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Abstract: The growth of renewable energy generation in the power grid brings attention to high-
voltage direct current (HVDC) transmission as a valuable solution for stabilizing the system. Robust
hybrid power system state estimation could enhance the resilience of the control of these systems.
This paper proposes a two-stage, highly robust least-trimmed squares (LTS)-based estimator. The
first step combines the supervisory control and data acquisition (SCADA) measurements using the
robust LTS-based estimator. The second step merges the obtained state results with the available
phasor measurement units (PMUs) measurements using a robust Huber M-estimator. The proposed
robust LTS-based estimator shows good performance in the presence of Gaussian measurement noise.
The proposed estimator is shown to resist and correct the effect of false data injection (FDI) attacks
and random errors on the measurement vector and the Jacobian matrix. The state estimation (SE) is
executed on a modified version of the CIGRE bipole LCC-HVDC benchmark model integrated into
the IEEE 12-bus AC dynamic test system. The obtained simulation results confirm the effectiveness
and robustness of the proposed two-stage LTS-based SE.

Keywords: cyber-security; false data injection; HVDC; hybrid power grid; power grid resiliency;
robust state estimation; SCADA; PMU

1. Introduction

Starting with the first commercial installation in 1954, HVDC technology has been
introduced to the conventional AC power systems for long-distance transmission as well
as joining asynchronous AC power systems [1]. Recently, HVDC technologies have made
substantial advances enabling options such as enhancing system frequency regulation,
increasing power flow, and the flexibility of the power grid, which results in improving the
stability and resilience of the power system [1–4]. Failure or disruption of the power system
can lead to enormous environmental and public safety risks. Load flow and SE analysis are
essential for ensuring stable operating conditions, control, and planning. For the effective
operation of modern power grids, an efficient, timely, and precise SE is a vital requirement.
State estimation could be either static (SSE) or dynamic (DSE). In practice, the control
center receives useful measurements from different Intelligent Electronic Devices (IEDs) [5]
through SCADA and measurement devices at remote terminal units (RTUs) at certain
regular time snapshots [6], and the SSE processes those measurements. SSE evaluates
the voltage magnitudes and phase angles at different buses of interest which gives an
idea about the system condition [7]. SSE is necessary for static security analysis (SSA),
contingency analysis, load forecasting, and evaluating locational marginal prices (LMPs)
for power markets, control, and other fundamental power applications. Conventional
SSE is performed using a combination of measurements provided by the SCADA units
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and, if needed, pseudo-measurements to ensure observability [8]. SCADA units deliver
measurements every 2 to 10 s, limiting the speed at which the SSE can be executed.

Recently, PMUs have been implemented to complement the conventional SCADA me-
tering devices and bring additional monitoring measurements to the Energy Management
System (EMS). PMUs provide GPS time-synchronized and high-resolution measurements
at a rate of 30–60 samples per second [9]. These PMU measurements could be combined
with the traditional SCADA measurements to execute the hybrid SSE [10–12]. The hybrid
SSE can directly merge the PMU with SCADA measurements in the regression estima-
tion [11,12] or it can be executed in two stages [10]. The first stage processes SCADA to
estimate a first state estimate which is then refined with the PMU measurements to improve
its accuracy. If PMUs are installed in large numbers, a linear PMU-based state estimator
could be implemented to estimate the phase angles and voltage magnitudes [13]. Higher
penetration of PMU sensors will also enable the practical implementation of dynamic
state estimation (DSE). DSE is executed at much higher rates where consecutive states
are related using model-based state-space representations, and filters are exploited for
prediction, and correction [7,14,15]. Hence, a PMU-based DSE state estimator can follow
the dynamic behavior of the power system and sanitize data quickly to support other
applications. DSE will be an essential tool in future dynamic security analysis (DSA). All
the measurements are communicated from substations and remote locations to the control
center. This implies that communication technologies are necessary for proper operation,
control, and monitoring of the power system.

Due to the high computing, expanded control capabilities, and richer sensing, the
conventional power system is transformed into a Cyber-Physical System (CPS) [16,17]. Al-
though this has improved the operational efficiency of the grid, this multi-communication
and multi-function system also becomes more exposed to potential risks from vulnera-
bilities and cyber-threats. Measurements that are obtained in real time can be targeted
by attackers that could degrade the performance of the power system, falsely trigger pro-
tection assets, cause financial losses, and even cause power outages. Therefore, system
operators are concerned about the increased range of cyber-attack vulnerabilities. At
the same time, modern power electronic devices such those in HVDC systems provide
fast accurate control, improved performance, and can result in enhanced resilience [2,4],
especially when combined with secure system state information.

FDI attacks, where a cyber-attack falsifies communicated measurements, could gener-
ate “bad” data present in certain meters that are coordinated to avoid detection. SSE was
shown to be vulnerable to stealthy FDI attacks [18]. Improving cyber-security can be very
challenging especially if attacks are generated by adversaries that have good knowledge
of power systems operation. Attackers’ knowledge and degree of access determine the
detectability and possible remedial actions against adverse disturbances [19].

Robust statistics could be an effective online solution against FDI attacks. Robust
estimators are reliable even in the presence of outliers that do not follow the assumed model.
Outliers could be due to cyber-attacks, random failures, or real-life data that departs from
the system statistical model [20]. Cyber-attacks can be viewed as special cases of outliers
whose treatment is complex and of great importance. For an estimator to suppress these
measurements or outliers, observation redundancy is necessary and can be accomplished
in practice by installing more sensors in the system. Several SE methods for identifying
outliers have been proposed for both DSE [21–23] and SSE [10,19,24,25] . For example, the
authors in [10] present a robust two-stage hybrid SSE method that was tested in an AC
system. The methods used the Generalized Maximum likelihood GM-estimator for the
first stage and an M-estimator for the second stage [26]. However, the effect of the FDI
presence in HVDC/AC systems has not been thoroughly investigated. More specifically,
few papers of HVDC/AC SE have explored FDI in the measurement vector. To the best of
our knowledge, the investigation of the impact of FDI attacks or errors on the topology
causing an erroneous Jacobian matrix is very limited in the literature.
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Several researchers have incorporated the DC components into ac state estimators for
different HVDC/AC systems [27–33]. Table 1 shows recent papers proposing HVAC/DC SE
methods. The authors of [27,28] proposed a distributed two-step SE. The first step estimates
the AC and DC states independently, and the second step uses boundary quantities to
refine the first step results. The authors in [29] proposed a three-stage estimation algorithm
to estimate DC/AC systems. The first and third stages estimate the states linearly, and
the second stage computes a one-step nonlinear transform. A linear PMU-based state
estimation using WLS for AC/DC systems was introduced in [30]. The authors in [31] have
proposed new models of voltage source converters that can be implemented for STATCOM
VSC-HVDC/AC power system state estimation. They used WLS to estimate their system’s
state. The detection of bad measurements was evaluated. The authors in [32] presented
more detailed modeling of the system and implemented the WLS for the SE. The authors
in [33] proposed a new SE called improved sequential method to decouple the AC and DC
WLS estimation in multiterminal DC systems (MTDC). In [34], a PMU-based state estimator
using a WLS was proposed to estimate AC and DC states simultaneously in a VSC-HVDC
system. The authors in [35] proposed to correct phasor angle bias for PMU measurements
given the availability of redundant voltage and current measurements. The state estimation
was formulated as an iterative least-squares problem. The authors in [36,37] proposed
a robust least absolute value estimation for an AC/DC grid state estimator and tested
its robustness against gross errors in the measurements. The authors in [38] proposed a
bad data detection approach that offers better performance than the largest normalized
rejection rule (LNR) after WLS state estimation.

Table 1. Summary of HVDC/AC estimation methods.

Reference Estimation Method FDI in z FDI in H

[27] WLS No No
[28] WLS No No
[29] WLS No -
[30] WLS No -
[31] WLS Yes No
[32] WLS No No
[33] Improved sequential WLS No No
[37] Least absolute value Yes No
[38] WLS with bad data detection Yes No

This paper LTS/Huber Yes Yes

The recent literature focuses on VSC converters due to their simple modeling and
predictions of their widespread use for future HVDC transmission systems. On the other
hand, many LCC converters are still in use in the field, especially for high-power transmis-
sion applications due to their high power rating. LCC-HVDC systems could also be more
vulnerable to FDI cyber-attacks. This paper focuses on securing SE for LCC-HVDC systems.
Furthermore, the proposed LTS-based SE algorithm offers the following advantages:

1. A high breakdown estimator that can potentially resist a high percentage of outliers
while giving reliable estimates.

2. The ability to resist adverse effects of both corrupted measurements and regressor
points or leverage points, i.e., the rows of the Jacobian matrix. The Jacobian will be
corrupted if the communicated topology at the control center contains errors.

3. High efficiency, which implies high estimation accuracy if the data are clean from
outliers or cyber-attacks.

4. Theoretical results permit a clear evaluation of its breakdown point in the case of a
sparse regressor matrix, as is the case for power systems [39].
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Leverage points cannot be treated when using WLS and checking its residuals by the
classical bad data detectors (BDD) or implementing a robust Huber M- or least absolute
estimator (estimator minimizing the L1 norm). These estimators are highly impacted by
leverage points giving residuals that are not reliable to detect outliers. This is discussed in
the literature in references such as [20,26,39,40].

This paper proposes a two-stage hybrid LTS-based SSE algorithm to improve the
robustness of the estimation toward departures from the Gaussian noise assumption in
both SCADA and PMU measurements. The proposed SE algorithm estimates the states
reliably in the presence of random FDI attacks. The estimator can also resist errors in the
SE Jacobian matrix for a hybrid HVAC/DC system.

The robust LTS estimation was considered for SSE on AC systems [24,40–43] and
estimating line parameters [44]. The rest of the paper is organized as follows. Section 2
presents a detailed model of the AC/DC transmission system, which consists of a bipole
version of the CIGRE LCC-HVDC benchmark model embedded in the IEEE 12-bus AC
system. Section 3, describes the methodology and the equations of the robust SE technique.
Section 4 shows the results for different scenarios. Moreover, the discussion and evaluation
of the results are presented. Finally, Section 5 concludes the paper.

2. AC/DC System Modeling
2.1. AC System Configuration and Modeling

To model AC/DC system [45], the AC network model is comprised of a 12-bus system
with multiple voltage levels and four synchronous generators, as depicted in Figure 1. The
transmission lines are modeled using coupled pi models that represent positive and zero
sequence behavior. The system model also includes low-frequency transformer models
appropriate for frequencies of interest. These components are used to formulate the AC
network model, which describes the relation between complex voltages on buses and
complex currents flowing through the lines connected to these buses. Figure 2 displays
the positive sequence equivalent structure of an AC transmission line. Taking the shunt
admittances and the transformers admittances into consideration, the active power Pi and
reactive power Qi injections at ith bus can be categorized as follows, where the subscript
i denotes the ’from’ bus and j represents the ’to’ bus, Vi is voltage magnitude and θij is
voltage phase angle difference between buses.

Figure 1. Schematic diagram of a modified IEEE 12-bus AC/DC test system.
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Figure 2. Positive sequence equivalent circuit for a transmission line.

Pi = ∑
jεNi

Pij = Vi ∑
jεNi

Vj
(
Gmij cos (θij) + Bmij sin (θij)

)
(1)

Qi = ∑
jεNi

Qij = Vi ∑
jεNi

Vj
(
Gmij sin (θij)− Bmij cos (θij)

)
(2)

where θij = (θi − θj), Gij = Gmij and Gii = Gshi
, Bij = Bmij and Bii = Bshi

; (Gmij + Bmij ) is the
series complex admittance from bus i to j respectively and (Gshi

+ jBshi
) is the ith shunt

admittance in per unit. Ni is a set of indices of all buses connected to bus i . The active Pij
and reactive Qij power flow from bus i to j are respectively:

Pij = V2
i (Gmij + Gshi

)−ViVj
(
Gmij cos (θij) + Bmij sin (θij)

)
(3)

Qij = −V2
i
(

Bmij + Bshi

)
−ViVj

(
Gmij sin (θij) + Bmij cos (θij)

)
(4)

Considering the shunt admittance (Gshi
+ Bshi

).

2.2. LCC-HVDC Bipole Model

A simplified structure of an LCC-HVDC model is shown in Figure 3. The 12-pulse
bipole configuration has four 6-pulse bridges at each end of the line, two connected in series
between each of the poles and a grounded center point. The same DC current flows in the
positive and negative poles. The majority of HVDC systems connect two asynchronous AC
systems [46]. However, there are a growing number of applications to connect two points
in the same AC system to transmit remotely located renewable generation to load regions.

Based on a quasi-steady state formulation, the mathematical model of the rectifier and
inverter of the LCC-HVDC are expressed as described below. These models are included in
the system model for the state estimation. In the formulation, the rectifier and the inverter
terminals are indicated by the subscript r and i respectively. The DC voltage on the rectifier
and the inverter sides is denoted by Vdr, Vdi, respectively. Where Idc is the DC current, Ed
is the voltage magnitude of the AC buses on the converter side of the transformer, Xd is
the equivalent commutation reactance seen by the converter (normally the transformer
leakage reactance and Rd is the resistance of the DC transmission line. DC active power
can be calculated as shown in Equation (5). Where Gmd is defined as shown in Equation (7).

Pdr = Gmd p(V2
dr −VdrVdi) (5)

Id = Gmd(Vdr −Vdi) (6)

Gmd =
1

Rd
(7)
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Figure 3. Schematic diagram of the AC/DC system. It consists of two AC buses and the HVDC link.

3. Methodology of Robust State Estimation

In [10], the authors proposed a two-stage hybrid SSE to treat outliers on AC state
estimation. The first stage consisted of merging SCADA measurements using the robust
GM-estimator. The second stage merged the obtained estimates from the GM with available
PMUs using a robust M-estimator. This paper implements a similar two stages SSE
technique on an AC/DC system. The first stage merges the SCADA measurements using
a high breakdown point robust estimator known as the LTS. The breakdown point is the
maximum percentage of outliers an estimator can resist while giving reliable estimates [26].
The second stage combines the estimates obtained from the LTS with PMU measurements
using a robust Huber M-estimator. The first stage estimates the voltage magnitudes and
phase angles at each bus using SCADA measurements. This stage uses the conventional
SE formulation, which is based on the nonlinear measurement model. The relationship
between m-dimensional measurement vector z and n-dimensional state vector x in any
power system can be described as Equation (8):

z = h(x) + e (8)

where z ∈IRm is the measurement vector, x ∈IRn is the state vector, h(.) is a nonlinear
measurement vector function, e represents the error vector in the measurements which is
a assumed to be independently, identically distributed Gaussian noise (i.i.d) with a zero
mean value and a covariance matrix R. If the noise is Gaussian, the SSE is solved using the
WLS in an iterative way, i.e.,

x̂k = x̂k−1 + δx̂k = x̂k−1 +
(

HT
k R−1Hk

)−1HT
k R−1δzk (9)

where δzk = z− h(x̂k−1). The Jacobian matrix of h(·) with respect to xk is Hk. At each
iteration, the WLS solves the linear regression to obtain the update δxk:

δzk = Hkδxk + rk (10)

The vector rk contains the update residuals at the kth iteration. The WLS is optimal
under Gaussian noise but suffers from a degraded performance in the presence of outliers
in either the measurements (i.e., zk) or the Jacobian matrix Hk called leverage points. To
ensure robustness against measurement outliers and leverage points, we propose to use
the LTS.

3.1. First Stage: Robust Nonlinear State Estimation Using SCADA Measurements

In this stage, the LTS is used. Unlike the conventional SE, the LTS can handle non-
Gaussian noise or outliers in the measurements. The estimator can resist leverage points as
well. The goal is to minimize Equation (11) for a given set of observations.

J =
mT

∑
i=1

r̂2
(i)(x), (11)
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where mT = b(1− β)mc+ 1 and the trimming fraction is denoted by β ∈ [0, 1) and b·c is
the floor function. The trimming β is the disregarded percentage of data. The residuals
are ordered from the smallest to the largest as follows r2

(1) ≤ . . . ≤ r2
(m). The asymptotic

breakdown point corresponds with the trimming fraction β [26] when the regressor matrix
satisfies the general position property [39]. The general position is satisfied if any chosen
n rows of the regressor or Jacobian matrix are linearly independent. This is not the case
for power systems since the Jacobian matrix is sparse and the breakdown theoretical
calculation is provided in [39]. We have adapted the LTS algorithm proposed in [47] to the
power systems context. Furthermore, to improve the efficiency of the estimator, the LTS
residuals are analyzed at each step, non-Gaussian data discarded and the WLS is re-run
with the remaining data at each step. The iterative algorithm calculates δxk at each iteration
using the proposed LTS-based algorithm. The kth input to the LTS-based estimator is the
measurement vector δzk and the Jacobian Hk. The convergence condition of the first stage
AC SSE is

||δxk||∞ = ||xk+1 − xk||∞ ≤ 10−3 (12)

If this condition is not satisfied after 20 iterations, the SSE exits the update loop, and
the final obtained state is used in stage 2. After convergence, the residuals are normalized
by their standard deviations obtained from R, and a three-sigma rejection rule is applied to
detect outliers.

3.2. Second Stage: Linear Robust SE Associated Using PMU Measurements

In this stage PMU measurements will be augmented with results from the first stage to
enhance the accuracy of SE. PMUs deliver voltage magnitudes and phase angles at certain
buses. To simultaneously process both the first stage results and PMU measurement,
a robust covariance of the state estimates obtained in the first stage results need to be
computed as:

∑ =
(

HT
c R−1

c Hc
)−1, (13)

where Hc is the final Jacobian matrix obtained from the first stage with all detected outlying
rows removed. The matrix Rc is the measurement covariance matrix after removing the
variance elements corresponding to the first stage detected outliers.

The following form illustrates the relationship between PMU measurements and first
stage measurements:

Z = Ax + ε (14)

where Z = [xszp]T is the augmented measurement vector; A =
[
I M

]T is a constant
matrix; I is the identity matrix; M is a constant matrix that represents the relationship
between the PMU measurements and the state x ; ε = [esep]T is the vector of error in the

measurements and the error covariance matrix P = E[εεT ] =

[
∑ 0
0 RP

]
= SST where RP =

diag(σ2
p1, . . . , σ2

pN) is the PMU noise covariance and S calculated through the Cholesky
decomposition. Pre-whitening can be executed by multiplying both sides in Equation (14)
by S−1 for.

y = Gx + ξ (15)

where E[ξξT ] = I. In the presence of errors or cyber-attacks targeting both PMUs and
SCADA units, a robust estimator is needed for the second stage [48]. However, in the first
stage, outliers could be present in both the measurements and the Jacobian matrix. In the
second stage, outliers are present only in the measurement vector since the Jacobian is
sparse with entries of 1s corresponding to the states measured by PMU or stage-1 estimates.
In the second stage, a Huber M-estimator would be enough to provide robustness and is
executed. A Huber M estimator minimizes the following function [26,49]:

J =
m

∑
i=1

ρ(rsi ), (16)
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where the ρ function is given by

ρ(rsi ) =

{
1
2 r2

si
, for |rsi | < c

c|rsi | − c2, else
(17)

where rsi = ri/s is the standardized residual; s is a robust scale estimate; ri = zi − hi(x) is
the ith residual; c is the threshold for Huber estimator, c = 1.5. The state could be calculated
using the Iterative Re-weighted Least-Squares algorithm (IRLS) [26].

Notice that the LTS-based SE can resist outliers that are not critical. The attacks
on critical measurements cannot be treated since removing those measurements creates
an unobservable system. In this case, increasing measurements’ redundancy or adding
pseudo-measurements could be one solution. This goes beyond the scope of this paper.

3.3. Measurement Function and Jacobian Matrix of the HVAC/DC State Estimator

This subsection presents the formulation of the nonlinear measurement function, h(x)
and the Jacobian matrix, H(x). Table 2 shows the details of the components of the nonlinear
measurement function.

Table 2. Formulation of the measurement function.

Description Equation

h(x)1 Voltage magnitude of the slack bus x(1)estimated

h(x)2 Voltage angle of the slack bus x(2)estimated

h(x)3 AC real power injection for each bus (1)
h(x)4 AC reactive power injection for each bus (2)
h(x)5 AC real power flow for each line (3)
h(x)6 AC reactive power flow for each line (4)
h(x)7 DC power flow (5)
h(x)8 DC current (6)
h(x)9 Power equality constraint Pdc+ Pac = 0

In this paper, the Jacobian matrix is given as follow

H(x) =
∂h(x)

∂x
=

HAC
HDC
HEQ

 (18)

where HAC is the AC Jacobian matrix which consists of the conventional AC measure-
ment function set. The DC Jacobian matrix is denoted by HDC and consists of the DC
measurement function set. Lastly, the equality constraints are insured by the matrix HEQ.

4. Simulations Results and Discussion

Three SE algorithms, namely WLS, Huber, and LTS were implemented in MATLAB
to estimate the state of the IEEE 12-bus AC/DC system shown in Figure 1. The system
base is 100 MVA, frequency is 50 Hz, AC voltage base is 345 kV. The system is modeled
in a commercial power flow program (PowerWorld simulator) [50]. As illustrated in
Figure 1, the system has five loads varying between 100 MW and 440 MW [51]. The DC
link bipole LCC-HVDC system is connected through two DC buses added between the
two fictitious buses 13 and 14. The nominal DC voltage and current are 500 kV and 2 kA,
respectively [52]. Transformers’ reactances are 0.18 pu, and the nominal angles are 15◦ for
the rectifier firing angle and the inverter extinction angle in the bipolar LCC-HVDC CIGRE
Benchmark model.

The three estimators are:
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• LTS-based hybrid estimator: in stage 1, LTS gives a robust estimated state and its
covariance matrix Σ. These are combined with the available PMUs in the second stage
using a Huber M-estimator.

• Huber M-estimator: stage 1, Huber M-estimator is used in the iteration to obtain δx,
at convergence, we obtain a state and its corresponding Σ. The second stage combines
these with PMUs using a Huber M-estimator as well.

• WLS: The SE is executed on the SCADA measurements using the WLS. In the second
stage, the WLS combines the obtained states with PMU measurements.

The residuals of the three methods have been analyzed with the 3-sigma rejection rule
to remove the bad data from H and calculate a robust Σ after executing stage 1. The three
hybrid SSE algorithms have been tested and evaluated using three scenarios: (1) occurrence
of Gaussian noise in the measurements; (2) false data injection attack in the measurement
vector; (3) FDI attacks or random errors impacting the Jacobian matrix.

1. SCADA Measurements:
Forty-one SCADA measurements were collected from the tested system. The mea-
surement set of the AC/DC system includes the following vectors:

(a) AC system measurements include the voltage magnitude and the angle at the
slack bus, real power and reactive power injection at each bus, and one power
and reactive power flow in each transmission line.

(b) DC system measurements include the DC current flow, DC power flow; the
AC/DC interface is considered lossless.

2. PMU Measurements: Five PMUs were deployed on different buses:

(a) AC system measurements include voltage magnitudes and phase angles at
buses 1, 2, and 3.

(b) DC system measurements include DC voltage magnitudes at the buses 13
and 14.

All measurements are considered from a single snapshot in this paper. In the field, the
latest available PMU and SCADA measurements could be fed to the SE. The time-skew
problem should be considered to improve the estimation further [53,54]. Notice that there
are different approaches to merge those measurements in time, the state could be tracked
at much higher rates if the state is reconstructed [55] or a buffer could be used for lower
estimation rates [12]. The maximum iteration for the first stage SSE methods is set to 20.
The convergence tolerance threshold for WLS, Huber, and LTS is 10−3. In the second stage,
the factor c for the Huber and LTS estimators is set to be 1.5. As explained, we are using
a three-sigma rejection rule after the convergence in the first stage. If any normalized
residuals are larger than 3, their corresponding rows in the matrix H are removed to obtain
Hc and calculate Σ using Equation (13).

4.1. Scenario A: Clean Measurements with Gaussian Noise

In this scenario, two cases have been implemented to check the effect of the LTS
trimming factor β. The SCADA measurements and PMUs measurements are assumed to
have a standard deviation of 1% and 0.1% [10] for the Gaussian noise, respectively.

1. Case 1: The trimming factor of the LTS is set to mT = 0, and the tuning factor for the
first stage of the Huber estimator is c = 1. Figure 4 shows the comparison results of
the voltage magnitude and angles of each stage of the two-stage WLS, Huber, and LTS
estimators. It can be found that the estimation results obtained by all estimator methods
are close to each other. Generally, the state-estimation errors of all estimators are small.

2. Case 2: The trimming factor for the LTS is mT = 2. Figure 4 shows the comparison
results of the voltage magnitude and angles of each stage of the two-stage WLS,
Huber, and LTS estimators. As an effect of the LTS robustness, the LTS estimation
error increases slightly in both voltage magnitude and angle when the data are
Gaussian. It is important to mention that the LTS could have fewer measurements
than the WLS and the Huber estimators due to setting the trimming factor to mT = 2.
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Figures 4 and 5 show the difference in the mean absolute voltage magnitude and angle
errors in the AC/DC SSE as defined in (19). In stage 1, the voltage magnitude at the DC
buses 13 and 14 have slightly higher errors than the other buses. Having few DC SCADA
measurements to estimate the DC voltage magnitudes can decrease the accuracy of the
estimation. However, after adding PMU measurements, the error has reduced. Moreover,
there is no representation for voltage angle error in buses 13 and 14 as those buses are DC
buses. The use of mT = 2 has affected the LTS results as two measurements are trimmed.
We can see in Figure 5 that the LTS performance has been slightly degraded, i.e., WLS and
Huber estimators have better performance for the case where we remove two measurements
with the LTS estimator. This is known as the efficiency under clean data, reducing when
we increase robustness towards outliers. This is confirmed in the Monte Carlo simulation
that has been performed with several replications equal to 100. The average of the mean
absolute errors at voltage states and average of the mean absolute errors at phase angle
states are considered to assess the performance of each estimator. Table 3a,b summarize
the obtained RMSE results in the case of measurements with Gaussian noise. We can notice
in Table 3a The LTS with trimming factor equal to 0; all estimators performed well and
close to each other. The LTS, in this case, is equivalent to the WLS. The Huber M-estimator
is offering a good performance. However, in Table 3b, when the trimming factor for the
LTS has increased to 2, we can see the LTS performance has declined slightly.

Table 3. A hundred Monte Carlo average mean absolute error of the three estimators (a) Trimming
factor of the LTS mT = 0 (b) Trimming factor of the LTS mT = 2.

(a)
Stage Method Meas. Mean Absolute Error

1 WLS VMag 2.7 × 10−3 pu
Angle 0.0892 deg

1 Huber VMag 2.7 × 10−3 pu
Angle 0.0981 deg

1 LTS VMag 2.6 × 10−3 pu
Angle 0.0894 deg

2 WLS VMag 8.6735 × 10−4 pu
Angle 0.0526 deg

2 Huber VMag 8.948 × 10−4 pu
Angle 0.0543 deg

2 LTS VMag 8.6947 × 10−4 pu
Angle 0.0535 deg

(b)
Stage Method Meas. Mean Absolute Error

1 WLS VMag 2.7 × 10−3 pu
Angle 0.0892 deg

1 Huber VMag 2.7 × 10−3 pu
Angle 0.0981 deg

1 LTS VMag 3.3 × 10−3 pu
Angle 0.1296 deg

2 WLS VMag 8.6735 × 10−4 pu
Angle 0.0526 deg

2 Huber VMag 8.9482 × 10−4 pu
Angle 0.0543 deg

2 LTS VMag 1.2 × 10−3 pu
Angle 0.0708 deg
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(a) (b)

(c) (d)

Figure 4. A hundred Monte Carlo average estimation errors of (a) voltage magnitude, (b) voltage angle, (c) voltage
magnitude, and (d) voltage angle with Gaussian measurement noise for stages 1 and 2, respectively. The LTS trimming
factor is set to 0.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. A hundred Monte Carlo average estimation errors of (a) voltage magnitude, (b) voltage angle, (c) voltage
magnitude, and (d) voltage angle with Gaussian measurement noise for stages 1 and 2, respectively. The LTS trimming
factor is set to 2.

The mean absolute error (MAE) of the jth state is used as a metric to evaluate perfor-
mance and is calculated as follows:

MAE(j) =
1

NM

NM

∑
i=1

(
|x̂i

j − xi
j|
)
, (19)

where NM is the number of Monte Carlo runs, which is selected to be 100, xi
j and x̂i

j are
the jth true state variable obtained from the power flow analysis and its state estimate at
the ith run. Please note that the voltage angles are in degree, and the voltage magnitudes
are in p.u. The average mean absolute error is defined as 1

Ns
∑Ns

j=1 MAE(j), where Ns is the
number of estimated states.

4.2. Scenario B: Impact of FDI Attack on the Measurement Vector

The SCADA and PMU measurements are assumed to contain additive Gaussian noise
with variance 1% and 0.1%, respectively. An increase of 25% is added in the real power
injection of buses 5 and 10. The trimmed factor for LTS was set to mT = 2.

Figure 6 shows the simulation results of the estimators under FDI attacks on the
measurement vector. The Huber M-estimator has better performance than the WLS while
the LTS estimator has the best performance. Table 4 summarizes the average number of
bad data detected and the probability of detecting the true bad data measurement for each
estimator with 100 Monte Carlo iterations. WLS and Huber M-estimator have a higher
probability of detecting non-attacked clean measurements as bad measurements. This has
degraded the accuracy of both estimators even if both estimators detect FDI attacks as
well. The LTS estimator has a probability of detection of 1 of detecting FDI cyber-attacks.
No clean measurements were identified as outliers which improves the performance of
the estimation.
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(a) (b)

(c) (d)

Figure 6. A hundred Monte Carlo average estimation errors of (a) stage 1 voltage magnitude, (b) stage 1 voltage angle,
(c) stage 2 voltage magnitude, and (d) stage 2 voltage angle in the presence of FDI attacks on the measurement vector.

Table 4. A hundred Monte Carlo replications average number of bad data detected and probability
of detecting the true bad data caused by attacks on the measurements (scenario B).

Method Stage Avg. Detection Probability

WLS 1 7.65 1
2 5.53 1

Huber 1 2.68 1
2 2.45 1

LTS 1 2 1
2 2 1

4.3. Scenario C: Attack on the Jacobian Matrix

FDI attacks were introduced in the 7th and 4th rows of H, which correspond to the
real power injection of Bus 5 and 2.

Figure 7 shows the LTS-based proposed algorithm results in both stages for an attack
on the Jacobian matrix. The WLS and Huber M-estimator results were not depicted
due to their divergence. The RMSE values in Table 5 show that the WLS and Huber
M-estimator have diverged. This is a big advantage of the LTS-based algorithm since it
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ensures robustness against leverage points which is not the case with the WLS and the
Huber M-estimator.

(a) (b)

(c) (d)

Figure 7. A hundred Monte Carlo average estimation errors of (a) stage 1 voltage magnitude, (b) stage 1 voltage angle,
(c) stage 2 voltage magnitude, and (d) stage 2 voltage angle with an attack on the Jacobian matrix.

Table 5. A hundred Monte Carlo average mean absolute error of the three WLS, Huber M- and
LTS estimator with trimming factor of 2 for (a) Scenario 2: FDI attack on the measurement vector
(b) Scenario 3: Jacobian matrix attack.

(a)
Stage Method Meas. Mean Absolute Error

1 WLS VMag 0.0156 pu
Angle 0.6071 deg

1 Huber VMag 5.1 × 10−3

Angle 0.1902 deg
1 LTS VMag 2.6 × 10−3

Angle 0.0914 deg
2 WLS VMag 3.4 × 10−3

Angle 0.1585 deg
2 Huber VMag 1.2 × 10−3

Angle 0.0646 deg
2 LTS VMag 8.3231 × 10−4 pu

Angle 0.0540 deg
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Table 5. Cont.

(b)
Stage Method Meas. Mean Absolute Error

1 WLS VMag Div
Angle Div

1 Huber VMag Div
Angle Div

1 LTS VMag 3.1 × 10−3

Angle 0.1255 deg
2 WLS VMag Div

Angle Div
2 Huber VMag Div

Angle Div
2 LTS VMag 9.5584 × 10−4 pu

Angle 0.0666 deg

5. Conclusions

The HVAC/DC inter-tie systems are adequate to enhance the grid stability and re-
siliency. Reliable state estimation is essential to ensure optimal situational awareness and
controls of such systems. This paper proposes a hybrid robust LTS-based state estimator
that can deliver reliable estimates in the presence of false data injection attacks targeting
PMU or SCADA measurements. The proposed estimator also resists topology attacks
that corrupt the SE Jacobian matrix and create leverage points. Simulations considering
the CIGRE LCC-HVDC benchmark system with the IEEE 12-bus dynamic system show
the superior robustness of the proposed estimator to two existing hybrid SSEs, i.e., WLS
and Huber M-estimators with bad data detection modules. More specifically, while the
LTS-based estimator gave similar estimation bias when measurements were corrupted,
it was the only estimator capable of converging and providing good results when the
Jacobian contained errors. The proposed estimator gives accurate estimates under clean
non-attacked measurements and topology, which confirms its efficiency since its perfor-
mance is comparable to the WLS.
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