Wis = ∑s
r=1 Zir = λ1{(k− s)(Xis − α)2 + ∑s

r=1(Xir − α)2}.
Using theory of sampling distribution, it is observed directly that quantity

Pi1(α) = −2 ∑s−1
j=1 ln(Uij) follows a chi-square distribution with 2(s− 1) degrees of free-

dom, which is independent with Qi1(λ1, α) = 2Wis being chi-square distributed with 2s
degrees of freedom. Therefore, using the independent property of Pi1(α), Pi2(α), . . . , Pin(α),
one has that:
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PX
1 (α) = 2

n

∑
i=1

Pi1(α) = 2
n

∑
i=1

s−1

∑
j=1

ln

[
(k− s)(Xis − α)2 + ∑s

r=1(Xir − α)2

(k− j)(Xis − α)2 + ∑
j
r=1(Xir − α)2

]

comes from a chi-square distribution with 2n(s− 1) degrees of freedom, and:

QX
1 (λ1, α) = 2

n

∑
i=1

Qi1(λ1, α) = 2λ1

n

∑
i=1

{
(k− s)(Xis − α)2 +

s

∑
r=1

(Xir − α)2

}
.

follows chi-square distribution with 2ns degrees of freedom. PX
1 (α) and QX

1 (λ1, α) are
statistically independent. Therefore, the assertion is completed.

Appendix E. The Proof of Theorem 6

Let Y(1), Y(2), . . . , Y(n) be the corresponding order statistics of stress random variables
Y1, Y2, . . . , Yn. Then λ2(Y(1) − α)2, λ2(Y(2) − α)2, . . . , λ2(Y(n) − α)2 are order statistics from
standard exponential distribution with mean one. Following the similar line of Theorem 5,
The results can be shown similarly and details are omitted here for sake of concision.

Appendix F. The Proof of Corollary 1

Using the definitions of notations PX
1 and PY

1 , one has:

(k− s)(Xis − α)2 + ∑s
r=1(Xir − α)2

(k− j)(Xij − α)2 + ∑
j
r=1(Xir − α)2

= 1 +
(k− s)

[
Xis−α
Xij−α

]2
+ ∑s

r=j+1

[
Xir−α
Xij−α

]2
− (k− j)

∑
j
r=1

[
Xir−α
Xij−α

]2
+ (k− j)

,

and

∑n
r=1[Y(r) − α]2

(n− j)[Y(j) − α]2 + ∑
j
r=1[Y(r) − α]2

= 1 +

[Y(n)−α

Y(j)−α

]2
+ ∑n

r=j+1

[Y(r)−α

Y(j)−α

]2
− (n− j)

∑
j
r=1

[Y(r)−α

Y(j)−α

]2
+ (n− j)

.

From Lemma 1, it is seen that the numerators of above expressions increase in α and
the associated denominators decrease in α. Therefore, pivotal quantities PX

1 (α) and PY
1 (α)

are increasing functions on α.

Appendix G. Complete Monthly Water Capacity Data of the Shasta Reservoir

Table A1. The capacity data of Shasta reservoir from the years 1981 to 1985.

DATE STORAGE AF DATE STORAGE AF DATE STORAGE AF
01/1981 3,453,500 09/1982 3,486,400 05/1984 4,294,400
02/1981 3,865,200 10/1982 3,433,400 06/1984 4,070,000
03/1981 4,320,700 11/1982 3,297,100 07/1984 3,587,400
04/1981 4,295,900 12/1982 3,255,000 08/1984 3,305,500
05/1981 3,994,300 01/1983 3,740,300 09/1984 3,240,100
06/1981 3,608,600 02/1983 3,579,400 10/1984 3,155,400
07/1981 3,033,000 03/1983 3,725,100 11/1984 3,252,300
08/1981 2,547,600 04/1983 4,286,100 12/1984 3,105,500
09/1981 2,480,200 05/1983 4,526,800 01/1985 3,118,200
10/1981 2,560,200 06/1983 4,471,200 02/1985 3,240,400
11/1981 3,336,700 07/1983 4,169,900 03/1985 3,445,500
12/1981 3,492,000 08/1983 3,776,200 04/1985 3,546,900
01/1982 3,556,300 09/1983 3,616,800 05/1985 3,225,400
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Table A1. Cont.

DATE STORAGE AF DATE STORAGE AF DATE STORAGE AF
02/1982 3,633,500 10/1983 3,458,000 06/1985 2,856,300
03/1982 4,062,000 11/1983 3,395,400 07/1985 2,292,100
04/1982 4,472,700 12/1983 3,457,500 08/1985 1,929,200
05/1982 4,507,500 01/1984 3,405,200 09/1985 1,977,800
06/1982 4,375,400 02/1984 3,789,900 10/1985 2,083,100
07/1982 4,071,200 03/1984 4,133,600 11/1985 2,173,900
08/1982 3,692,400 04/1984 4,342,700 12/1985 2,422,100

The website: https://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA, (accessed on 19 September 2021).
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