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Abstract: This article contains a review of essential control techniques for maximum power point
tracking (MPPT) to be applied in photovoltaic (PV) panel systems. These devices are distinguished
by their capability to transform solar energy into electricity without emissions. Nevertheless, the
efficiency can be enhanced provided that a suitable MPPT algorithm is well designed to obtain the
maximum performance. From the analyzed MPPT algorithms, four different types were chosen
for an experimental evaluation over a commercial PV system linked to a boost converter. As the
reference that corresponds to the maximum power is depended on the irradiation and temperature,
an artificial neural network (ANN) was used as a reference generator where a high accuracy was
achieved based on real data. This was used as a tool for the implementation of sliding mode controller
(SMC), fuzzy logic controller (FLC) and model predictive control (MPC). The outcomes allowed
different conclusions where each controller has different advantages and disadvantages depending
on the various factors related to hardware and software.

Keywords: photovoltaic panels; maximum power point tracking (MPPT); nonlinear control; boost
converter; renewable energies

1. Introduction

The International Plant Protection Convention predicted in 2021 a possible climate
scenario for 2050 in which the global surface temperature will increase between 1.5 ◦C
and 2 ◦C unless deep reductions of CO2 are achieved in the following decades [1]. Based
on the latest report conducted by the international energy agency, this would imply that
renewable energies should cover at least 70%, where the half is expected to be supplied by
wind and sun [2]. There is an implication that we will use PV systems, one of the fastest
growing industries of renewable energies in recent years [3]. Benefits are related to null
emissions, avoidance of mechanical moving parts, and no generation of noise during its
operation [4].

A PV system is composed of several solar cells made of semiconductor materials
where the role of these is to absorb photons to generate an electron-hole pair through
a p-n junction [5]. This action, which exposes an electron diffusion to produce voltage,
is a complex process since not all the solar light spectrum is possible to be captured [6].
Actually, this effect induces a PV conversion efficiency that tends to be lower than 20% [7].

Solar cell technologies consider semiconductor materials such as types of crystalline,
such as polycrystalline Silicon (poly-Si) and thin film type which are frequently produced
from cadmium telluride (CdTe) or copper indium gallium selenide (CIGS). The CdTe’s
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major feature is its chemically stable composition which provides different production
methods where the most popular at the moment is thin PV films [8]. The CIGS is capable
of providing a long-term reliability in terms of their degradation [9]. Silicon solar cells can
reach the highest among the three types which is around 15% [10]. Considerable advances
in efficiency improvement allowed the invention of Interdigitated back contact (IBC) n-type
solar cells which reported a value up to 24.4% [11]. However, IBC cells present a complex
and expensive production method due to its novelty [12]. Not only the efficiency of PV
systems can be low but also, the end-user voltage is unstable and depends on the light
intensity [13].

A DC-DC converter can be linked to a PV to adjust the output voltage and current
in a suitable operating point [14]. As reported by Raghavendra et al. [15], there are two
main categories, which are isolated and non-isolated. The first mentioned refers to an
electrical limit (such as a transformer) amid the inputs and outputs which allows the usage
for high voltages. Examples of these types are flyback, forward, resonant, push-pull and
bridge [16–20]. In the non-isolated, the configuration indicates that the mentioned barrier
is vanished and therefore, the efficiency tends to be higher since the number of components
is lower [21]. Known non-isolated architectures are Cuk, SEPIC, boost, buck-boost, positive
superlift Luo, and ultra-lift Luo [22–27].

Since a PV setup has a low efficiency, the MPPT is an essential step because it helps
the system to achieve the best overall performance [28]. This can be generated through
a designed control technique that can be embedded in a DC-DC converter [29]. There-
fore, in this paper, a revision of different MPPT for photovoltaic systems techniques are
examined. Despite that, several authors provided reviews about MPPT methods for PV
systems [30–32], a major contribution of this work is the implementation of four of the
revised algorithms in a real platform in combination with a neural reference generator.
In regards to the PV test rig, because the solar panel had a low output-voltage, it increased
with a boost converter that is known for this main feature [33].

The article is summarized as follows. Section 2 contains the analysis of different MPPT
techniques with their advantages and disadvantages, Section 3 shows the implementation
of selected algorithms in a real PV rig which details are explained, Section 4 exhibits the
obtained results during the experiments and Section 6 concludes with the major outcomes
of this study.

2. Overview of MPPT Control Strategies

In 1954, a group of scientists from Bell Laboratories patented the first commercial
solar cells with an efficiency of 6% [34,35]. Therefore in the same year, the MPPT was
the objective of researchers to increase the efficiency and enhance the performance of
this invention [36]. Another involved reason was that the electricity produced by the PV
system which changes along the time as the position of the sun is variable. Furthermore,
the electricity produced by the PV system is dependent on solar light (irradiance) and
environmental temperature [37]. Thus, it becomes a significant challenge to harvest the
MPPT of a PV system [38].

Figure 1 summarizes the algorithms that had been highlighted in this review. Mainly
there are two types of MPPT trackers: mechanical and electrical [36]. In regards to the
first type mentioned, which is also known as a “solar tracker”, it can increase the energy
production up to more than 40% on average [39]. Nevertheless, this configuration is
recommended for industrial applications rather than for domestics due to the excessive
cost involved of the mechanical tracking devices [40].

On the other hand, electrical MPPT techniques are dependant on the power-voltage
and linked to current-voltage curves to track the optimal operative point [41]. Conven-
tional curves for a PV system are revealed in Figure 2 where the nonlinear feature is
showed. Additionally, the MPP increases its complexity when the temperature, irradiation
and partial shadowing vary to produce different curves with alternative shapes [42–44].
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Therefore, to force a PV system to work at the MPP, many algorithms were introduced by
the researchers.

Figure 1. Overview of the analyzed methods in this article.

Figure 2. Typical curves for a PV system where: (a) is a conventional power-voltage and power-current graph with the MPP
highlighted; (b) shows how the power-voltage curves change with different temperature at constant irradiation; (c) displays
the change due to partial shadowing in power-voltage curves; (d) exhibits the variation of the power-voltage curves with
constant temperature and variable irradiation.

2.1. Offline Techniques

Known offline calculation algorithms advantages are related to their simplicity to be
embedded and low computational demand [45]. The mechanism is based on constant
linear approximations to achieve the MPP. Fractional open-circuit voltage (FOCV) belongs
to this group and focuses on the MPP through a proportional relation between the MPP
voltage (VMPP) and the open circuit voltage (VOC) [46]. A similar approach is fractional
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short-circuit current (FSCC), which as its name suggests, it is related to a relation between
the current at the MPP (IMPP) and the short circuit current (IOC) [47]. The accuracy of these
methods is highly dependant on the proportional constant in which the FSCC has on a
vastly with greater inaccuracies for MPPT [48].

The FOCV method was implemented in experiments by Frezzetti et al. [49] for a PV
system. In this research, the authors used an adaptive scheme based on the irradiation to
achieve acceptable results. FSCC has also been used in real time for a PV system based
on the research made by Sher et al. [50]. In the latter, a hybrid scheme linked to a P&O
even-thought that the efficiency was lower than the conventional P&O.

VMPP = k ·VPV (1)

IMPP = k · IPV (2)

2.2. Hill-Climbing Algorithms

Hill climbing (HC)-based algorithms are widely employed in research and industry
due to their high efficiency with low computational requirements [51]. These methods
have the ability of avoiding the usage of empirical data for voltage and/or current tracking.
Therefore, it is possible to achieve the MPP without a former knowledge of the PV fea-
tures [45]. The principle of HC is schematically explained through Figure 3 where the slope
calculation between power and voltage would give an idea about the position on the graph
and thus, an action to be taken such as increasing or decreasing the voltage. In this sec-
tion, main hill climbing algorithms like perturbation and observation (P&O), incremental
conductance (INC), incremental resistance (INR), and drift-free (DF) are reviewed.

Figure 3. Principle of the hill climbing algorithms for MPPT.

2.2.1. Perturb and Observation

This algorithm is based on an intentional and periodical perturbation on the control
command with a following observation and evaluation of the system output [52]. Applied
to PV systems, the perturbation is generated through a change in the voltage VPV(k) and
current IPV(k), such that the power of the PV is measured. This implies that the slope
∆P/∆V can be calculated, which helps with knowing whether the MPP is achieved, as
Figure 4 shows.

Based on the previous description and on the detailed logic of Figure 4, the knowledge
of PPV(k) and VPV(k) and its delay in k− 1 allows for the calculation of the slope. Therefore,
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if the latter mentioned value is positive, the duty cycle d will increase such that the
algorithm output u = d + δd and aims to reach the MPP; on the contrary, when the position
is at the right side of the MPP, the control signal decreases through u = d + δd.

An interesting example of simulated implementation of P&O was carried out by
Murtaza et al. [53], where they used this algorithm for a two-stage coordinated PV system.
Despite that this study lacks of experimental results, the authors showed that it is also
effective in distributed systems. Another case where experiments were involved in a PV
system showed that conventional P&O techniques are very sensitive to step size (which is
related to the disadvantages of this method) [51].

Figure 4. Flowchart of P&O algorithm.

Despite the fact that P&O is one of the most popular MPPT algorithm in industry due
to its simplicity [54,55]. Regardless of these assets, the major downsides are high chattering
when the MPP is reached and the lack of success to achieve this point [56]. The latter are
majorly related to the changes in temperature and solar irradiance [57].

2.2.2. Incremental Conductance

The incremental conductance technique is widely used for MPPT applications because
it has higher accuracy in comparison to P&O. The calculation of the incremental change in
conductance by evaluating the effect of voltage change [58]. The conventional INC uses
the slope of the P–V curve [59]. The slope P–V curve at MPP is zero; the slope is positive
when MPP is on the right side and negative when MPP is on the left side. The controller
injects a slight change in the duty cycle and observes the behavior of the conductance [60].
This algorithm was implemented in experimental conditions by authors of [61], where
they provided a regulated step size routine and the results showed a suitable performance.
Disadvantages related to this scheme are reported to the trade-off between the system
dynamics and the steady state accuracy that is managed within the controller tuning [62].
The flowchart of the whole algorithm is shown in Figure 5.
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Figure 5. Flowchart of INC algorithm.

2.2.3. Incremental Resistance

Previously described algorithms worked in the power-voltage curve but alternatively,
INR employs the power-current to determine the sign of the following perturbation [63].
Differently to INC, the evaluation in this case is through the current change. Research by
Raedani and Hanif conducted experimental implementation [64]. The authors found that
the convergence is slower than P&O and INC. The reported downsides of this method
are related to the associated scaling factor for the change of reference voltage which can
be complex to accomplish [65]. A descriptive flow mechanism of this tool is displayed in
Figure 6.

2.2.4. Drift-Free

If a sudden change in irradiation occurs with any of the previous algorithms, it can
happen that the new operative point lies on the opposite side of the MPP. For instance,
an operative point that is in the left side of the MPP (based on a power-voltage curve),
it can switch to the right side due to an irradiation change or likewise for the opposite
situation. This effect is known a drift which can be harsh if large step-sizes are used [63].
Nevertheless, Kili et al. [66] proposed a modified P&O algorithm to overcome the drift
where the mechanics is based on the addition of a new parameter that figures if the power
change is produced by intentional (due to algorithm) or by irradiance. The procedure of
this algorithm is explained in Figure 7. A basic experiment carried by Mathew et al. was
found where they used a drift-free algorithm [67]. The authors found that the algorithm
behaved better than INC under changing operative conditions.
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Figure 6. Flowchart of INR algorithm.

In regards to the advantages, this algorithm can deal with unexpected irradiance
variations with high efficiency in terms of the lost power [68]. Nevertheless, the downsides
occur when the load varies since it is ignored. A solution for this problem was proposed by
Jately et al. [63], although the algorithm and number of variables are higher.

Figure 7. Flowchart of Drift-free algorithm.
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2.3. Intelligent Techniques

Intelligent techniques are aimed to provide high performance in comparison to pre-
vious described ones. In this sense, the features are related to fast responses, overshoot
avoidance and low fluctuations in irradiance or temperature changes so that the operative
point can stay at the MPP [69]. In this section, the algorithms to be revised are fuzzy logic
control (FLC), particle swarm optimization (PSO) and genetic algorithm (GA).

2.3.1. Fuzzy Logic Control

FLC is based on the human experience rather than knowledge of the system’s math-
ematical model [70]. In this review paper, type-1 fuzzy (which structure is displayed
in Figure 8) sets are revised which mechanism comprises a fuzzification, an inference
and a defuzzification block [71]. The fuzzification role is to map the inputs to a fuzzy
variable [72]. Later the inference block is where the real data from an expert takes places
through membership rules within if-then statements [73]. Finally, the output takes places
in a defuzzification process where the linguistic rules of the inference are translated into
numerical crisp values [74].

The authors of [75] showed (through a simulation case) that FLC combined with
P&O is capable of dealing with drifting. In real-time systems, Bakkar et al. made an
implementation in a commercial PV [76]. In this case, they used a commercial PV with a
flyback converter, commonly employed for low power applications [77]. Results of this
experiment showed that the stability and fast response could be achieved.

The mentioned features of FLC allows concluding that a main advantage of this
approach is that a mathematical model is unnecessary for the control tuning since it can
be based on trial and error made by the designer [78]. Disadvantages are dependant on
the available computational resources since the requirements will be higher as long as the
number of rules are higher [79]. An example of this is with adaptive neuro-fuzzy inference
system (ANFIS) which is a fuzzy approach based on neural networks [80]. In this latter,
an improved simulation results were obtained for an MPPT approach in a PV system.
Nevertheless, the computational costs are too high for implementation in real-systems [81].

Figure 8. FLC Structure.

2.3.2. Particle Swarm Optimisation

This stochastic method was developed on basis of the biological behavior of fish and
bird flocks during travel when they are seeking food [82]. The animals are represented
by multiple particles that are looking for a suitable path while they exchange information
about the search among themselves [31]. Therefore, each particle position converges to a
particular solution for a right path which are all evaluated and the best particle experience
(Pbest) within the best global one (Gbest) [83]. Equations (3) and (4) are the mathematical
representation for the velocity ∆X and position xi of each particle where k1 and k2 are the
cognition coefficients to accelerate the particles to the suitable paths [84]. The parameter
ω is called the inertia weight whereas r1 and r2 are arbitrary variables that belong in the
range [0, 1] [85].

xt+1
i = xt

i + ∆xt+1 (3)

∆xt+1 = ω · vt
i + k1 · r1 · (Pbest − xt

i ) + k2 · r2 · (Gbest − xt
i ) (4)
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In the case of a PV system, the particle position is considered to be the duty cycle of
the DC-DC converter and the velocity is the duty-cycle change [86]. The PSO algorithm
is used for solving complex problems and optimization through a simple procedure that
achieves high speed convergence [87]. However, one of the main issues is related to the
high probabilities to fall in a local optimal point [88]. Additionally, the implementation
in real time systems is complex since optimization algorithms require high computation
time [89]. A particular solution can be through offline tuning in a high fidelity model.
Al-Majidi et al. [90] provided this solution with a neural model trained with experimental
data. Parameters were obtained through PSO and later an experimental test was configured
to confirm the reliability of the strategy.

2.3.3. Genetic Algorithm

Based on Darwin’s natural principle, GA mechanics choose random potential solu-
tions within a compatibility criterion [91]. This heuristic search method chooses a random
generation for the creation of a later one and each is concerned with a fitness value [92].
There are two main operators for this case where the first one is the selection, in which
the procedure is to pick the best chromosomes (bad ones are neglected) that will propa-
gate a forward generation. The following operator is the reproduction that chooses two
chromosomes from an ongoing generation to obtain individual for a future generation [93].

The mathematical mechanics are described in Equations (5) and (6), where an objective
function f (x) is has constraints cj till the total number m as shown and a modification of
this function defined as P(x) [94]. The constant K penalises the influence the following
generation. As an example, the integral of the absolute error (IAE) can be a suitable
objective function for MPPT [95].

P(x) = f (x)(1 + K · C) (5)

C =
m

∑
i=1

cj (6)

The GA is capable of avoiding being stuck in local MPP as it works with condition
which can be related to this condition [96]. This implies that it is able to work under a
partial shadowing condition [97]. Nevertheless, this algorithm requires a huge amount
of computational resources due to the iterative and constrained calculation [98]. This can
also be mirrored at hardware implementation as in Attarmoghaddam et al. [99] where they
only implemented one GA module.

2.4. Other Techniques

In this section, additional techniques are summarized. The structures described in
this section are sliding mode control (SMC), which is as a robust controller widely used
in uncertain systems, and model predictive control (MPC), as a prediction-optimization
scheme. Since an error is involved in these schemes, the explanations were based on current
tracking to achieve the MPPT. The error is defined in Equation (7) where Impp and IPV are
MPP current and the PV output current, respectively.

e = IMPP − IPV , (7)

2.4.1. Sliding Mode Control

SMC belongs to a robust control category since it is capable of dealing with parameter
uncertainties, the design is simple and it has finite time convergence [100–102]. Based on
Kihal et al. [103], three steps are necessary to achieve a suitable design:

• Selection of a surface for the sliding motion.
• Control Law design.
• Guarantee the reaching condition.
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Equation (8) is the surface used for the following explanation. It is a proportional-
integral surface that should accomplish with the Hurtwitz condition to guarantee that the
error tends to zero when the system reaches a null value surface [104]. The parameter λ is
a design value that should be tuned during experiments.

s = e− λ
∫

e · dt. (8)

The control signal of a SMC is composed of an equivalent ueq and a switching term
usw, which are established in Equation (9). The first mentioned is achieved based on
the condition Ṡ = 0 [28]; the switching, which guarantees robustness, is expressed in
Equation (10).

u = ueq + usw (9)

usw = −c · sign(S). (10)

Based on the DC-DC boost converter model that was used in previous research [105],
obtaining the equivalent control signal implies that the surface derivative should be equal
to zero. Therefore, as the error was formerly expressed in Equation (7), and with the usage
of the system (gathered from the authors previous work [24], the equivalent control term is
achieved as follows.

ueq =
1

Vout
(Vout + L · İMPP + λ · L · e−VPV). (11)

In the experimental field, this method was tested in PV systems by authors of [106].
In this research, the authors implemented a SMC on a distributed MPPT that belonged to
an electrical grid. Outcomes showed a proper accomplishment of the MPP with a correct
control signal to avoid the system damaging.

Despite the mentioned advantages at the beginning of this section, disadvantages of
SMC are related mainly to the switching feature of this method. Chattering is one of the
most well-known disadvantages and it is caused because the switching is finite in real
systems and due to unmodeled dynamics [107]. This effect not only increases the energy
consumption of the system but also the actuators detriment [108].

2.4.2. Model Predictive Control

MPC is a method of constrained control that is based on the principles of feedback
structures and numerical optimization [109]. Through the usage of a system that is capable
of capturing the involved dynamics, MPC uses this tool to predict future states and select
an optimized control action that can accomplish a determined performance index and
defined constraints [110].

For this case, a discrete state-space model of the boost converter is obtained by means
of the forward Euler approximation [111] given in Equation (12). Therefore, the discrete-
time state-space model of the boost converter can be written as Equation (13).

x(k + 1) = (I + Ts A)x(k) + TsBd(k) (12)[
IPV(k + 1)
Vout(k + 1)

]
=

[
1 −(1− D(k)) Ts

L
(1− D(k)) Ts

C 1− Ts
RC

][
IPV(k)
Vout(k)

]
+

[
Ts
L
0

]
VPV(k) (13)

The designed MPC seeks for the error minimization among the predicted current
value and the desired reference. The future path of the states is achieved by the established
dynamical system which are controlled through the prediction horizon. In this case, it
was settled at a value of 2. The usage of Equations (14) and (15) allows the calculation
of the controlled variable IL at each time tk+2. Thus, a cost function is associated with
this objective which can be achieved through the numerical reduction of J, expressed in
Equation (16). Since the authors applied an MPC in previous works, further mathematical
details can be found in [112].
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IPV(k + n + 1) = IPV(k + n)− (1− D(k + n))
Ts

L
Vout(k + n) +

Ts

L
VPV(k + n) (14)

Vout(k + n + 1) = (1− D(k + n))
Ts

C
IPV(k + n) + (1− Ts

RC
)Vout(k + n) (15)

Jn=0,1&m=0,1
s=m = ω1 ∗ |Ipv,s=m(k+2) − IMPP|+ ω2 ∗ Js=n (16)

In terms of implementation, it was found that this method was implemented for a
PV grid system by authors of [113]. They used an MPC, which was contrasted against a
PID and outcomes displayed an increment of performance even during the appearance
of disturbances.

MPC advantages are related to its robustness because it is capable of dealing with
constraints and uncertainties [114]. Additionally, as it depends on a mathematical system,
it is an intuitive method [115]. Nevertheless, since several operations are being performed
at the same time such as optimization and prediction, this method is very sensitive to time
parameters (like prediction horizon) because it can increase dramatically the computational
time [116].

2.5. A Brief Resume of the Reviewed Techniques

Previous analysis settled to conclude a brief summary of MPPT techniques. The assets
and weaknesses of each structure of the mentioned frameworks are concise in the follow-
ing Table 1. Nevertheless, extra details were obtained in the following sections where
experiments were performed in a real PV system.

Table 1. Summary of advantages and disadvantages of the analyzed MPPT algorithms.

MPPT Technique Advantages Disadvantages

Mechanical • Increase dramatically the performance • High cost
• Better for industrial environments

FOCV & FSCC • Easy to implement
• Low computational resource

• Only for a linear approach
• High innacuracies due to the proportional

constant variations

P&O • One of the most used algorithms for MPPT
• Simplicity

• Oscillations when the MPP is reached
• Difficulties to achieve the MPP when weather

conditions are unstable

INC • Higher accuracy than P&O • Tuning trade-off related to system dynamics
and accuracy of the steady-state

INR • Works based on the current charge • Reference change induce a complex task to ob-
tain the suitable scale factor

Drift-free • Based on P&O for drift reduction effect
• Low power power consumption

• Can deal with unexpected irradiance variations
• Load variation effect cannot be controlled

FLC
• There is no need for a mathematical model
• Tuned based on human knowledge of

the system

• High computational resources when the
number of membership function increase

PSO
• Simple for solving complex problems

of optimization
• High speed convergence

• Complex implementation in hardware
• Risk of falling in a local MPP

GA • Avoids the risk of falling a local MPP • Higher complexity than PSO for
hardware implementation

SMC
• Well known for its robustness
• Capability to deal with parameter uncertainty
• Finite time convergence

• Unavoidable chattering phenomenon

MPC • Robust control when uncertainties are present
• Intuitive method

• Very sensitive to prediction parameters,
specially for implementation in hardware
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3. Experimental Case Study

In this section, four different MPPT algorithms were implemented and studied in a
real PV system. The selection of the algorithms was based on the review previously made.
In this sense, from the HC techniques, we selected the most used one that is P&O) which
was compared with FLC, SMC, and MPC. Offline was not considered to be sufficient as
non-linearities were expected during the experiments. Since SMC and MPC required a
reference current/voltage that corresponded to the MPP, this was obtained via different
techniques of previous works [117–123]. However, most of these approaches have a lack
of accuracy which results in a low tracking efficiency. In this work an artificial neural
network (ANN) was designed to obtain the reference current IMPP that corresponded to
the MPP. First, different structures such as feed forward (FF), radial basis (RB), deep FF,
etc., were tested to obtain an accurate prediction of IMPP. However, a recurrent neural
network (RNN) was finally selected since it provided high accuracy for both training and
validation performance.

3.1. Hardware Description

The hardware workflow involved in the experiments is shown in Figure 9. The PV
panel was a commercial type manufactured particularly for residential and small industrial
installations. The technical information of this device is listed in Table 2. Regarding the
power converter, a DC-DC high step up type TEP-192 manufactured by the research group
of Huelva University (Spain) was used. This hardware is an adaptation stage circuit
that is inserted between the load and the PV generator. It is usually desired not only for
boosting the PV low voltage, but also to provide regulated output voltage for end use.
The characteristics of the device used in this work are provided in Table 3. To test the
performance of the controllers, a programmable load resistance type 8500B manufactured
by BK Precision Corporation (Yorba Linda, CA, USA) was used. The technical specifications
of this device are listed in Table 4. A MicroLabBox dSPACE DS1202 (DT Techsolutions
Pte Ltd., Singapore CITY, Singapore) also was used for the acquisition and control signal
generation. This device has various channels for the communication with the host PC and
the converter. The configuration of these channels can be made via its real-time-interface
libraries. Additional equipment such as the irradiation and temperature sensors, as well as
the ControlDesk software for the visualisation, were also used in the experiments.

Figure 9. Implementation architecture of the MPPT controller.
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Table 2. Technical data of PEIMAR SG340P.

Properties Value Unit

Dimensions 156 × 156 mm
Open circuit voltage 45.2 V

Maximum power 340 W
Max power current 9.28 A
Max power voltage 36.7 V

Number of series cells 6 unit
Number of parallel cells 12 units

Isc 9.9 A

Table 3. TEP-192 Details.

Properties Value Unit

Switching frequency 20 kHz
Maximum input current 30 A
Maximum input voltage 60 V

Maximum output current 30 A
Maximum output voltage 250 V

Table 4. BK 8500B Specifications.

Properties Value Unit

Power 300
Rated Current 15 A
Rated Voltage 500 V
Input Current 0–15 A A
Input Voltage 0–150 V

Resistance range 0.05–10 Ω

3.2. Recurrent Neural Network

A RNN is a class of artificial neural networks that uses information from the previous
iteration to ameliorate the performance of the NN in current and future inputs. In compari-
son with other networks, it can be said that RNN is unique because is the only network that
contains a hidden state (memory) and loops. This structure allows the RNN to store past
information in the hidden state and operate on sequences. In other words, it gets part of its
output as an input for the next time step. These features are well suited for solving different
problems with sequential data of varying length. Different RNN architectures, such as fully
recurrent (FRNN), long short-term memory (LSTM), gated recurrent units (GRUs), etc.,
were introduced in recent decades. Due to its simplicity, the RNN configuration were used
in many filtering and modeling applications. The hidden layer and the output of the RNN
can be calculated using Equation (17).

ht = σh(Whxt + Uhht−1 + bh) (17)

yt = σy(Wyht + by) (18)

where xt, ht, yt, are, respectively, the input vector, the hidden layer vector, and the output
vector; W, U, and b, are parameter matrices and vector; σh and σy are activation functions,
respectively, given in Equations (19) and (20).

σh(x) =
2

1 + e−2x − 1 (19)

σy(x) = x (20)

To train the RNN model, we selected the temperature and irradiation as two input fea-
ture vectors while the output is the reference current vector Impp that corresponds to the on-
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going of the MPP. The dataset used in this work contains 796 normalized samples where 70%
was used for the training, 15% for the validation and 15% for the test. Different training algo-
rithms were checked so as to obtain an accurate model. Finally, we set the configuration of
the LRN with the following parameters: training algorithm = Levenberg-Marquardt (LM),
learning rate = 0.1, hidden layers = 2, neurons = 41, maximum epochs = 5000. The training
performance was measured using mean square error (MSE, defined in Equation (21)),
where the error is the difference between the predicted output and the target, and N is the
number of training data. The predicted output, the target and the error are presented in
Figure 10.

MSE =
1
N

N

∑
i=0

(ei)
2 (21)

Figure 10. Predicted outputs results.

The performance of the trained model can be analyzed using the regression values
presented in Figure 11; where R represents the output-target relationship, which is ranged
between 0 and 1 (0: low accuracy, 1: ideal accuracy). According to Figure 11, it is clear that
the obtained RNN model is characterised by high prediction accuracy since the R values
for training, validation and test are, respectively, equal to 0.99566, 0.99521 and 0.9936.

The characteristics of the current corresponds to the MPP for each temperature and
irradiation, which are plotted in Figure 12. According to this figure, it is noticeable that the
highest currents (yellow area) are found at high irradiation and low temperature, a reduction
in the current can be occurred via an increase in temperature or via a decrease in irradiation.
Moreover, the results from this figure show that the current is hardly affected by the irradia-
tion in comparison with the temperature. Hence, for a constant irradiation and by increasing
the temperature from 0 ◦C to 50 ◦C, the current of the maximum power is decreased around
2 A. On the other hand, for a constant temperature and by decreasing the irradiation from
900 W/m2 to 100 W/m2, the current of the maximum power is decreased around 7 A.
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Figure 11. Performance analysis of the predicted LRN model.

Figure 12. Irradiation− Temperature− Current characteristic surface of the MPP.
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4. Results
4.1. PV Characteristics

The characteristic curves of the SG340P panel are shown in Figure 13; where the
voltage-current features are presented in (a) and the voltage-power characteristics are
displayed in (b). These curves were obtained by feeding the duty cycle signal of the boost
converter with a triangular signal while maintaining the output resistance load constant.
This is a consequence of varying the input voltage of the boost converter which implies to
alter the PV voltage. The characteristics were recorded in an environment of temperature
and irradiation between 10.5 ◦C and 37.8 ◦C and from 193 W/m2 to 808 W/m2, respectively.

Figure 13. PV panel characteristic curves: (a) voltage-current; (b) voltage–power.

4.2. P&O Results

The results of the P&O tracking method applied for the SG340P panel are presented
in Figures 14 and 15, where the irradiation, temperature, load resistance, duty cycle and
current signal are, respectively, displayed from (a) to (e) in Figure 14; while the PV voltage
signal, PV power, boost converter current, voltage and power, are, respectively, unveiled
from (a) to (e) in Figure 15. A resistance load change was configured with a period of 120 s
Figure 14c shows. The amplitude was configured in a square change from 30 Ω to 35 Ω that
stayed constant for a certain time. Later, during the decrease, the change was from 35 Ω to
30 Ω. The schedule was configured with the aim of testing the algorithm performance at
unexpected and complex disturbances. Several other unexpected effects such as sudden
variation of the sun irradiation, which is resulting from the transitory cloud, are presented
in Figure 14 as well. This variation directly affects the PV performance as can be seen at
t = 570 s of Figures 14e and 15b,d,e.
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Figure 14. MPPT based on P&O: (a) Irradiation (W/m2); (b) Temperature (◦C); (c) Load resistance (Vout/Iout); (d) Duty
cycle; (e) PV current.

Figure 15. MPPT based on P&O: (a) PV voltage; (b) PV power; (c) Boost converter output current; (d) Boost converter
output voltage; (e) Boost converter output power.
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Figures 14 and 15 also reveal the behaviour of the P&O when facing unexpected
load variation. Hence, it is clearly that the controller shows robustness for both load
variations. However, chattering phenomenon with an amplitude of 0.3 A is also noticed in
Figure 14e. This implies that some amount of the extracted power will be lost. Regarding
to the performance of the boost converter, it is noticed that the output power (shown
in Figure 15e) was reduced in comparison with the PV extracted power (displayed in
Figure 15b). Actually, this is a usual behaviour since the converter was designed to deliver
higher power, which implies that it will not be efficient at low power operation.

4.3. SMC Results

The results of the MPPT tracking method based on a combination of SMC and RNN are
presented in Figures 16–18. Certainly, the irradiation and temperature are different to the
previous weather condition since the experiment was performed in diverse surroundings.
The load resistance variation values which exhibited in Figure 17a were set the same as
the previous P&O experiment. One advantage of the SMC is its implementation simplicity
since it does not need high human skills.

Figure 16. MPPT based on RNN and SMC: (a) Irradiation (W/m2); (b) Temperature (◦C); (c) PV current; (d) PV voltage;
(e) PV power.
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Figure 17. MPPT based on RNN and SMC: (a) Load Resistance (Vout/Iout); (b) PV current; (c) PV voltage; (d) PV power.

Figure 18. MPPT based on RNN and SMC: (a) Duty cycle; (b) Error; (c) Boost converter output current (Iout); (d) Boost
converter output voltage (Vout).
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With regards to the PV controlled outputs, which are presented in Figure 17b–d,
the first feature that can be highlighted over the P&O algorithm is the chattering reduction.
This is clearly visible in Figure 17c where the amplitude is almost 1 V and it is almost 2 V
with the case of the P&O algorithm. This phenomenon cutback is also clearly presented
in the duty cycle signal which is depicted in Figure 18a, where the reduction is up to
70% in comparison with the duty cycle signal of the P&O which presented in Figure 14d.
In reality, the SMC shows less chattering than the presented amplitudes because part of
these amplitudes came from the chattering in the reference (Figure 16c,d) that generated
by the RNN model. Another feature that should be highlighted is the robustness of the
SMC. This latter faces the sharp load variations with high robustness since it forces the
controlled signal to converge to the desired values with less than 1 s. Finally, it is important
to mention that the SMC designed in this work is an error-based controller whereas the
P&O is perturbation-based. The acquired error values of the SMC algorithm are displayed
in Figure 18b, where the chattering amplitude of this scheme still its main drawback.

4.4. FLC Results

The results of the implementation of FLC and RNN for MPPT are presented in Figures 19–21.
The atmospheric conditions (irradiation and temperature) that supplied the RNN model
are reflected in Figure 19a,b. The predicted MPP current Impp, MPPT voltage VMPP and the
maximum power Pmax are, respectively, displayed in Figure 19c–e.

Figure 19. MPPT based on RNN and FLC: (a) Irradiation (W/m2); (b) Temperature (◦C); (c) PV current; (d) PV voltage;
(e) PV power.
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Figure 20. MPPT based on RNN and FLC: (a) Load Resistance (Vout/Iout); (b) PV current; (c) PV voltage; (d) PV power.

Figure 21. MPPT based on RNN and FLC: (a) Duty cycle; (b) Error; (c) Boost converter output current (Iout); (d) Boost
converter output voltage (Vout).
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The performance of the FLC for tracking the Impp, generated by the RNN model, is
exhibited in Figures 20 and 21. Initially, in comparison with the previous MPP tracking
controllers, FLC performs better in terms of chattering reduction since the current ripple
amplitude is less than 0.1 A as displayed in Figure 20b. This is also clearly presented in
the voltage signal of Figure 20c which is almost vanished in comparison with the chat-
tering voltage of the previous controllers. The ripples that appears in the load resistance
of Figure 20a are consequence of an electrical relation of the output current and voltage
(Figure 21c,d) since the programmable resistance lacks direct measurement. One disad-
vantage of the FLC found in the experiments when compared to the previous tracking
controllers was its lack of robustness when facing sharp load variations. Hence, for both
increasing and decreasing the load resistance, it takes around 10 s to reach the desired
tracking value.

4.5. MPC Results

The results of the MPC tracking method are presented in Figures 22–24. Figure 22
exhibits the irradiation, temperature, predicted current, voltage and power that correspond-
ing to the MPP, while the performance of the MPC for tracking the Impp are exhibited in
Figures 23 and 24. Despite that the experiments with the MPC were conducted under wide
variation of irradiation, Figures 22 proves the effectiveness of the RNN model to track
Impp. Hence, it is clearly presented in Figure 22c that the predicted current fluctuates in the
same way as the irradiation signal (displayed in Figure 22a). Moreover, the characteristic
of the predicted power shown in Figure 22d is equivalent with the characteristic of the
MPP previously shown in Figure 13. For instance, at t = 50 s, the values extracted from
Figure 22 for irradiation, temperature, current, voltage and power, are almost equal to the
MPP characteristic values of the orange curve of Figure 13.

Figure 22. MPPT based on RNN and MPC: (a) Irradiation (W/m2); (b) Temperature (◦C); (c) PV current; (d) PV voltage;
(e) PV power.
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Figure 23. MPPT based on RNN and MPC: (a) Load Resistance (Vout/Iout); (b) PV current; (c) PV voltage; (d) PV power.

Figure 24. MPPT based on RNN and MPC: (a) Duty cycle; (b) Error; (c) Boost converter output current (Iout); (d) Boost
converter output voltage (Vout).
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Regarding the demeanor of the MPC, it shows slight chattering reduction in contrast
with P&O and SMC, while performing with high robustness in comparison with FLC.
Hence, it takes only around 1 s as a response time when facing unexpected load variation.
The performance of the MPC may not be so clear due to the high fluctuations of the
irradiation which implies large variations in the PV outputs. However, the robustness
and the high accuracy are clearly proven via the generated error signal which reflected in
Figure 24b.

4.6. Comparison Results

To obtain high control performance, different metrics including integral of the absolute
error, root-mean-square-error, relative root-mean-square-error and efficiency, were used in
the experiments where the error signal should be reduced to improve the tracking accuracy.
As a result, these metrics were minimized by tuning the corresponding gains for each
controller, and therefore, the metrics in terms of error were determined during a period
of two load variations. The obtained values for each metric are listed in Table 5.

According to these results, the IAE revealed an expected improvement for the MPC
algorithm where the SMC and P&O showed values of 2.28 and 2.58 times higher than the
FLC and values of 9.63 and 10.93 times higher than the MPC. For the RMSE and RRMSE
metrics, the reflection has the similar trend for the same period. The MPC provides an
RMSE and RRMSE of 0.0407 and 0.9088, whereas the FLC, SMC and P&O downgraded
the performance of the RMSE to 0.1468, 0.2985 and 0.3369, and the performance of the
RRMSE were downgraded to 3.0169, 4.0103 and 5.8871, respectively. Finally, the efficiency
percentages of the tracking performance between the desired and actual maximum power
showed that the MPC provides efficient results with 0.78% better than the FLC, 2.15% better
than the SMC, and 2.27% better than the P&O.

Table 5. Comparison of the different metrics.

Algorithm IAE RMSE RRMSE Efficiency

P&O 16.1346 0.3369 5.8871 96.14%
SMC 14.2260 0.2985 4.0103 96.26%
FLC 6.2390 0.1468 3.0169 97.63%
MPC 1.4758 0.0407 0.9088 98.41%

5. Discussion

This review article presented an analysis of several types of MPPT methods for PV
systems linked to a DC-DC boost converter. This is an important and cutting-edge topic
since it allows to provide the maximum performance of energy conversion in solar cells,
which are widely used as an efficient renewable energy.

In the first part, it was seen that there are two main categories of MPPT, mechanical
and electrical. An initial option are mechanical ones which are far better for industrial envi-
ronments, although the initial investment is high. Nevertheless, in alternative situations,
the MPPT can also be achieved through a control law that can be designed for a DC-DC
boost converter that provides a PWM signal. In this sense, four categories were analyzed
based on previous studies. Offline techniques such as FOCV and FSCC are the most simple
to implement since these are based on linear approximations. Nevertheless, PV systems
tend to have nonlinear behaviour because of the weather conditions (like temperature,
irradiation and shadowing) that vary along each day.

A further step was analyzed in the HC algorithms (P&O, INC and INR) which prin-
ciple is to locate the MPP by means of the power-voltage slope sign. Despite that the
implementation and computational requirements are simple and low, the major disadvan-
tage resides on the problems due to partial shadowing. The latter effect produces local MPP
and the algorithms tend to fall in this place rather than in a global one. Furthermore, other
issues are related to sudden changes in the load in advanced algorithms like Drift-Free,
which is its weak-point.



Energies 2021, 14, 7806 25 of 31

Intelligent techniques can be capable of dealing with previously mentioned downsides
of HC algorithms. PSO is a stochastic process that is capable of dealing with complex
problems through a simple optimization and fast convergence. A problem found in the
literature review of this method is the risk of falling in a local MPP. A similar approach
studied was GA, which is based on biological principles of evolution; this frameworks is
capable of avoiding the local maximum issue. Nevertheless, because PSO and GA are opti-
mization methods, they require high computational resources in the case of implementation
in hardware. Another intelligent technique analyzed was FLC, of which the principle is
rather based on the designer’s experience, which provides a tuning from the knowledge of
the system. Nevertheless, the deficiency of this technique arises whenever the membership
functions need to be increase and this induces a high load in the computational resources.

Other common control techniques were reviewed, such as SMC and MPC. Despite the
chattering issue which generates energy consumption and reduces the lifespan of actuators,
it was found that SMC is a robust strategy when system uncertainties are present. The last
analyzed approach was MPC, which a model-based controller that is capable of generating
a control action from an optimization gathered from future predictions and constraints.
Major disadvantages of the latter are related on the numerical capabilities of a hardware to
compute the optimization.

After the revision of several algorithms for MPPT, four of them were chosen to
be implemented in an experimental PV platform with commercial hardware. Since the
weather conditions varied for every experimental test, the analysis of each was performed
individually without a graph overlapping. The tests were also carried with variable
load to check each controller capabilities. P&O was the first to be implemented as one
of the most used ones in industry; its efficiency for robustness at load variations was
demonstrated, but it also showed chattering and had difficulties to deliver low-power.
The second implementation was carried with SMC which was easy to embedded and
out-came with enough robustness, although the chattering was significant. The third try
was with FLC, which was capable of showing a reduction of power consumption as a
consequence of chattering decline. Nevertheless, the disadvantages appeared with the
robustness deficiency at the disturbance change due to the variable load. The last tested
controller was MPC which was known by the authors due to previous experience. In this
sense, the results showed outstanding performance in resemblance to the former structures.
With a simple configuration that could avoid the computational saturation of the hardware,
the outcomes displayed high accuracy and robustness.

For future perspectives as guidelines, the authors expect to test different designs in
order to enhance the obtained structures. A testing of the hardware capabilities in terms
of the MPC can be performed, although this can induce delays and damage risks in the
equipment. Linked to previous suggestion, the implementation of optimization algorithm
such as PSO or GA can be performed but with certain limitations in computational resources.
Additional tests such as Hammerstein-Wiener nonlinear system identification tools or
nonlinear auto-regressive exogenous models can be used as alternatives to ANNs.

6. Conclusions

In this review article, different methods of MPPT were revised. Theoretical and experi-
mental perspectives were established and contrasted based on assets and drawbacks. These
were analyzed based on computational requirements and easiness of implementation,
according to previous carried out research. From this perspective, we conclude that:

• Mechanical MPPTs as sun-trackers have a high cost, which makes these strategies
suitable for industrial environments rather than domestic.

• Offline-based algorithms are decent when low computational resources are available,
although it is a linear approach.

• Hill-climbing methods are the most used ones in real application, despite that shadow
and drifting are main concerns to tackle.
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• Intelligent techniques are very sensitive consume high computational resources, de-
spite that they can be able to reject issues such as local MPP falling or drifting.

• The SMC algorithm is a mainly robust approach which can provide suitable results
but at the cost of high chattering risk. MPC is a reliable strategy as it is capable of
predicting the future state but its sensitivity resides on the time parameters which
could affect the hardware limitations.

• Under the weather conditions available during experiments and available hardware,
it was shown that MPC under a simple settle, it can provide the best results in
comparison with P&O, FLC, and SMC.
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FOCV Fractional open-circuit voltage
FSCC Fractional short-circuit current
HC Hill climbing
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INC Incremental conductance
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DF Drift-free
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RB Radial basis
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