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Abstract: In this work, a data-driven methodology for modeling combustion kinetics, Learned
Intelligent Tabulation (LIT), is presented. LIT aims to accelerate the tabulation of combustion
mechanisms via machine learning algorithms such as Deep Neural Networks (DNNs). The high-
dimensional composition space is sampled from high-fidelity simulations covering a wide range
of initial conditions to train these DNNs. The input data are clustered into subspaces, while each
subspace is trained with a DNN regression model targeted to a particular part of the high-dimensional
composition space. This localized approach has proven to be more tractable than having a global
ANN regression model, which fails to generalize across various composition spaces. The clustering
is performed using an unsupervised method, Self-Organizing Map (SOM), which automatically
subdivides the space. A dense network comprised of fully connected layers is considered for the
regression model, while the network hyper parameters are optimized using Bayesian optimization.
A nonlinear transformation of the parameters is used to improve sensitivity to minor species and
enhance the prediction of ignition delay. The LIT method is employed to model the chemistry
kinetics of zero-dimensional H2–O2 and CH4-air combustion. The data-driven method achieves good
agreement with the benchmark method while being cheaper in terms of computational cost. LIT is
naturally extensible to different combustion models such as flamelet and PDF transport models.

Keywords: combustion; kinetics; machine learning; neural network (NN); CFD

1. Introduction

Although the simulation of high Reynolds number combusting flow includes several
computationally expensive elements, including turbulent feature prediction, the modeling
of chemical kinetics is the main bottleneck. Numerical integration of reaction mecha-
nisms mathematically must contend with an extremely stiff system of ordinary differential
equations (ODEs). The stiffness of the equations is represented by the range of eigen-
values, spanning nine orders of magnitude. The difficulties caused by the stiffness are
compounded by the size of the system. The number of differential equations scales with the
number of chemical species, which can reach into the hundreds for complex hydrocarbon
fuels. The chemical kinetics of real applications, such as n-heptane combustion, comprises
more than 100 species and 1000 reactions. Furthermore, the chemical time-scale O(10−9) is
much smaller than the smallest flow time scale for most engines, O(10−5), which makes the
computation very expensive.

There have been efforts to reduce the cost of kinetics by developing reduced mecha-
nisms and chemistry tabulation techniques. As a detailed chemical kinetic mechanism with
a large size and chemical stiffness restricts the computation of real combustion applications,
it is inevitable to reduce the detailed mechanism to a smaller number of reactions. There
are two levels of mechanism reduction: The first level is the elimination of insignificant
reactions and species (skeletal reduction) using methods such as Directed Relation Graph
(DRG) [1], Rate-Controlled Constrained Equilibrium (RCCE) [2,3], and Path Flux Analysis
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(PFA) [4]. The second level is the consideration of the impact of timescales on the whole
reaction system (global reduction) methods such as Computational Singular Perturbation
(CSP) [5,6], and Intrinsic Low Dimensional Manifold (ILDM) [7]. However, reduced mech-
anisms result in a less reliable description of chemistry, and the level of reduction is a large
challenge [8]. The tabulated chemistry technique computes a chemical mechanism with
an affordable computational cost. In this approach, the chemical kinetics are solved with
the interpolation of precomputed and stored values [9], which results in the reduction of
real-time chemistry computation. In the in Situ Adaptive Tabulation (ISAT), the thermo-
chemical solution can be tabulated in real-time simulation and reused in later sequences of
the simulation [10,11]. The performance of the tabulation techniques strongly depends on
the application as the accuracy and efficiency drop for complex turbulent combustion.

Recently, machine learning has shown promise for assisting combustion simulation.
For instance, Yap et al. used Artificial Neural Networks (ANN) to control and optimize
exhaust emissions [12]. Zamaniyan and his colleagues applied an ANN to model an indus-
trial hydrogen plant [13]. There have been many efforts to use machine learning models,
such as deep neural networks [14], convolutional neural networks [15], and generative
adversarial networks [16] to predict sub-scale combustion features in turbulent combustion
simulations. Owoyele et al. [17] studied the effect of bifurcating turbulent combustion
inputs to improve regression tasks among specialized artificial neural networks. In ad-
dition, combustion researchers have introduced several data-driven tabulation methods
to accelerate chemical kinetics computation. Christo et al. [18], for their first attempt,
employed a deep neural network to model a 4-step H2–CO2 chemical mechanism in a
simulation of turbulent flame. Subsequently, Blasco et al. [19,20] applied an ANN to a re-
duced methane combustion mechanism including four steps and eight species. Later, they
observed that it is extremely difficult to have one network modeling a complex multidimen-
sional combustion mechanism, and expanded the method by clustering the composition
space [21]. In this way, the thermochemical space is divided into multiple subspaces with
a Self-Organizing Map (SOM) to have a dedicated regression network for each subspace.
They applied the SOM-MLP (multilayer perceptron) method to a reduced methane combus-
tion application with five steps. They reported good agreement with the benchmark and
savings in computational time and memory usage. In the recent decade, Chatzopoulos and
Rigopoulos [22] introduced an ANN model for a RCCE-reduced CH4 mechanism trained
with abstract non-premixed flamelets. Furthermore, Franke et al. [23] proposed an ANN
model coupled with RCCE and CSP reduction methods to simulate the LES-PDF Sydney
flame. They used an abstract problem to generate the ground-truth data. Most recently,
An et al. [24] applied a similar method, called SOM-BPNN (Back-Propagation Neural Net-
work), to model the combustion chemistry of hydrogen/hydrocarbon-fueled supersonic
engines. Also, Owoyele and Pal [25] introduced a different data-driven tabulation method
using a neural ODE approach, in which they have one network for each species of a H2–O2
combustion.

In this work, the goal is to replace the integration of stiff chemical ODEs with a
relatively fast machine learning scheme called Learned Intelligent Tabulation (LIT). We
use a family of networks that self-selects during the progression through reactions. The
selection process is based on unsupervised clustering as a preprocessing step using a
map that is produced during training. Each network is trained using a subset of ground
truth data appropriate to the local temperature and composition regime. Because chemical
species concentrations span at least nine orders of magnitude and are not equally important,
a nonlinear transformation of the primitive variables is used in training the network and
calculating the loss function. The final algorithm is tested in a multi-dimensional CFD code.
The results include the construction, accuracy, and speed-up assessments of this approach.

While there have been works in the literature to model hydrogen combustion, the
LIT method captures the full hydrogen mechanism without any reduction. All species are
modeled with the networks. Validation tests include the 0D kinetics test which directly
evaluates the performance of the kinetics solver, without the consideration of flow dynamics
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such as convection and diffusion. There have been studies such as Franke et al. and
Chatzopoulos et al. who applied a similar method to tabulate kinetics of CH4 combustion
along with rate-controlled constrained equilibrium to reduce the full mechanism. However,
for such extensive mechanisms LIT allows regression with a subset of species chosen
at the user’s convenience and adds heat release to the output vector to correct for the
effect of neglected species. This novel approach makes LIT capable of matching the full
mechanism in terms of energy solution prediction. We report on a method of decoupling
the time step of the time integration with the output of the ground truth data to allow
arbitrary augmentation of the training data without interpolation. Furthermore, LIT utilizes
nonlinear transformation of species concentration and Bayesian optimization techniques,
which substantially improve the accuracy of the method to capture the chemistry dynamics.

This article is organized as follows. The Section 2 includes the detailed description
of the LIT method. The workflow and challenges are explained, which involves data
generation, input clustering, DNN regression, and the integration of networks into a CFD
solver. Next, Section 3 presents the validation cases, including hydrogen–oxygen and
methane–air combustion. Results of LIT method are compared with several benchmarks.

2. Methodology

A reacting flow solver includes the computation of chemical species transport equa-
tions added to the fluid flow equations such as mass, momentum, and energy conservation.
The conservation of species mass fraction Yi is formulated as

∂ρYi
∂t

+∇ · (ρYivvv) +∇ · (ρYiVVVi) = ẇi (1)

where t represents time, ρ is mixture density, vvv is velocity, p is pressure, Yi is the mass
fraction of species i, VVVi is the diffusion velocity of species i, and ẇi is the mass reaction rate
of species i. The CFD solver computes the discretized transport equations using the finite
volume method, for which the chemical source terms are required. It is noteworthy that
the calculation of the reaction rates could consume up to 50% of the total computation in a
reacting flow depending on the complexity of the reaction mechanism [10]. The reaction
rate of species i = 1, 2, ..., Ns from all chemical reactions j = 1, 2, ..., Nr is formulated as

ẇi = Mi

Ns

∑
j=1

Ċij (2)

where Ċij is the rate of change of species i by the jth reaction in mole concentration and Mi
is the molecular weight of the ith species. The rates of concentration change are described

as Ċij =
Cij(t0+∆t)−Cij(t0)

∆t , which is calculated over the flow time-step after solving the
system of differential equations representing the chemical reactions. In general, chemical
reactions are described by a system of first-order ODEs, which can be represented as

dϕ

dt
= S(ϕ) (3)

where ϕ is the thermochemical composition vector including temperature T, pressure P
and the vector Ci of species mole fractions, and S represents the chemical reactions based
on the Law of Mass Action [26]. The CFD solver loops over all the computational cells
to construct and integrate the reaction ODE system. Different reactions work at different
rates and time scales, which makes the system mathematically stiff and computationally
expensive. Our approach is to regress this stiff system using a more expedient DNN.

One of the most common applications of DNN is regression of nonlinear problems.
Given that a well-generated data set is available for learning, a DNN can fit a function to
model the hidden physics [27]. This capability of the DNN is utilized in this work to model
the chemical kinetics and replace the ODE solver in the simulation workflow. To achieve
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this goal, we developed the LIT method, that is described in the following sections. The
workflow of LIT is comprised of four steps, as illustrated in Figure 1.

1. LIT starts with ground-truth generation from the reference ODE solver. Performance
of the trained DNNs strongly depends on the quality of the training data and similarity
of the data to the objective problem. To augment the data, we have used smaller time
steps in sampling the data. As the solution time step is fixed in our validation case,
the generated samples are paired according to the required solution time step. The
last step in data preprocessing is data scaling to make inputs more distinguishable to
the networks.

2. Clustering is the second step after generation and preprocessing the training data.
As kinetics are such a multidimensional and multiscale problem, it is very difficult
for one DNN to cover the entire combustion space. It requires a very deep and wide
network to approximate the entire dynamics and leads to higher computational costs.
As a result, dividing the effort among multiple DNNs improves the accuracy and
lowers the cost as well. After clustering the samples into self-organizing map (SOM)
bins [28], the data are mapped to a subspace grid. Each subspace includes several
SOM bins.

3. Functional mapping from input features to target vector is implemented utilizing
regression DNNs for each subspace. In this work, fully connected (Dense) neural
networks are used to find the functional mapping between the target to the input
features. In addition, Bayesian Optimization [29] is employed to find the optimum
hyper-parameters.

4. After training the SOM network and DNNs for each subspace, C++ codes are auto-
matically created for all networks, which are integrated with the CFD solver through
an inference code. The inference is designed to be scaled to as many DNNs as re-
quired using object-oriented programming. Details of each step are described in the
following sections.

Figure 1. The overview of the Learned Intelligent Tabulation (LIT) method involving the use of
unsupervised learning to reduce dimensionality of the data (Step 2), performing DNN regression
task on each reduced compositional space (Step 3) and finally, model inference coupled to a CFD
code (Step 4).

2.1. Ground-Truth Data Generation

Generation of training data is a critical step in the learning of combustion kinetics. The
data should be structured based on the problem definition Yi = f (Xi). For a chemical reaction,
the function to approximate is the kinetics ODE system in Equation (3). Therefore, the input
vector is the thermochemical state at time t, Xi = ϕ(t) = [T(t), P(t), C1(t), C2(t), ..., Cn(t)],
and the output vector is the thermochemical composition at t + ∆t without temperature
and pressure which are not direct outputs of the chemical reactions: Yi = ϕ(t + ∆t) =
[C1(t + ∆t), C2(t + ∆t), ..., Cn(t + ∆t)]. Note that the time step size can be added to the
input vector as been done in the literature [20], however it is not considered in this work
since all validation cases are simulated with a fixed time step.

We used the chemFoam solver from the OpenFOAM 5.0 framework [30], which is an
open-source CFD software package implemented in C++. OpenFOAM has an extensive
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range of computational applications including chemical reactions and combustion. chem-
Foam is a zero-dimensional solver for chemical reaction and is utilized in this study to
generate the ground-truth data. Samples are created for a variety of initial conditions and
simulation parameters to produce comprehensive training data.

Supervised data-driven models are being successfully used for a wide range of com-
plex applications. However, these models are known to be very data-hungry, and their
performance relies strongly on the size and quality of the training data. Therefore, it is
critical to create a large dataset where the solution dt is decoupled from the dt actually used
in the ground truth generation. In this work, we augment the data by running the ground-
truth simulation with relatively smaller time steps and pairing the data samples according
to a coarser solution time step. The actual ground truth dt controls how many data points
are produced, and the interval for pairing controls the solution dt used for training. The
apparent dt corresponds the to the time step anticipated in the CFD calculation. In this way,
we can generate as much data as our training needs. For instance, the solution time step
of the H2–O2 combustion is dts = 10−4 s, while the data were generated with dtgt = 10−7.
The generated data are then preprocessed to match the solution time step. In more detail,
each input vector Xi is paired with the correct output Yi according to the solution time step.

Primitive species concentrations represent a very challenging quantity for training
neural networks, because the change in minor species concentrations is happening over
very small values. The network cannot react to changes of species concentration of such
small values as they are practically noise compared to the major species. Therefore, we
used a 6th root transformation that makes the small changes more visible for a neural
network. This helps the network to capture those critical changes. As is illustrated for a
major species H2 and minor species H in Figure 2, primitive values are unable to show
small changes of concentration, which are crucial for the network to learn the ignition delay.
However, the changes throughout the combustion process are more detectable with the
6th root species concentrations. Different transformations were explored and the 6th root
offered the best trade-off between minor species sensitivity and robust representation of
major species. Log transformations were found to be too heavily biased in favor of minor
species fidelity at the expense of major species.

Figure 2. Illustration of different nonlinear transformations on a major and minor species. The 6th
root transformation allows the low concentrations of both to be visible to the networks.

The last step in data preprocessing is the normalization of input and output parame-
ters. Rarely, neural networks are applied directly to the raw data without normalization.
Generally, we need preparation to help the network optimization process and maximize
the probability of obtaining good results. Normalizing the input and output vectors con-
sists of mapping the data to the vector norms. Typically, data are linearly transformed to
[0, 1] or [−1, 1]. The max and min values of the vectors would be required in building the
integration network. The normalization step prevents networks from facing inputs with
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different scale and distribution. In this work, the input and output vectors are linearly
scaled to [0, 1].

2.2. Composition Space Clustering

The chemical system presents a complex multidimensional problem, and covering
the whole dynamics with a single neural network would be quite challenging. Therefore,
it is pragmatic to divide the task among several networks. To achieve this subdivision, a
clustering step is added to the LIT method. In addition, the data clustering means that a
smaller network with less computational cost can be used for each individual cell. As the
cost of querying clustering networks is very small compared to the inference cost of DNNs,
the overall computational cost drops significantly.

A self-organizing map [28] is employed to cluster the combustion composition set.
SOM is an unsupervised learning technique that identifies groups of similar data. The
groups are organized in a one or two-dimensional map. Different map topologies are
available such as a grid, hexagonal, or random topology to arrange the clusters. One
neuron is assigned to each cluster, and the Euclidian distance in the composition space
is the clustering criterion. New samples are clustered into the most similar neuron with
the shortest Euclidean distance [28]. In this way, SOM learns both the distribution and
topology of the input composition space. The self-organizing feature map (SOFM) from
the Matlab learning toolbox [31] is employed in this work for clustering.

After the SOM training is completed, the dataset is clustered into the SOM map,
which would be the reference to divide the thermochemical samples. One could train
one regression DNN for each SOM neuron, however, some SOM neurons do not contain
enough data to train a DNN. Therefore, the SOM map is projected into a subspace map,
and a DNN is trained for each subspace. An example of H2–O2 evolution clustered into the
SOM map and converted into a subspace map is depicted in Figure 3 (left). Furthermore,
the temperature plot of the subspace data is shown in Figure 3 (right). As is shown, the
unsupervised composition space clustering divides the combustion dynamics into different
phases. As a consequence, we can train one DNN for each phase of the solution.

Figure 3. SOM clustering map converted into subspace map (left) and temperature plot of subspace
clusters (right).

2.3. Regression Network

DNNs are capable of modeling complex nonlinear systems. The depth and width of
the network architecture can be adjusted depending on the difficulty of the problem. The
first layer is the input layer with the same number of neurons as the size of input vector.
The output layer also has the same size as the output vector, which is the concentration of
species. Several fully connected layers (hidden layers) with many neurons are considered
between the input and output layers. All neurons in each layer are connected to the neurons
of the neighboring layers. Each neuron calculates the weighted summation of inputs from
previous layer and applies a non-linear activation function as

Yj = σ(Σm
i=1WijXi + bj) (4)
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where Yj is the jth output from fully connected layer, σ is nonlinear activation function, Xi
is the ith input from previous layer, W is weight, and b is bias of the neuron. In the DNN
training, weight and bias values are learned and stored. We have used the Matlab Deep
Learning toolbox [31] to perform the training. While the neural network implementation is
fairly straightforward, the a-priori estimation of the best network hyperparameters, and the
architecture itself is nontrivial due to the multiscale, non-local, and nonlinear nature of the
dataset. To discover the best performing settings for our dataset, an Automatic Machine
Learning (autoML) strategy is used. Among the many available optimization methods in
the literature [32], we employed the Bayesian Optimization (BayesOpt) approach, which
has shown good performance for other data-driven tasks ([29,33]).

The learning process for a ML algorithm such as neural networks is often stochastic in
nature. This is due to the nature of the optimization solver and the loss manifold. The loss
landscape/manifold for these multivariate time series problems such as in chemical kinetics
are non-convex, and high-dimensional. That implies the choice of the hyperparameters
used in the learning process and the design/architecture of the network has a leading
order impact on the expected error and associated uncertainties of the model. In this study,
we use an automatic Machine Learning (autoML) paradigm to choose optimum network
hyperparameters and automate the network design process, previously introduced in [34].
The autoML uses Bayesian Optimization (BayesOpt) to navigate the range of parameters
to find optimal solutions. In this study, the learning algorithm is modeled as a sample
from Gaussian Process (GP). The posterior distribution induced by the GP leads to efficient
use of information gathered by previous experiments, enabling optimal choices for what
parameters to try next. Table 1 shows the optimization matrix, the range of each parameter
and the corresponding interpolation strategies. The autoML was run for up to 100 function
evaluations and the loss function was defined as the performance of the trained network
on the validation dataset. Each evaluation included a network training of up to 40 epochs.
At the end of training, the loss on validation dataset was stored and only the top five
performing networks were retained to save disk space.

In addition, the network architecture itself is optimized. This is done by using the
network width (number of layers) and depth (number of neurons in each layer) a parameter
to optimize using the BayesOpt method. The depth and width are implemented as a series
of repeating network blocks: fully connected layer->activation function. The solver used in all
these studies is the ADAM optimizer [35].

To save time and reduce complexity of integrating different sized networks, this
autoML step was carried out once for the entire dataset and the best design was chosen
and re-implemented subsequently for each of the sub-spaces. The assumption was that
the subspace loss manifolds are represented in the overall loss landspace and therefore a
global optimization, might hold for locally smaller subspaces.

Table 1. Optimization matrix with interpolation strategies and range of investigation for each
hyperparameter.

Hyper-Parameter Min. Range Max. Range Interpolation

Init LR 1 × 10−6 1 × 10−2 Logarithmic
LR Drop Factor 10 1000 Integer

Batch Size 100 16,000 Logarithmic
Network Depth 2 10 Integer
Network Width 10 100 Integer

2.4. Network Model Integration

After completing the training of the SOM network and DNNs, the networks must be
integrated with the CFD solver. As we are using OpenFOAM, which is implemented in
C++, the trained networks are converted into C++ code for integration. To achieve this, we
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used a Matlab Coder tool to generate C++ code of the DNNs and SOM network along with
the weight and bias binary files.

Networks are integrated into the CFD solver as a C++ library. The base class contains
one SOM network and a large number of DNNs. It initializes the networks with its
constructor where the weight and bias values of all layers are read from the disk. For each
input, the class calls the appropriate DNN based on the SOM’s response and calculates
the output. The inference code receives species concentration Ci(t), temperature T, and
pressure P, and calculates the outputs Ci(t + ∆t). Pseudocode of the inference is illustrated
in Algorithm 1.

Algorithm 1 LIT inference pseudocode

1: // Networks Initialization
2: for i = 1 : NetNumber do
3: for i = 1 : LayerNumber do
4: Net.LayerW ← LoadLayerWeight()
5: Net.LayerB← LoadLayerBias()
6: // Prediction for each input

Input: c[n], T
7: input[]← [T, c0, c1, ..., cn−1]]

8: input[]← input.normalize()
9: // SOM’s response

10: netIndex ← SOMnet(input)
11: // DNN’s prediction
12: DNN ← DNN[netIndex]
13: output[]← DNN(input)
14: output[]← output.denormalize()
Output: output[]

3. Results and Discussion

To validate LIT, we start with a zero-dimensional H2–O2 reactor at constant pressure.
For the hydrogen kinetics, all species are regressed using LIT without any simplification.
Next, a methane–oxygen reactor is modeled, where the GRI 3.0 mechanism with 53 species
is utilized for ground truth generation.

With 53 species, the methane state space is very highly dimensional, and regressing
all species is very challenging. Therefore, we employed a reduced parameter space that
includes five species. The selection of these five species is inspired by a one-step methane-
oxygen global reaction. For both validation tests, LIT’s prediction is compared with
OpenFOAM ODE solver, and the gained speedup is reported.

3.1. Hydrogen-Oxygen Combustion

The first test for LIT is a zero-dimensional H2–O2 reactor, which has no convection
or diffusion, and the chemical kinetics is the only factor in species evolution. Therefore,
this problem is an appropriate first test to evaluate the performance of LIT method. In
this work, a hydrogen–oxygen reaction is considered at various initial temperatures Ti
and equivalence ratios φi, while the pressure is fixed at Pi = 1atm. The ground truth
comes from a detailed mechanism with 10 species, namely, [H2, H, O2, O, OH, H2O, HO2,
H2O2, AR, N2] and 27 reactions. The training data generated for this problem include the
simulation results of the reactor from initial conditions to a post-reaction final state. The
initial condition is altered to vary the equivalence ratio φi = 0.5–1.5 and initial temperature
in the range of Ti = 1000–1200 K. Data are generated with a smaller time step dtd = 10−8 s
to augment the training data as was explained in Section 2, while the objective simulation
time step is dts = 10−5s. The input vector involves the temperature and concentration of all
species ϕi(t) = [T, Ci(t)], and the output of the network is the concentration of all species
ϕi(t + ∆t) = [Ci(t + ∆t)]. All species including major and minor species are modeled in
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this work. Temperature is not used as an output because species enthalpies can be used for
calculating the energy release.

The LIT configuration for this problem involves a 8× 8 SOM map, which is projected
to a 4 × 4 subspace map. Therefore, H2–O2 combustion is divided into 16 regression
DNNs to model. The dimensions of the SOM map and the required number of subspaces
can be different for different problems. Franke et al. [23] and An et al. [24] studied the
effect of SOM map configuration on the accuracy of the model. For DNN regression,
we have a fully connected network with three dense layers having 25, 50, and 25 hidden
neurons, respectively.

Figure 4 compares the solution from the LIT method to the result from the OpenFOAM
ODE solver, which solves the complete chemistry mechanism. The figure shows the results
for two equivalence ratios of φi = 0.7 and φ = 1.4, while initial temperature is fixed
Ti = 1100 K. The plots on the left show normalized temperature and reactants’ mass
fraction. The middle plots and plots on the right are the normalized mass fraction of O,
OH, and H, and of H2O, HO2, and H2O2. In all plots, the ODE solver solution is plotted
with lines, while LIT results are represented by symbols. According to Figure 4, LIT
correctly predicts the combustion behavior for both lean and rich conditions. Prediction of
temperature and reactants is in good agreement with the benchmark. Comparing different
species, LIT’s prediction of major species with monotonic growth including H2, O2, and
H2O is more accurate than the minor species such as O, H, and OH.

Figure 4. Temporal variation of normalized temperature and species concentration for Ti = 1100 K,
φi = 0.7 (top), and φi = 1.4 (bottom). Solid line and symbols represent the OpenFOAM and LIT
solution, respectively.

Figure 5 plots the temporal evolution of species mass fraction at various initial tem-
peratures Ti = 1050 K and1150 K, while the equivalence ratio is set at φ = 1.1. Overall,
LIT shows good accuracy in the prediction of chemical evolution for both cases. Higher
temperature with faster reaction appears to be more challenging for the method. Minor
species with non-monotonic dynamics such as H2O2 and HO2 proved to be relatively more
difficult to capture for the DNN.
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Figure 5. Temporal variation of normalized temperature and species mass fraction for φi = 1.1,
Ti = 1050 K (top), and Ti = 1150 K (bottom). Solid line and symbols represent OpenFOAM and LIT
solution, respectively.

Machine learning methods are known to perform well for points from the middle
of the training space because of data interpolation. Consequently, a more difficult test of
LIT will occur at the boundaries of the training space, where Ti = 1000 K and 1200 K, and
φ = 0.5 and 1.5. Figure 6 shows the results for these edge cases, where the line plots of
temporal evolution of chemical species and temperature are presented. LIT performs well
at the edge of equivalence ratio range, though the results show slightly more error at the
extreme temperatures. As expected, minor species tend to show more error compared to
the middle of the training space, while the tendency of major species at Ti = 1000 K is to
slightly lag the ground truth.

Figure 7 shows the estimation of ignition delay time versus equivalence ratio. Results
of the full mechanism are represented by a line, and LIT results are depicted by square
symbols. Ignition delay time is the time needed for a mixture of fuel and oxidizer to react
and reach to the maximum rate of temperature rise. This parameter provides a benchmark
of the overall behavior of a combustion. Equivalence ratio varies from lean φ = 0.5 to rich
φ = 1.5, while initial temperature varies from Ti = 1000 K to Ti = 1150 K. Overall, LIT
shows good agreement with the OpenFOAM solution.

3.2. Methane–Oxygen Combustion

The ultimate goal is to extend the LIT method to more complex fuels. Methane, a
very simple hydrocarbon fuel, has a much more complicated parameter space. If we use
the size and complexity of GRI 3.0 as an indicator, the methane combustion mechanism is
represented by 53 species and 325 reactions [36]. The number of reactions is only relevant for
generating the ground truth data, but the number of species raises an important question:
how many should be represented in the LIT parameter space? To use all 53 would incur the
“curse of dimensionality”, where the large number of dimensions demands an impossible
amount of training data. Various sizes of parameter vectors were considered, but ultimately
a small size of five species worked best including CH4, O2, H2O, CO2, and N2. These
species were chosen largely based on their appearance in the one step global mechanism
CH4 + 2O2 => CO2 + 2H2O.

The ground truth data are generated from GRI 3.0, which provides the evolution of all
53 species concentrations, though only the subset of the five species and the total generated
heat from the reactions Q̇ are stored for training. The initial temperature is Ti = 1000 K, and
equivalence ratio is ϕ = 1 for this training and test. The input vector includes temperature
and concentration of the five species ϕi(t) = [T, Ci(t)], and the output vector includes
concentrations of species and total heat source ϕi(t+∆t) = [Ci(t+∆t), Q̇]. The heat source
is required as the mechanism is simplified.



Energies 2021, 14, 7851 11 of 15

Figure 6. Temporal variation of normalized temperature and species mass fraction at the boundaries
of dataset. Solid line and symbols represent OpenFOAM and LIT solution, respectively.

Figure 7. Ignition delay of H2–O2 combustion as a function of ϕ for different Ti = 1000–1150 K.

The LIT configuration for CH4 combustion involves a 10× 10 SOM map, which is
projected to a 5× 5 subspace map. As a result, the combustion dynamics are divided into
25 regression DNNs. For DNN regression, we have a fully connected network with 5 dense
layers having 25, 50, 50, 50, and 25 hidden neurons, respectively. After the training, the
accuracy of the networks is evaluated with the test data, which is 15% of the ground truth
data. The mean and standard deviation of absolute error of normalized values are plotted
in Figure 8. The networks deliver good accuracy in prediction of output quantities.

Figure 9 compares the solution from the LIT method to the result from the ODE
integrator, which solves the complete GRI 3.0 mechanism. The plot on the left shows the
temperature variation. The middle plots are the mass fraction of CH4 and O2, and plots
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on the right are the mass fraction of H2O and CO2. In all plots, the ODE solver solution is
plotted with lines, while LIT results are represented by symbols. According to the results,
LIT correctly predicts the temperature and concentrations compared to the benchmark.
Overall, LIT shows good agreement with the ODE solution.

Figure 8. Mean absolute error of LIT prediction compared to OpenFOAM data. Normalized output
quantities [0–1] are used in this plot. Standard deviation of error is plotted too.

Figure 9. Temporal variation of temperature and species mass fraction. Solid line and symbols
represent the OpenFOAM and LIT solutions respectively.

3.3. Speedup

Ultimately, the motivation for using the machine-learning surrogate instead of the
ODEs is to provide faster results. To assess the value of the present approach, we measured
the speedup between using the system of ODEs and LIT. The speedup was defined as the
ratio of the ODE computational cost divided by the LIT computational cost. The assessment
was performed for both hydrogen and methane reactions and is shown in Figure 10.

The results show tests with both a single computational cell and with a set of one-
thousand cells. The computational cost of LIT does not include time for reading the
networks from the disk and allocating memory for each network, which occurs once before
the solution loop starts. When applied to a single computational cell for hydrogen, the
speedup is less than unity, indicating that LIT is slower than using an ODE. The main
reason is that hydrogen is such a cheap mechanism with small number of reactions. Because
of the extent of the GRI 3.0 mechanism, the single computational cell still benefits from the
use of LIT with a roughly twenty-fold speedup.

Once the networks are instantiated, they can be used repeatedly for inference within
a CFD code. The right data pair in Figure 10 shows a more realistic scenario where the
LIT scheme is applied to a batch of one thousand cells. The start-up cost of LIT is now
amortized over one thousand executions, providing a much more efficient deployment.
The speedup with the relatively simple hydrogen chemistry is roughly eight while the
speedup with the methane chemistry is over one-thousand. Because CFD simulations are
expected to have on the order of one million cells, the speedup with one thousand cells
probably underestimates the speedup expected in actual use.
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Figure 10. Observed speedup from applying LIT for H2–O2 and CH4–O2 combustion with reference
to the OpenFOAM ODE solver.

4. Conclusions

In this work, we introduced a machine learning method to tabulate chemical kinetics.
It was found that a two-step process provided an expedient method for regressing hydro-
gen/oxygen combustion. An examination of the self-organizing map showed that individ-
ual nodes of the SOM could be data-poor, and that a grouping process provided a balance
between the data requirements and the fidelity gain offered by using numerous networks.

An essential part of the process was the use of a nonlinear transform so that the lower
concentrations of species were still visible to the networks despite their small magnitude.
Various transformations were investigated and a one-sixth root was found to give a good
balance of low-concentration response and high-concentration fidelity. This transformation
proved essential for accurate prediction of ignition delay.

When applied to a relatively simple reaction system, such as hydrogen/oxygen com-
bustion, the parameter space used in the regression could include the full complement
of species. However, it was found that with a much more complex system, methane, a
reduced set of species offered good fidelity at low cost. Speedup for this system was found
to exceed one-thousand.

Natural next steps for this work would be further testing over a wide range of condi-
tions for methane and extension to complex hydrocarbons, such as n-heptane. The present
results for methane represent only a single initial condition. If these extensions are found
to be successful, the LIT approach will dramatically accelerate the CFD simulation of
combusting flows.
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