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Abstract: This paper is interested in implementing and controlling a modified six-phase induction
motor (MSPIM) when fed from a three-phase supply either via an inverter or with a direct grid
connection loaded by a centrifugal pump. The main aims of using the MSPIM are to enhance
motor reliability and reduce torque pulsation. A three-to-six phase transformer has been designed,
implemented, and employed to enable the SPIM to be driven from a three-phase supply. It is
preferable to use the three-to-six phase transformers integrated with three-phase inverter on using
the six-phase inverter to generate lower values of harmonics and lower steady-state error of speed
and reduce the starting current and because also it isolates the primary circuit from the secondary,
and the cost will be lower compared to the design of a special six-phase inverter. Dynamic models
of SPIM, three-to-six phase transformer, and three-phase variable speed drive are derived. Then, a
scalar (V/F) closed-loop control of SPIM is employed, and the results are discussed. Fine-tuning
of PID controllers is used to keep the motor speed tracking the reference value. A low pass filter is
connected to reduce the ripple of voltage and current waveforms. An experimental setup has been
built and implemented to check the possibility of controlling SPIM by a variable speed drive system
fed from a three-to-six phase transformer. It is found that the proposed method can be effectively
used to drive the SPIM from a three-phase supply.

Keywords: PWM; six-phase induction motor; harmonic distortion; three-and six-phase transformers

1. Introduction

Induction motors (IM) are the most employed machines in the market, particularly in
fixed-speed applications. They occupy about 70% of the employed electric machines [1–4].
It is because they can work directly online and with inverters [5]. Further, they do not use
rare-earth magnets, and thus they have a cheap cost. Standard induction machines are of
three-phase configuration due to the high availability of three-phase grids.

The six-phase induction motor is characterized by improving the torque density
and fault tolerance capabilities to reduce losses and improve the motor performance [6].
Multi-phase machines are gaining interest in several industrial applications, e.g., pumps,
compressors, etc. [7–10].

Some researchers [11–13] introduced the multi-phase systems over six phases to verify
the advantages of these systems compared to traditional ones. However, increasing the
number of phases also increases the size of the inverter and complicates the associated
control systems [14].

Among multi-phase systems, six-phase induction machines have been proposed in
the literature [13]. It is because they can be rewound using existing standard three-phase
stator frames. In [1,15], a comparison between three-phase and six-phase induction motors
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is given, both in a simulation environment and experimental laboratory tests. It is shown
that the six-phase induction motors have higher torque density, increased speed stability,
and reduced core losses [16,17].

However, to drive a six-phase induction motor, a six-phase inverter with a suitable
control system is required, which increases the cost and complicates the system [18–21].

One advantage of induction machines is that the speed can be varied easily, either us-
ing open or closed-loop techniques. It makes this machine preferable in several applications
where simplicity and reliability are key elements [22].

There are three types of IM controlling: the first type is (V/F) control, which aims
to maintain constant magnetic flux at the rated value in the induction motor [23–26], the
second is the flux vector method that was developed to control the magnitude of the
ac voltage, and vector [20,27], and the third is sensorless vector control to modify the
amplitude, frequency, and phase of the drive voltage [28–30].

Phase conversion is needed in some high current applications, such as induction
furnaces where a two-phase source is used. As such, a three-phase system in the utility
grid is available. The higher the number of phases, more than three-phase supply is needed
to supply the higher number of phases motor for operating or for testing [31–33]. The
conversion from a three-phase source to a six-phase system is needed in AC/DC power
electronic converter supply [34].

The six-phase source can be obtained from the three-phase system; three equal single-
phase transformers are wanted with two coils in the secondary [35–39]. A pure sine wave
six-phase fixed voltage and frequency is needed from a three-phase supply [40].

This paper proposes a drive system for the modified six-phase IM for both variable
and constant speed applications. In variable speed applications, the conventional three-
phase inverter is connected to three single-phase primary and two secondary transformers.
The three-to-six phase transformer is used to feed the modified six-phase motor [41]. The
scalar V/F closed-loop scheme is used to control the speed of modified six-phase motor. In
the case of constant speed applications, the inverter is not used where a three-to-six phase
transformer is sufficient.

The structure of this paper is organized as follows: Section 1 presents the introduction,
paper organization, and literature review. Section 2 presents the modeling of the three-to-six
phase transformers. Section 3 presents the modeling of the three-phase inverter. Section 4
presents the modeling of the modified six-phase IM. Section 5 presents the control scheme
that depends on the closed-loop control system. Section 6 presents the implementation of
a six-phase IM operation from a three-to-six phase transformer fed from the three-phase
variable speed drive. Finally, Section 7 concludes the outputs of the findings of this work.

2. Modelling, Winding Arrangement, and Calculation of Six-Phase Transformer

Three different transformers A, B, and C are built, each having one primary coil and
two secondary coils; the three coils of the primaries are star-connected, while the six coils of
the secondary side are coupled in a unique way to produce a star output. Figure 1 depicts
the connection schematic of the primary and secondary windings to produce a three-phase
star in primary and a six-phase star connected in secondary.
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Figure 1. Three-to-six phase transformer connection.

The balanced output phase voltage (with phase angles of 60◦ between each phase) is
calculated using specified turn ratios. The following equation gives the input–output relation:

Va
Vb
Vc
Vd
Ve
Vf

 =



1 0 0
0 0 −1
0 1 0
−1 0 0
0 0 1
0 −1 0


 VA

VB
VC

 (1)

The major coils are denoted by the letters A, B, and C, whereas the subsidiary coils are
denoted by the letters a, b, c, d, e, and f. The fundamental sum of the waveform’s magnitude
and angle serves as the mathematical foundation for this connection. Figure 2 depicts the
phasor relationship between three-phase input voltages and six-phase output voltages in
60◦ system.

Three-phase supply voltage equations are given by:

VA = Vm sin(ωt) (2)

VB = Vm sin(ωt − 120◦) (3)

VC = Vm sin(ωt − 240◦) (4)

The output phase voltages of transformer A are:

Va = Vm sin(ωt − 0◦) (5)

Vd = Vm sin(ωt − 180◦) (6)

The output phase voltages of transformer B are given by:

Vc = Vm sin(ωt − 120◦) (7)
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Vf = Vm sin(ωt − 120◦ − 180◦) = Vm sin(ωt − 300◦) (8)

Finally, the output phase voltages of transformer C are:

Ve = Vm sin(ωt − 240◦) (9)

Vb = Vm sin(ωt − 240◦ − 180◦) = Vm sin(ωt − 60◦) (10)
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3. Modeling of Three-Phase Inverter

A three-phase inverter with an appropriate pulse width modulation (PWM) approach
may create a sinusoidal waveform by adjusting the V/F ratio to regulate the induction
motor speed. The three-phase PWM inverter is shown in Figure 3a [42–44]. The circuit of
the three-phase PWM inverter is shown in Figure 3b.
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Summing Equation (11) gives:

vno =
1
3
(vao + vbo + vco) (12)

Merging (11) and (12) leads to: van
vbn
vcn

 =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 vao
vbo
vco

 (13)

4. Model of Six-Phase Induction Motor

The six-phase squirrel cage induction motor winding consists of two three-phase
groups, where 60◦ electrical can be expressed as asymmetrical six-phase machine [45].

The symmetrical six-phase supply voltages of six-phase IM are expressed as [18,44]:

vas = Vm sin(ωt)
vbs = Vm sin(ωt − π

3 )
vcs = Vm sin(ωt − 2π

3 )
vds = Vm sin(ωt − 3π

3 )

ves = Vm sin(ωt − 4π
3 )

v f s = Vm sin(ωt − 5π
3 )

(14)

The voltage d-q axis Vd, Vq component can be reformulated as [46]:

Vq =
2
6

[
6

∑
k=1

vk cos(θ − (k − 1)π
6

)

]
(15)

Vd =
2
6

[
6

∑
k=1

vk sin(θ − (k − 1)π
6

)

]
(16)

The q-axis of stator flux ψqs and rotor flux ψqr is represented as [15]:

ψqs =
i
s

[
Vqs −

Rs

Ls

[
ψqs − Lmiqr

]
− ωeψds

]
(17)

ψqr =
i
s

[
−Rr

Lr

[
ψqr − Lmiqs

]
+ (ωr − ωe)ψdr

]
(18)

where Rs is the stator resistance, Rr is the rotor resistance, Lm magnetizing inductance,
Ls stator inductance, Lr rotor inductance, iqr q-axis rotor current, iqs q-axis stator current,
d-axis of rotor flux ψdr and stator ψds flux is expressed as [40]:

ψds =
1
s

[
Vds −

Rs

Ls
[ψds − Lmidr] + ωeψqs

]
(19)

ψdr =
1
s

[
Rr

Lr

[
ψqr − Lmids

]
+ (ωe − ωr)ψqr

]
(20)

where idr d-axis rotor current, ids d-axis stator current.
The developed torque Te and speed ωr equations are obtained as [15]:

Te =
6
2

[ p
2
[
ψdsiqs − ψqsids

]]
(21)

ωr =
p
2

1
s

[
1
J

(
Te − TL − B

2
p

ωr

)]
(22)
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nr =
2
p

60
2π

ωr (23)

where p is the number of poles, TL load torque, J is the total moment of inertia, B is the
Friction coefficient, and nr is the mechanical speed.

The centrifugal pump model can be described by the relation between the head H as a
function of motor speed and pump discharge Q [1].

H = a0ω2
r + a1ωrQ + a2Q2 (24)

where a0, a1, and a2 are the pump head coefficient. The centrifugal pump torque Tp and
hydraulic power Ph can be calculated, respectively.

Tp = krω2
r + Ts (25)

Ph = QρgH (26)

where ρ is the fluid density, g is the acceleration due to gravity, kr and Ts are the pump
torque constant.

5. Proposed Control Strategy

The speed control V/F closed-loop type is distinguished by its good accuracy and
simplicity of tracking the reference speed [47–49]. The proposed PID control strategy is
used to emulate a closed-loop controller to maintain the modified six phases IM following
the reference speed. Figure 4 shows the schematic diagram of the proposed scalar control
(V/F) system of a three-phase inverter fed to a three-to-six phase transformer loaded by the
six-phase IM. The slip speed instruction is generated by the speed loop fault through the
proportional–integral controller and limiter. The slip frequency ω* instruction is created
by adding the slip speed ωs* to the rotor speed. The voltage references are generated by
the slip frequency references using a V/F calculation. The slip frequency ω* is increased,
resulting in a positive error, and the slip speed ωs* is adjusted to its maximum. The increase
of slip frequency ω* giving a positive error and slip speed ωs* is adjusted at its maximum.
The motor accelerates at the maximum inverter current, delivering the maximum torque
feasible, to reduce the speed error to minimum value. Finally, the inverter is steady on a slip
speed where the load torques and motor torque are equal. The decrease of slip frequency
ω* giving a negative error and slip speed ωs* is adjusted at its maximum negative. The
motor decelerates at the maximum inverter current, delivering the maximum braking
torque feasible, to reduce the speed error to minimum value. Finally, the inverter is steady
on a slip speed where the load torques and motor torque are equals.
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6. Implementation of Six-Phase Induction Motor
6.1. Experimental Setup

The system under study is composed of six main interacting components, as shown
in Figure 5.

(1) Control board stage (three-phase inverter).
(2) Power stage.
(3) Design and implementation of 3300 VA, 220/220 V, prototype three-to-six phase

transformer [41].
(4) A3-hp, 380 V, 2-pole three-phase IM prototype modified six-phase induction motor [41].
(5) Measuring instruments.
(6) Electrical break (centrifugal pumping load).
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Faculty of Engineering, Electrical Engineering Department, Kafrelshiekh University.

6.2. Studied Cases

To investigate the proposed constant V/F speed (scalar) control method, the whole
drive system was simulated using Matlab/Simulink package. The results were compared
with experimental measurements obtained using a laboratory setup. Five cases were
proposed to simulate the different operating conditions as shown in Table 1. The three-
to-six phase transformer rated values are given in Table 2. The parameters of modified
six-phase IM are given in Table 3. The speed is achieved with the hand-tuning of the
PID controller.

Table 1. Studied cases.

Period No.
Period (min.)

Description
From To

1 0 0.35 Starting instant

2 0.35 1 Rated operation (2800 rpm)

3 1 2 Low-speed operation (2000 rpm)

4 2 3 More speed reduction (1000 rpm)

5 3 4 Rated operating period (2800 rpm)
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Table 2. The proposed transformer test reading.

Values Reading Values Reading

Vin (V) 220 Vo1 (V) 220

Vo2 (V) 220 I (A) 5

Table 3. Six-phase induction motor parameters.

Parameter Value Parameter Value

Lls (H) 0.0409 Rr (Ω) 8.097

Lm (H) 0.849 J (kg·m2) 0.003

Llr (H) 0.0409 p (poles) 2

Rs Ω 12 Vph (V) 220

6.3. Simulation and Experimental Results

Figures 6–12 show the simulation results of the system under study. There are two
studies cases; the first case is the operation from a three-phase inverter and three-to-six
phase transformer (TITST), the second case is the operation using a six-phase inverter (SI).
Figure 6 shows the speed variation for both cases with PID (kp = 0.7, ki = 0.15, kd = 0.02).
This figure clearly shows the difference between the two cases in the response of the motor
speed to the changes that follow the reference speed, and this clearly shows in the fourth
period, where a decrease in speed occurs for the operating system with SI up to 240 rpm,
while in the proposed system it does not exceed 8 rpm.
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Figure 12. Torque–slip characteristics of the adapted six-phase induction motor.

The speed performance for both cases is close to the reference speed. The proposed
case performed better in terms of rise time, overshoot, and steady-state error. Figure 7
shows the simulation centrifugal pump torque of the five studied periods. The closed-loop
method has been validated for determining the required motor speed. The speed is very
close to the actual value, while at the lower speed in the transient period, the speed is firstly
oscillated and goes to steady speed with no oscillation.

Figures 8 and 9 show the simulation of harmonic contents of voltage and current
total harmonic distortion THD, respectively. The operation using TITST is better and gives
a smaller value of total harmonic distortion. Figure 10 represents the phase voltage of
different periods of operation for the two cases.

Figure 11 clearly shows that the simulation of stator current in the proposed system
increases to 5.2 A, while it increases to 5.72 A in the classic system; this means that using
a three-to-six phase transformer reduces starting current by 6.7%. In the second period,
the mean value is reduced to its rated value; these figures show that the TITST operation
reduces oscillation value, particularly in low-speed operation.

Figure 12 shows the torque slip characteristics of the six-phase induction motor, which
has a starting torque of 3.45 N.m. and maximum torque of 5.36 N.m. and the slip at
maximum torque is 0.29.

The results shown in Tables 4 and 5 validate the superiority of the TITST operation over
the operation using SI; the steady-state error in the case of using a transformer integrated
with a three-phase inverter in full speed period is 30 rpm while in the case of the six-phase
inverter is 55 rpm. The starting current in the case of using a transformer integrated with a
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three-phase inverter in full speed period is 5.2 A while in the case of the six-phase inverter
is 5.72 A. This means that the starting current is reduced by 9%, while the value of THD
content in stator voltage of TITST is 0.8 compared to 3% in the case of using SI. It means
that this proposed system will improve the voltage and speed profiles.

Table 4. Assessment of speed to TITST against SI controllers.

Period
Speed (rpm)

State TITST SI

1
Steady state error 30 55

Oscillation range 25 25

2
Steady state error 35 35

Oscillation range 30 25

3
Steady state error 50 55

Oscillation range 8 240

4
Steady state error 20 20

Oscillation range 35 25

Table 5. Assessment of current, THD in current, and THD voltage to TITST against SI controllers.

Period State
Current (A) THD (%) of Current THD (%) of Voltage

TITST SI TITST SI TITST SI

1

Starting value 5.2 5.72 7 7 0.8 3

Oscillation range 0.3 1.45 0.1 0.1 0.08 0.1

Mean 1.05 1.02 0.55 0.5 0.11 0.2

2

Starting value 1.85 1.65 3 2.5 0.62 0.45

Oscillation range 0.55 0.5 0.38 0.4 0.35 0.35

Mean 0.85 0.9 0.4 0.35 0.3 0.2

3

Starting value 2.92 2.52 0.41 0.35 1.4 35

Oscillation range 0.7 1.5 1 1 0.8 6

Mean 0.7 0.7 7 7 1 35

4

Starting value 4.27 4.66 1.3 2 0.5 3

Oscillation range 0.3 0.2 0.5 0.7 0.06 0.8

Mean 1.05 1.05 0.35 0.35 0.09 0.1

Figures 13–17 show the experimental reading of the system under study using the
electrical break as a centrifugal pump. Figure 13 shows the experimental relationship
between voltage and frequency, in the range of 64.3–156 volts, that corresponds to 20–50 Hz
frequency variation. Figures 14 and 15 show the inverter frequency’s experimental value
of stator input current, and rotor speed changes.

Figures 16 and 17 show simulation and experimental load torque values and input
current as rotor speed changes. These figures indicate that the simulated values are well-
matched and agree with their measured values. On the other hand, the small difference
between the simulation values and the experimental results is owed to the consideration
that the simulation of the system under study is assumed to be accurate at all operating
ranges. The error between the measured and calculated values of mechanical torque ranges
from 2.4 to 12.4%, while the error between the measured and calculated values of the stator
current ranges from 2.3 to 6.3%, which indicates a convergence between the proposed
practical model and the equivalent mathematical model.
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Figure 13. Measured motor voltage against frequency relationship.
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7. Conclusions

This article presented the itemized analysis and implementation of the modified three-
phase IM to work as a six-phase IM that drives from a three-phase inverter through a
three-to-six phase transformer. Design and implementation of three single-phase primary
and two secondaries were connected to work as a six-phase transformer. A trial and error
tuning PID achieved with a V/F (scalar) control used for speed control and a six-phase IM
was analyzed, and its results of simulation were discussed. The simulation results show that
the operation using a three-phase inverter connected with a three-to-six phase transformer
was better than a six-phase inverter under the same conditions. An experimental setup
of a modified three-phase IM to obtain the six-phase IM and its drive controlled by a
three-phase inverter was tested. In this paper, a three-phase inverter was used to drive a
six-phase induction motor through an electrical transformer to convert from three phases
to six phases. The error between the measured and calculated values of mechanical torque
lies between 2.4 and 12.4%, while the error between the measured and calculated values
of the stator current lies between 2.3 and 6.3%, which indicates a convergence between
the proposed practical model and the equivalent mathematical model. The quality of the
output voltage and speed are improved, reduced harmonic contents with this proposed
system, as shown in the speed and voltage profiles. The transformer of the proposed
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system also operated as an isolation device between the motor and the electrical source,
and it allows direct operation from the traditional source. By comparing the cost between
the classic system and the proposed system, the cost decreased using the proposed system
by a value not less than 12.88%.
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