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Abstract: The health of the hydroelectric generator determines the safe, stable, and reliable operation
of the hydropower station. In order to keep the hydroelectric generator in a better state of health
and avoid accidents, it is crucial to detect its faults. In recent years, fault detection methods based
on sound and vibration signals have gradually become research hotspots due to their high sensi-
tivity, achievable continuous dynamic monitoring, and easy adaptation to complex environments.
Therefore, this paper is a supplement to the existing state monitoring and fault diagnosis system of
the hydroelectric generator; it divides the hydroelectric generator into two significant parts: hydro-
generator and hydro-turbine, and summarizes the research and application of fault detect technology
based on sound signal vibration in hydroelectric generator and introduces some new technology
developments in recent years, and puts forward the existing problems in the current research and
future development directions, and it is expected to provides some reference for the research on fault
diagnosis of the hydroelectric generator.

Keywords: hydroelectric generator; acoustic vibration signal; fault detection; crack; de-noising

1. Introduction

With the increase in global energy demand and climate change, renewable energy
plays an increasingly important role [1]. It can be seen that hydropower is still the primary
source of renewable energy soon [2,3]. As of the end of 2019, there were approximately
1.3× 109 kW of total installed hydropower capacity and 4.3× 1015 kWh of annual power
generation worldwide. In 2035, the global annual power generation is expected to reach
6.1× 1015 kWh, and the installed hydropower capacity is 1.75× 109 kW [4]. It can be seen
that hydropower is still the primary source of renewable energy soon and has ample space
for development [5]. As the core equipment for water resource utilization, the hydroelectric
generator’s reliable and safe operation is the foundation, and failures will cause serious
consequences or even catastrophic accidents [6]. Therefore, the hydroelectric generator’s
maintenance and fault detection are critical, which also made the research on the faults of
rotating machinery such as the hydroelectric generator started in the 1960s [7].

Due to the development of big data technology, signal processing technology, and other
technologies, the fault detection of the hydroelectric generator has gradually entered the
era of automation and intelligence [8,9].

The fault detection methods of the hydroelectric generator can be divided into three
categories [10], as shown in Table 1. (1) Model-based fault detection method. As early
as 1976, Willsky put forward the concept of model-based fault detection. In recent years,
the model-based fault detection method has been extended to structural damage detec-
tion, shaft crack detection, induction motor, aerospace, and other fields [11]. In the fault
detection of the hydroelectric generator, this method mainly optimizes the parameters of
the original monitoring data and establishes a new model. The model has good accuracy
and predictability, but it relies on expert experience and is only suitable for analyzing
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specific hydropower stations, limiting its application to a certain extent [12]. (2) Process
analysis method based on working conditions. This method mainly studies and analyzes
the vibration characteristics of the hydroelectric generator from the steady-state level of a
single working condition. However, the hydroelectric power generation system contains a
variety of transient processes. The fault detection method of a single working condition
process is challenging to extend to the entire hydroelectric generator. In other working
conditions, its applicability is poor [13,14]. (3) Intelligent detection method based on signal
feature extraction. Compared with the fault detection methods described in (1) and (2)
above, it is suitable for fault detection under various working conditions and complex
structures of the hydroelectric generator; it can solve those complex problems that cannot
be established analytical models or rely on expert knowledge. It has many advantages in
fault detection applications, such as high accuracy, strong robustness, and strong general-
ization ability [15]. The most widely used intelligent detection methods include extreme
learning machines [16], artificial neural networks [17,18], expert systems [19], and support
vector machines [20]. A fault detection method based on statistical process control (SPC)
has been proposed in recent years. It compares and analyzes statistical reference data
with real-time statistical data to determine whether there is a fault or abnormality [21].
When extracting fault features, Kernel Independent Component Analysis (KICA) can es-
timate the number of fault signals of the single-channel vibration signal to extract more
evident fault characteristics [22]. The current fault detection methods for the hydroelectric
generator are mostly displacement, acceleration from the data type. There are few studies
on fault detection based on sound and vibration signals.

Table 1. Faults detection methods of the hydroelectric generator.

Faults Detection Methods of
the Hydroelectric Generator Advantages Disadvantages

Model-based fault detection method Good accuracy and predictability Strong dependence and small
application range

Process analysis method based on
working condition Obtain reliable signal resources Applicability is poor

Intelligent detection method based on
signal feature extraction

Good data processing ability, suitable for
different working conditions

This method is mainly in the research and
has few practical applications

Fault detection based on sound signal vibration is mainly used for pipelines and
mechanical parts. Detecting pipeline leakage through acoustic vibration can quickly
and accurately detect the location of pipeline leakage and provide early warning of
pipeline leakage [23]. Reference [24] proposed a calculation model for predicting gearbox
noise from steady-state dynamic response to acoustic vibration calculation in response
to the noise problem generated during gearbox operation. This model can play a role
in the design phase of the car, that is, reduce the noise of its reducer and transmission.
In addition, the detection method based on acoustic vibration is also applied to fruit de-
tection. By studying the vibration characteristics of the fruit, this method can predict the
quality of the fruit and reduce the damage of the fruit during transportation [25]. The use
of sound signals to detect faults or defects has the following advantages [26]: (1) high sen-
sitivity to defect recognition, (2) continuous dynamic monitoring, and (3) high adaptability
to complex environments.

This paper divides the hydroelectric generator into two parts: hydro-generator and
hydro-turbine. Then, it summarizes the fault detection technology based on sound signal
vibration for each part and introduces some new developments in recent years. This paper
serves as a valuable supplement to the existing hydropower generator condition monitoring
and fault diagnosis system, hoping to provide a specific reference value for related research
on the hydropower generator’s efficient and reliable operation.
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2. Acoustic Vibration Detection of the Hydro-Turbine Faults

The hydro-turbine is essential equipment for hydropower stations to convert water
energy into mechanical energy. The types of hydro-turbine include (1) Francis turbines,
(2) Tubular turbines, (3) Impulse turbines, and (4) Diagonal flow turbines. At present,
the related research on the use of the sound signal to identify and diagnose hydro-turbine
faults is mainly concentrated on the turbine runner blades [27–29], and most of them are
research and exploration in the experimental environment.

2.1. Cavitation Erosion Phenomenon of Turbine Runner

Cavitation is one of the leading causes of damage to the runner of hydro-turbine [30].
Although the cavitation produced by the turbine in the working process is not destructive,
the vibration, noise, and cavitation can damage the turbine. It can directly damage the
structure of the turbine, increase maintenance costs, and reduce the machine’s service
life [31]. Therefore, the identification and diagnosis of cavitation are of great significance.

Reference [32] proposed a method for detecting and diagnosing cavitation phe-
nomenon based on ultrasonic vibration, which measured the cavitation phenomenon
of Kaplan turbine under a series of working conditions. Vibration and ultrasonic sensors
are used, respectively, installed on the lower guide gear and the guide tube access door
of the top cover according to the +X and -Y directions. The structure of the monitoring
system is shown in Figure 1. The normalized power spectral density method (PSD) is used
to process the spectrogram; when the frequency range is 20 Hz to 20 kHz, the strength of
the cavitation signal is expressed by the vibration frequency; when the frequency range
is 20 kHz to 250 kHz, the strength of the cavitation signal is expressed by the ultrasonic
frequency. The noise generated during the turbine’s operation is mostly much lower than
the frequency generated by the cavitation signal, which is negligible. Although cavitation
signal strength can be used to detect the cavitation phenomenon of hydraulic turbines,
under some complex working conditions, low-frequency noise will affect the collected
ultrasonic signals, making the detection results inaccurate.

Figure 1. Structure of cavitation erosion monitoring system based on ultrasonic vibration.

Faria et al. [33] introduced a method for identifying minor cavitation defects in the
hydro-turbine based on sound signal monitoring. In this method, they designed two sets of
controlled experiments: For turbines with no apparent defects in the runner blades and the
hydro-turbine with minor defects, the defect is that a spherical cavity with a diameter of
8 mm is located on the suction side of the runner blades; The sensor installed on the draft
tube of the hydro-turbine with a frequency range of 20 kHz to 1 MHz is adopted. They are
compared by measuring the sound and vibration signals of the two sets of hydro-turbines
at three driving frequencies of 40 Hz, 50 Hz, and 60 Hz, and the RMS comparison curve is
drawn. From the results, it can be seen that the two curves do not overlap. Although there
are complex flow characteristics and bubble collapse frequency patterns around the turbine
runner blades, the sound signal changes caused by tiny defects in the runner blades can
also cause significant changes. This point can be used to monitor and early warning of
cavitation erosion of hydro-turbines in the early stages of formation. However, this test is
only for acoustic vibration monitoring of tiny cavitation phenomena on the runner blades,
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which is poor versatility. To study cavitation erosion in other parts and need to collect the
corresponding location data.

Given some of the problems in the above experiments, references [34,35] have carried
out related research. Reference [34] studied and analyzed the influence of the installation
position of the acoustic sensor on the detection of cavitation erosion of the hydraulic turbine
and used three acoustic sensors for signal collection. Two acoustic sensors have a frequency
range of 100 kHz to 1 MHz, and the other has a frequency range of 100 kHz to 900 kHz.
All three acoustic sensors are equipped with a 100 kHz high-pass filter. The upper cover
of the volute and the upper cover of the guide vane are, respectively, in the frequency
range of 100 kHz to 1 MHz acoustic sensor, and on the surface of the discharge ring is an
acoustic sensor with a frequency range of 100 kHz to 900 kHz. The working condition
of the turbine is increased from the partial load condition to the maximum discharge
condition. The sampling frequency of the three acoustic sensors is 4 MSs , and the duration
of one measurement is 0.92 s. Calculate the root mean square value (RMS) of the measured
data. It can be seen from the results that as the flow rate increases, the RMS value of the
acoustic sensors located on the volute and the guide vane cover shows a similar trend and
changes significantly when the set threshold is exceeded; the RMS value of the acoustic
sensor installed on the surface of the discharge ring does not change much before and
after the threshold. Therefore, in the hydroelectric generator, the most suitable location for
monitoring cavitation is the hydro-turbine.

Reference [35] improved and optimized the detection method of hydro-turbine cavita-
tion through experiments. First, simplify the structure of the turbine and build a test bench.
The test bench is shown in Figure 2. It consists of a generator, a conveyor belt, a driveshaft,
a rotating disk, and a water tank. The rotating disk is enclosed in a tank filled with wa-
ter, and the acoustic sensor and accelerometer are installed at the positions shown in the
figure. The motor drives the conveyor belt, and the power is transmitted to the driveshaft
to drive the rotation of the disk to simulate the rotation of the runner; the piezoelectric
sheet is used to form an excitation signal to simulate the cavitation phenomenon of the
hydro-turbine. The experiment selects static and rotating in the air, static and rotating in
the water; these four rotating disks under different working conditions are subjected to
different excitation modes. There are three excitation modes: (1) Fundamental frequency
excitation mode ( f1 = 1 kHz− 2 kHz, f2 = 10 kHz− 11 kHz, f3 = 20 kHz− 21 kHz);
(2) Fundamental frequency + low frequency f4 (22.1 Hz) excitation mode; (3) Fundamental
frequency + low frequency f4 + vortex frequency f5 (1.4 Hz) excitation mode, as shown in
Table 2. The collected signal can be obtained by consistency, frequency response function,
and Hilbert transform analysis. The sensor with the best acoustic signal is located on the
driveshaft. For sensors installed at fixed locations, such as near a sink, sound conduction
in water is better than conduction in air, which also means that the sound vibration of the
disk is mainly transmitted through water. After analysis and sorting, it can be seen that
selecting the rotation axis as the placement position of the acoustic sensor to detect the
cavitation phenomenon will have a better effect.

Figure 2. Schematic of hydro-turbine model test stand.
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Table 2. Cavitation simulation test of hydro-turbine.

Working Condition
Excitation Modes

1 2 3

Static in the air
f1 f2 f3

f1 + f4 f2 + f4 f3 + f4
f1 + f4 + f5 f2 + f4 + f5 f3 + f4 + f5

Rotating in the air
f1 f2 f3

f1 + f4 f2 + f4 f3 + f4
f1 + f4 + f5 f2 + f4 + f5 f3 + f4 + f5

Static in the water
f1 f2 f3

f1 + f4 f2 + f4 f3 + f4
f1 + f4 + f5 f2 + f4 + f5 f3 + f4 + f5

Rotating in the water
f1 f2 f3

f1 + f4 f2 + f4 f3 + f4
f1 + f4 + f5 f2 + f4 + f5 f3 + f4 + f5

2.2. Cracks in the Blades of Turbine Runner

The cracks in the turbine runner blades have always been an essential factor affecting
hydropower stations’ stable and safe operation. Dynamic stress caused by resonance is
often one of the leading causes of cracks in turbine runner blades [36]. Repairing cracks
can reduce damage to a certain extent, but frequent shutdown and welding will reduce the
ultimate strength of the runner and cause economic losses. Therefore, online monitoring
and early warning of runner blade cracks are vital [37]. Monitoring and early warning
of cracks in runner blades based on sound signals can adapt to the turbine’s complex
environment and have high detection sensitivity.

The sound signal is affected by factors such as the transmission distance and the
complexity of the hydro-turbine structure during the transmission process, and attenuation
will occur, leading to a certain degree of distortion. Therefore, to study the cracks of the
runner blades, it is necessary to study the attenuation characteristics of the acoustic signal
on the runner blades. Reference [38] used simulating the lead core crack to study the
runner blade’s attenuation performance. Lead core breaking points are arranged from top
to bottom in the four blades of the runner, and sensors are installed on the top plane of each
blade to collect the energy and amplitude emitted by each point when it breaks, and use
the relative attenuation rate to describe the attenuation of the sound signal characteristic.
The experimental data and the processed results are available. As the distance increases,
the attenuation rate increases, indicating that the distance of sound propagation has a
more significant impact on the amplitude and energy; in the interface attenuation test,
the interface attenuation rate of the two sensors is different, one being smaller, indicating
that the primary influence of the interface on the attenuation comes from the size.

The above data are to analyze the sound attenuation as a whole. Detailed analysis
of the information requires many data, so it is necessary to find a method that can effec-
tively deal with the crack sound signal. Reference [39] verifies the feasibility of wavelet
packet technology to analyze the attenuation characteristics of the acoustic signal of the
turbine runner crack and performs the i-layer wavelet decomposition on the collected
acoustic signal: 

P(0,0)(t) = S(t)

P(i+1,2j+1) = ∑
k

H(k− 2t)P(i.j)(t)

P(i+1,2j) = ∑
k

G(k− 2t)P(i.j)(t)

(1)

In the above, i = 0, 1, 2, . . . , j = 0, 1, . . . , 2i − 1, t = 1, 2, . . . , 2I−i, I = log2 N; N is the
number of t; G and H are wavelet decomposition filters; P(i,j) represents the j-th wavelet
packet coefficient of the i-th layer.
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Normalize the signal energy in each frequency band of each layer:

Cij = Eij/Ei (2)

Ei =

(
2i−1

∑
j=0

∣∣Eij
∣∣2) 1

2

(3)

In the above, Eij represents the energy corresponding to each frequency band signal
in the i-th layer, Ei Calculate according to Equation (3).

The reference value is taken as the point closest to the sensor, and the relative attenua-
tion rate of energy after normalization is calculated:

Aij
Pm = 20 log

(
Bij(Pm)/Bij(P1)

)
(4)

In the above, B(Pm) is the energy of the signal; Pm represents the lead breaking point;
m = 1, 2 . . . , 5.

The data after wavelet packet analysis and the original data can be fitted and compared
to have their attenuation characteristic curves the same, which shows that the sound
signal processed by the wavelet packet technology can accurately reflect the attenuation
characteristics of the original signal.

Determining the location of cracks is one of the primary purposes of monitoring
the blades of turbine runners using acoustic vibration signals. Due to the complexity of
the internal structure of the turbine and the diversity of background noise, the sound
signal sampled by the sensor is very complicated, and the signal needs to be processed.
Generally speaking, the localization of the crack source is divided into three parts: signal
acquisition, feature extraction, and location. First, the acoustic signal sensor collects
13 parameters, including energy, signal strength, amplitude, and ring count. The kernel
independent component analysis (KICA) method is used to extract feature parameters [40].
The basic principle of KICA is to use the method of non-linear function Φ mapping.
It turns the sample point xi of the input space into the sample point Φ(xi) of the feature
space and performs linear independent component analysis on the data. This method can
reduce the dimensionality of the data, improve the positioning accuracy, and reduce the
transmission pressure. References [40,41] used two methods to locate the crack source:
wavelet neural network and support vector machine. The principle of a wavelet neural
network is to minimize the error function, and the SCG algorithm adaptively adjusts the
waveform, scale, and network weight of the wavelet base. The wavelet network model can
be expressed as:

yP
i = f

(
N

∑
j=1

wijΨa,b
(

F/aj
))

(5)

F =
M

∑
k=1

wjkxP
k − bj (6)

In the above, M is the number of input layer units; N is the number of hidden layer
units; L is the number of output layer units, k = 1, 2 . . . , M, i = 1, 2 . . . , L, j = 1, 2 . . . , N;
aj is the scale factor; bj is the displacement factor; wij is the weight of the unit connecting
the output layer and the hidden layer.

The basic principle of the support vector machine is to map the data in the sample
space to a higher-dimensional linear feature space through a specific non-linear function
ϕ(x). The optimal classification hyperplane is constructed in the feature space, the distance
between the hyper-plane and the sample sets of different classes is the largest, and the dis-
criminant function of the classifier is used to achieve correct classification. The classification
hyper-plane can be expressed as:

wϕ(x) + b = 0 (7)
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In the above, x is the input vector; w is the weight vector; b is the bias coefficient.
After the test, the mean square error calculation of the collected positioning data

can be obtained. The mean square error of the positioning method using support vector
machine is 0.1623, which is less than the mean square error using wavelet neural network is
0.58. The support vector machine does not need information, such as the exact position of
the sensor or the time of occurrence of the crack to overcome the influence of the complex
internal structure. However, the above methods are all based on sample data for analysis
and calculation and have not been applied to actual crack tests. References [42,43] identify
and monitor actual runner blade cracks using acoustic vibration signals. Reference [42]
obtained the relationship between the crack growth rate and the count rate of the acoustic
sensor after theoretical derivation:

dH
dn

=
B

Cp/m

(
da
dn

)p/m
= B′

(
da
dn

)p′

(8)

In the above, H is the ringing count; n is the number of fatigue; B is the thickness of
the blade; a is the crack length; C, m, and p are specific material constants; dH

dn and da
dn are

linear in logarithmic coordinates.
The count rate detected by the sensor is linearly related to the curve of the crack

growth rate. The fitting correlation coefficient between them is more than 90%, consistent
with the theoretical conclusion. By detecting the change rate of the sound signal, the crack
growth rate can be calculated and used to evaluate the blade’s safety. Reference [43]
conducted a monitoring test of acoustic vibration signals on blade cracks, proposed and
verified the relationship between the energy change rate of the acoustic signal and the
crack growth rate, and established a correlation model on this basis:

ln
da
dN

= 0.175 ln
dE
dN
− 7.234 (9)

In the above, E is the cumulative energy of the sound vibration signal; a is the crack
length; N is the number of loading cycles.

The model predicts the crack length at a particular stage, consistent with the actual
crack length.

3. Acoustic Vibration Detection of the Hydro-Generator Faults

The hydro-generator is a device that converts the mechanical energy generated by
the rotation of the hydro-turbine into electrical energy. Its structure and performance
play a vital role in the stable and efficient operation of the entire power station [44,45].
In the operating conditions of the generator set, due to the air movement, the imbalance
of the stator and rotor, the friction and collision of mechanical parts, and the electromag-
netic effect, the generator set produces shock and vibration, thereby causing the noise.
The noise of hydro-generator is generally divided into mechanical, air, and electromagnetic
noise [46–48]. At present, the research on sound and vibration signals of hydro-generator is
mainly to collect and identify abnormal sounds and filter processing of background noise.

The vibration signal of the hydro-generator fluctuates wildly, which is a non-stationary
signal. The steady or low-frequency signal is proper, and the high-frequency signal is noise.
The fault analysis of the hydro-generator needs to extract the fault characteristics from the
vibration signal and the vibration collected by the sensor. Most of the signals are mixed
with complex background noise, so filtering the background noise is helpful to analyze
and diagnose faults [49].

In the hydro-generator, winding insulation is the most critical component, but the
insulation components will degenerate with the passage of working time. In severe cases,
partial discharge will occur, which will cause the generator to fail and cause substantial
economic losses [50]. Therefore, it is necessary to detect and evaluate the insulation state of
the winding, and the partial discharge signal analysis is an effective method for evaluation
and diagnosis [51]. However, in measuring the partial discharge signal of the generator,
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it will be affected by noise and interference, which will cause severe errors in the measured
dataset. Effective de-noising methods play a vital role in identifying and detecting partial
discharge signals; the de-noising methods can be divided into hardware-based de-noising
and software-based de-noising [52], as shown in Table 3.

Table 3. Conclusion of de-noising method of partial discharge signal.

Methods of De-Noising Reference(s) Principle Features

Hardware-based

[53,54] Gating approach Simple operation, strong practicability,
but easy to lose the real signal

[55] Balanced circuit
Mature technology, high recognition rate,
but unable to eliminate the interference

generated by the generator itself

[56] Multiple sensors noise rejection on
pulse-by-pulse basis

Unable to distinguish partial discharge
noise of winding parts

Software-based

[57] Time-domain method The calculation is simple, but the
accuracy of the de-noising result is low

[58] Moving averaging technique Reduce the relative level of noise, but it
will produce signal distortion

[59] Waveform analysis in combination with
pattern recognition Disturbances can be separated from PD

[60] Fast Fourier transform

It can accurately extract signal features
with high accuracy, but when its

spectrum overlaps with the PD signal’s
spectrum, noise or interference cannot

be suppressed.

[61–63] Wavelet transform

Reduce distortion and good de-noising
effect, but the threshold selection is

complicated and depends on
professional knowledge

[64] Wavelet Shrinkage Scheme De-noising effect is better than wavelet
transform, but this method takes longer

In 2009, Y.W. Youn et al. proposed a comprehensive noise suppression method for
the noise in partial discharge signals that cannot eliminate traditional noise suppression
methods [65]. It consists of two noise suppression methods: the adjacent phase induction
noise suppressing technique and the adaptive noise suppression technique, which executes
the two noise suppression methods sequentially on the collected signal data. The adaptive
noise suppression technique is divided into three steps. The first is to use fuzzy logic to clas-
sify noise in stages and remove pattern noise samples with similar phases. This process is
very effective in suppressing general noise and equal amplitude noise. Secondly, it removes
the low-count pulse, it denoises the fastest, but it is invalid for periodic noise; finally,
the grouping characteristics of partial discharges are used for de-noising. This method can
remove periodic noise. The adjacent phase induction noise suppressing technique can
remove most of the noise, but the accuracy is high, the calculation process is cumbersome,
and the stability is poor.

Reference [62] uses wavelet threshold shrinkage technology to identify and filter the
noise generated in the partial discharge signal of the generator set and uses the principle
that the background noise has a smaller wavelet coefficient in the wavelet domain than
the partial discharge signal so that the processed local discharge signal is kept above
the noise threshold to the maximum in the wavelet domain. Among them, signal pro-
cessing includes determining the number of wavelet decomposition layers and filters.
The purpose of determining the number of wavelet decomposition levels is to select the
most appropriate decomposition level in the wavelet domain to represent a specific signal
accurately. The number of decomposition levels has a significant impact on the de-noising
results. Too few decomposition levels make the de-noising effect very poor. If there are too
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many decomposition layers, the de-noising effect is not necessarily better, and unnecessary
processing is added [66].

The selection method of the filter adopts wavelet selection based on stationary wavelet
transform-based wavelet selection (SWTBWS). This method is the same as the wavelet
selection method based on correlation. It selects the stationary wavelet transform (SWT) in
impulse interference, calculates the filter that produces the most significant absolute value,
and improves two aspects at the same time: First, the fast wavelet transform calculates the
discrete inner product of each layer, rather than the correlation between the signal and the
filter; second, the iterated wavelet function does not have to match the equivalent filter
bank exactly. Through this de-noising method, the broadband noise in the partial discharge
of the hydro-generator is significantly reduced, the processing time and calculation steps
are shortened, and the recognition sensitivity and efficiency are improved.

In addition to the use of wavelet analysis to process the partial discharge signal of the
generator set, the artificial neural network can also be used to identify the partial discharge
signal to filter out the useless background noise [67]. The identification process is shown
in Figure 3, and the dataset is noise filtered. Furthermore, extract its features and then
use these features as the input vector of the neural network. However, for some intense
noise and crosstalk signal interference, the recognition rate of this method is low, and the
de-noising effect is not apparent.

Figure 3. Flowchart of partial discharge signal recognition by artificial neural network.

Given the above problems, Reference [68] improved the recognition method and
proposed a phase-resolved partial discharge (PRPD) image de-noising method. The process
is shown in Figure 4.

Figure 4. Flowchart of PRPD.
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When a PRPD dataset is input, two grid filtering and pixel residual filtering paths are
adopted to filter the waveform. The purpose of grid filtering is to extract a pair of dominant
adjacent to noise gap partial discharges (ANGPD) clouds and remove false discharge
signals around the ANGPD cloud without distorting the results. This filtering will also
remove effective low-density non-adjacent to noise gap partial discharges (n-ANGPD)
cloud. These effective n-ANGPD clouds can be restored by adopting the pixel residual filter
path, composed of the pixel residual matrix technology, a low-strength filtering method
that can remove the sparse noise between different n-ANGPD clouds. After obtaining the
output of the two filtering paths, merge the different cloud clusters into temporary samples.
Analyzing the ANGPD clustering in the temporary sample can determine whether the
primary partial discharge data set in the input sample is adjacent or non-adjacent noise
gap partial discharge. Finally, the filtered phase decomposition partial discharge source
is obtained.

As a non-linear filtering technique, morphological filtering can extract the noise in the
partial discharge signal, according to Equation (10) [69]. Equation (10) is generally used to
extract or remove peak noise such as burrs, as shown in Figure 5.

( f ◦ g)(n) = [( f Θg)⊕ g](n) (10)

In the above, f ◦ g is the open operation of function f with respect to g, and function g
is a structural element; f Θg is the expansion expression of function f ; f ⊕ g is the corrosion
expression of function f.

After the original spectrum is subtracted by morphological filtering, the noise spec-
trum dominated by white noise is obtained. At this time, the classical threshold is intro-
duced into the spectrum [70], and the frequency of the maximum value more significant
than the threshold is identified as the discrete spectrum interference frequency value.
The interference suppression method using morphological filtering can effectively remove
white noise interference and reduce the algorithm’s time complexity, but there is a problem
that structural elements are challenging to determine in practical applications.

Figure 5. Opening a signal by a circular structuring element.

Research based on sound and vibration signals can remove background noise and
process and analyze the vibration of the generator set. In collecting the vibration signal of
the generator set, the vibration signal collected by the sensor will be accompanied by solid
background noise. Whether it is a fault diagnosis of a hydraulic turbine or a generator
set, signal processing is required to extract the fault characteristics, so signal processing is
highly critical; it determines the success of the diagnosis [71]. Reference [72] proposed a
new wavelet transform to denoise the collected vibration signals. Its basic principle is to use
unbiased likelihood estimation to process the vibration signals collected by the sensor and
determine a threshold. The principle of determination is the vibration signal. The variance
with the de-noising signal is the smallest, and then the part that exceeds the threshold
is removed. Using this method in the de-noising process and comparing it with the
traditional wavelet transform, it can be found that the new method has a faster calculation
speed and can obtain a more satisfactory de-noising result. Due to the complexity of the
generator set structure and the diversity of operating conditions, its self-vibration often
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manifests itself as substantial uncertainty and harmonic superposition. Micro-vibration
affects the vibration control performance of the hydroelectric generator shaft system and
affects the non-linear dynamic characteristics of the shaft system [73]. Reference [46] uses a
combination of bounded acoustic vibration signals and harmonic excitation to establish
the unit’s performance. The external random excitation model, in which the harmonic
excitation model is based on the following Equation:

f (t) = ∑n
i=1 pi sin(Ωit + αi) + fξ(t) (11)

In the above, i is the external excitation amplitude of the harmonic; Ωi is the external
excitation frequency of the harmonic; αi is a random stage, f is a constant.

The bounded acoustic vibration model is expressed as ξ(t), which is calculated as follows:

ξ(t) = A sin[ωot + σB(t) + γ] (12)

In the above, A is the amplitude; ωo is the center frequency; σ is the spectral width
coefficient; B(t) is the linear process function of the unit; γ is a uniformly distributed
random variable in [0, 2π).

This model is mainly used to study the influence of external random excitation and
related parameters (damping, mass, and stiffness) on the non-linear dynamic characteristics
of the coupled system. It also provides further ideas for the dynamic theory of hydro-
generator shafting.

Reference [74] used a method of combining exponential function and Huber estimation
to solve the noise problem in the measurement test of the generator set, constructing the
robust objective function, and realizing the robust identification of the result. The specific
expression is as follows:

minJ(α) = 1− 1
T

∫ T

0
e−[v

2||vi |≤k+(2k|v|−k2)||v|>k]dt (13)

In the above, N is the number of samples; I is the sampling frequency; vi is the ratio
of the guide vane opening in the experiment to the guide vane opening calculated by the
identification model; s is the standard deviation.

Compared with the conventional objective function, the vital objective function automati-
cally removes insufficient data, which reduces the data processing steps before identification.

Some scholars have recently proposed the hydro-generator fault diagnosis method
that combines stray magnetic flux and acoustics [75]. The test uses a fault simulator to
compare the stray flux and acoustically recorded spectra of healthy machines and machines
that intentionally introduce defects; to search for the characteristics of the most common
mechanical and electrical defects. The results show that this method can identify most
faults, but it has not been applied to the sizeable hydroelectric generator.

4. Discussion about Research Directions and Prospects

As the single unit capacity of the hydroelectric generator continues to grow,
the requirements for the safety and reliability of various components are also increas-
ing [76]. The fault diagnosis technology of the hydroelectric generator based on sound
signal vibration can provide more unit status for the current diagnosis and detection system
and improve the hydroelectric generator’s fault diagnosis and early warning capability.
However, to realize the large-scale application of this technology and breakthroughs, some
other work needs to be carried out. The challenges and development directions faced by
the current research results include the following points:

1. The fault characteristics of the components of the hydroelectric generator or under
special working conditions. The current fault diagnosis technology based on sound
vibration mainly focuses on detecting turbine runner blade cracks and turbine cavita-
tion status from the reference review. However, there is no effective acoustic vibration
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detection method for particular operating conditions, such as generator stator and
rotor distortion, mutation statuses, such as runner blade mud by sand wear, and water
bucket shedding. Therefore, the study of sound vibration to solve the problem of
faults in other components or working conditions of the hydro-generator unit can be
a valuable supplement to the existing unit condition monitoring and fault diagnosis
system and further improve the safety of the hydroelectric generator operation.

2. Selection of the location of sound and vibration signal collection. The on-site signal
data collection is a crucial link in the fault detection of acoustic and vibration signals.
The fault can be detected and located only by collecting the required raw signal data
for analysis and research. The collection of signals requires a sound collection system.
At present, the related technology of the sound collection system is very mature, and it
has the advantages of low cost and high recognition rate [77]. However, the internal
structure of the hydroelectric generator is very complicated, and a variety of sound
signals will be generated during operation. Therefore, selecting the most suitable
location for monitoring and collecting sound signals in the hydroelectric generator
is necessary. In the current research, the measurement position of the sound signal
(the installation position of the sound sensor) has not been carefully studied and
summarized. This problem needs to be further solved in the follow-up research.

3. Consider the problem of insufficient noise removal during signal acquisition. In the
actual sound signal collection process, due to the complexity of the structure and
operation of the hydroelectric generator, the collected signal will be mixed with a
large amount of high-frequency noise, which will interfere with the measurement
result necessary to denoise the signal. Among them, the principle of de-noising
includes two points: smoothness and similarity; that is, the de-noised sound signal
and the original signal should have the same smoothness, and the variance estimation
should be a minor variance in the worst case. Scholars have carried out much work on
this problem, mainly including the following methods: threshold method, empirical
mode decomposition, wavelet de-noising, adaptive filtering, morphological filtering,
Fourier transform, and so on. These methods have a specific suppression effect on
noise, but they cannot completely filter out the noise in the signal. For example,
wavelet de-noising has a good suppression effect on white noise, but the number
of decomposition layers and mother wavelet need to be considered in the analysis
process. The problem is adaptive filtering can automatically adjust the filtering
parameters but requires exceptionally high stability; the threshold law requires a
lot of complex calculations to determine the threshold. Therefore, further research
and discussion require further research and discussion on which method should be
selected to process the collected sound and vibration signals without distortion and
with high accuracy.

4. Research based on the “mutation” perspective of acoustic vibration signals. Related
engineering problems show that detection methods based on sound and vibration
signals effectively solve some specific hydroelectric generator equipment failures,
but there is a need for further breakthroughs in the theory of refined detection of
local details. Use the “mutation” signal generated by sound vibration in emergencies
(blade breakage, bucket falling off, and shaft friction.) to detect the operating status
of the entire unit, which is actually to avoid the theoretical bottleneck of fine sound
vibration detection to research from the perspective of “signal mutation.” There is no
related literature report on this technical method.

5. Studies have shown that the unit will show the failure of the hydroelectric generator
in the form of vibration. Therefore, it is an excellent technical path to study how to
carry out fault prediction and online diagnosis of units through sound and vibration
signal detection.
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5. Conclusions

The health of the hydroelectric generator is an essential key factor for the safe, stable,
and reliable operation of hydropower stations. The fault diagnosis technology of the
hydroelectric generator based on sound signal vibration can be researched from two
aspects: hydro-turbine and hydro-generator. (1) For hydro-turbine, sound vibration signals
are mainly used for monitoring and early warning of two aspects of runner blade cracks
and cavitation; (2) For hydro-generator, the primary research is on signal de-noising.

In general, using sound and vibration signals described in this article to detect and
identify the faults of the hydroelectric generator has advantages that other fault detection
methods do not have and has great potential for development:

1. Fault location and dynamic monitoring;
2. Identify weak signs of early failure and warning;
3. According to the working condition parameters of each acoustic vibration variable,

a fault trend prediction model is established to evaluate and manage the health status
of the unit;

4. The method of acoustic vibration fault detection applies to the complex internal
structure of hydropower unit, which can refine the acoustic vibration characteristics
of crucial components and detect and analyze them;

5. Use the “mutation” perspective of acoustic vibration signals to carry out research.
This method avoids the theoretical and engineering technical bottlenecks of fine
acoustic vibration detection and uses the sudden change detection of acoustic vibra-
tion signals to evaluate the sudden changes of the hydropower unit (blade breakage,
bucket falling off).

At the same time, since the current development is in its infancy, there are still some
problems to be solved.
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