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Abstract: It is important to effectively reduce carbon emissions and ensure the simultaneous adjust-
ment of economic development and environmental protection. Therefore, we used Kaya identity
to screen the factors influencing carbon emissions and conducted preliminary qualitative analyses,
including grey relation analysis and linear regression analysis, on important variables to establish a
vector autoregression (VAR) model based on their annual data to empirically analyze the influenc-
ing factors of carbon emissions. The results showed that economic growth effect, energy intensity
effect and embodied carbon in foreign trade were the key factors affecting carbon emissions, among
which the economic growth effect contributed the most. Accordingly, we propose countermeasures
including technological innovation to reduce energy intensity, the development of new energy
sources to improve energy structure, acceleration of industrial structure transfer, and optimization of
trade structure.

Keywords: carbon emissions; VAR model; economic; energy; foreign trade

1. Introduction

The consumption of high-carbon energy, such as coal and oil, has led to a significant
increase in greenhouse gas emissions, making global ecological protection a challenge [1].
Carbon emissions refer to the average greenhouse gas emissions generated during the
production, transportation, use, and recycling of a product. Since the beginning of the 21st
century, compared with the previous three decades, the global greenhouse gas emissions
have increased, mainly due to the increased carbon dioxide emissions of China, India, and
other emerging economies [2]. The International Energy Agency (IEA) reported that global
energy-related carbon dioxide (CO2) emissions plateaued in 2019 at 33 Gt [3]. According to
data from the United Nations Environment Programme (UNEP) [4,5], over the last decade,
the top four emitters headed by China accounted for 55 percent of global Greenhouse Gas
emissions. China contributed to more than a quarter of global greenhouse gas emissions,
and has per capita emissions about 40% higher than the global average. Since 2006, China
has exceeded the USA and become the world’s largest emitter of carbon dioxide [6]. The
huge amount of carbon emissions has already had a serious impact on our people’s lives
and even the global environment, so it is extremely urgent to reduce carbon emissions.

China is a big energy producer but also a big energy consumer. Based on data in the
China Energy Statistical Yearbook [7], Figure 1 shows the growth trend of China’s total
energy consumption since 1980. Although China’s total energy consumption is growing,
its energy consumption structure is continuously optimized. During the period from 1990
to 2018, although the absolute value of using coal to generate electricity in China increased,
its proportion declined [8]. The statistical bulletin of the people’s Republic of China on
national economic and social development in 2020 [9] shows that in 2020, China’s energy
consumption structure continued to be optimized, the proportion of coal consumption
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further dropped to less than 57%, and the proportion of clean energy consumption such as
natural gas, water, nuclear, wind, electricity, and so on in the total energy consumption
increased to 24.4%. Between one increase and one decrease, the carbon emission reduction
effect is significant. As can be seen from Figure 2, since 1980, the proportion of fossil energy
consumption in China has decreased year by year, and the energy consumption structure
has been gradually optimized.

Energies 2021, 14, x FOR PEER REVIEW 2 of 17 
 

 

China on national economic and social development in 2020 [9] shows that in 2020, 
China’s energy consumption structure continued to be optimized, the proportion of coal 
consumption further dropped to less than 57%, and the proportion of clean energy con-
sumption such as natural gas, water, nuclear, wind, electricity, and so on in the total en-
ergy consumption increased to 24.4%. Between one increase and one decrease, the carbon 
emission reduction effect is significant. As can be seen from Figure 2, since 1980, the pro-
portion of fossil energy consumption in China has decreased year by year, and the energy 
consumption structure has been gradually optimized. 

 
Figure 1. Trend chart of total energy consumption in China. 

 
Figure 2. Trend chart of fossil energy consumption in China. 

  

Figure 1. Trend chart of total energy consumption in China.

Energies 2021, 14, x FOR PEER REVIEW 2 of 17 
 

 

China on national economic and social development in 2020 [9] shows that in 2020, 
China’s energy consumption structure continued to be optimized, the proportion of coal 
consumption further dropped to less than 57%, and the proportion of clean energy con-
sumption such as natural gas, water, nuclear, wind, electricity, and so on in the total en-
ergy consumption increased to 24.4%. Between one increase and one decrease, the carbon 
emission reduction effect is significant. As can be seen from Figure 2, since 1980, the pro-
portion of fossil energy consumption in China has decreased year by year, and the energy 
consumption structure has been gradually optimized. 

 
Figure 1. Trend chart of total energy consumption in China. 

 
Figure 2. Trend chart of fossil energy consumption in China. 

  

Figure 2. Trend chart of fossil energy consumption in China.

With the rapid economic growth, China’s total primary energy consumption continues
to increase. According to the data of the National Bureau of statistics [10], comparing the
growth rate of total primary energy consumption with that of GDP, it can be seen that the
growth rate of energy consumption in most years from 1978 to 2020 was lower than that of
GDP, so China’s energy intensity (energy consumption per unit GDP) showed a downward
trend, as shown in Figure 3.
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According to the data of the China Energy Statistics Yearbook [7]. Figure 4 shows
the change trend of China’s total carbon emissions and carbon emission intensity from 1978
to 2020, from which it can be seen that China’s total carbon emissions are increasing year
by year, while its carbon emission intensity is decreasing year by year. Although China’s
total carbon emissions have shown a trend of increasing year over year, China’s carbon
intensity (carbon dioxide emissions per unit of GDP) has shown a downward trend with the
improvement of energy efficiency and the development of new energy sources [11]. China’s
low-carbon transformation has achieved remarkable results, and with the adjustment and
optimization of industrial structure and technological progress, carbon emission reduction
methods tend to be diversified [12]. China aims to peak carbon dioxide emissions before
2030 and achieve carbon neutrality before 2060 [13]. Carbon neutrality is an unprecedented
self-revolution in human history. Many factors need to be considered in the process of
realizing carbon neutrality and the coordinated development of energy, the economy, and
the environment [14]. Therefore, only by determining the key factors affecting carbon
emissions can we formulate a more effective strategy to achieve coordinated development.

Traditional analysis methods are based on artificial qualitative knowledge, which ties
the results of the analysis to the analyst. Therefore, personal qualitative analysis is limited.
With the development of intelligent methods, their use to mine the internal relationships
of data have become the mainstream [15]. The research on the factors affecting carbon
emissions at home and abroad mainly includes the Laspeyres decomposition method,
Arithmetic Mean Divisia Index (AMDI) method, and the Logarithmic Mean Divisia Index
(LMDI) method [16]. Among these, Liu used the LMDI model to determine the differences
of influencing factors of carbon emissions in central, eastern, and western China [17].
Zhang et al. (2021) first used an indicator decomposition based on the GDIM (Generalized
Divisia Index Method) to analyse the influencing factors of carbon emissions in China’s
logistics industry, and used the multi-regional input–output model (MRIO) and Logarith-
mic Mean Divisia index approach to analyze the changes in China’s carbon embodied in
exports [18]. Sun et al. proposed an extended STIRPAT (stochastic impacts by regression on
population, affluence, and technology) model to identify the main driving factors affecting
CO2 emissions [19]. Piłatowska and Geise estimated the threshold vector autoregression
(TVAR) model, and analysed the relationship between renewable and CO2 emissions
and economic growth [20]. Then, based on the vector autoregression (VAR) model, they
explored the impact of clean energy and non-renewable energy consumption on carbon
emissions and economic growth [21]. The VAR model is one of the most basic models in
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multivariate time series analysis and one of the easiest models to analyze and predict multi-
ple relevant economic indicators. Based on the advantages and disadvantages of qualitative
methods and intelligent methods, this study used qualitative methods for preliminary
analysis of the research content, and then used VAR models for quantitative analysis to
achieve an in-depth investigation of carbon emission impact factors, relationships, and
degrees, and to provide suggestions.

Energies 2021, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 4. Trend of total carbon emissions and carbon intensity in China. 

Traditional analysis methods are based on artificial qualitative knowledge, which ties 
the results of the analysis to the analyst. Therefore, personal qualitative analysis is limited. 
With the development of intelligent methods, their use to mine the internal relationships 
of data have become the mainstream [15]. The research on the factors affecting carbon 
emissions at home and abroad mainly includes the Laspeyres decomposition method, 
Arithmetic Mean Divisia Index (AMDI) method, and the Logarithmic Mean Divisia Index 
(LMDI) method [16]. Among these, Liu used the LMDI model to determine the differences 
of influencing factors of carbon emissions in central, eastern, and western China [17]. 
Zhang et al. (2021) first used an indicator decomposition based on the GDIM (Generalized 
Divisia Index Method) to analyse the influencing factors of carbon emissions in China’s 
logistics industry, and used the multi-regional input–output model (MRIO) and Logarith-
mic Mean Divisia index approach to analyze the changes in China’s carbon embodied in 
exports [18]. Sun et al. proposed an extended STIRPAT (stochastic impacts by regression 
on population, affluence, and technology) model to identify the main driving factors af-
fecting CO2 emissions [19]. Piłatowska and Geise estimated the threshold vector auto-
regression (TVAR) model, and analysed the relationship between renewable and CO2 
emissions and economic growth [20]. Then, based on the vector autoregression (VAR) 
model, they explored the impact of clean energy and non-renewable energy consumption 
on carbon emissions and economic growth [21]. The VAR model is one of the most basic 
models in multivariate time series analysis and one of the easiest models to analyze and 
predict multiple relevant economic indicators. Based on the advantages and disad-
vantages of qualitative methods and intelligent methods, this study used qualitative 
methods for preliminary analysis of the research content, and then used VAR models for 
quantitative analysis to achieve an in-depth investigation of carbon emission impact fac-
tors, relationships, and degrees, and to provide suggestions. 

The rest of this paper is organized as follows: Section 2 focuses on the principles of 
the relevant methods applied in this paper; Section 3 introduces the designed analysis 
method; Section 4 presents the process and results of the example analysis of the method; 
Section 5 gives conclusions and recommendations. 

2. Methods 
The factors affecting carbon emissions are so diverse that an artificial list is inevitably 

time-consuming and incomplete. In this study, we first screened the main variables using 
the Kaya identity, and then explored them in depth qualitatively based on the results of 

Figure 4. Trend of total carbon emissions and carbon intensity in China.

The rest of this paper is organized as follows: Section 2 focuses on the principles of the
relevant methods applied in this paper; Section 3 introduces the designed analysis method;
Section 4 presents the process and results of the example analysis of the method; Section 5
gives conclusions and recommendations.

2. Methods

The factors affecting carbon emissions are so diverse that an artificial list is inevitably
time-consuming and incomplete. In this study, we first screened the main variables using
the Kaya identity, and then explored them in depth qualitatively based on the results of
two types of basic statistical methods: grey relation analysis and best subsets regression
method. To reach more generalized conclusions, in the quantitative aspect, this article
used the VAR model to carry out quantitative analysis. This section will introduce the
mechanism models involved.

2.1. Kaya Identity

The Kaya identity is the current mainstream analysis method for analyzing the driving
factors of carbon emissions. It plays an important role in explaining the causes of global
historical emission changes. The Kaya identity links economic, policy, and demographic
factors with the carbon dioxide emissions generated by human activities. It reflects the
influence of energy and economic structures on emissions and can uncover the deep-seated
factors leading to carbon emission changes. At the same time, the Kaya identity has
good extensibility and can be further deconstructed according to the actual situation in
the process of use. It has the advantages of a simple mathematical form, no residuals in
decomposition, and strong explanatory power for the driving factors of carbon emission
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changes. Therefore, the Kaya identity is widely used in the carbon emissions decomposition
problems. The following is its theoretical formula.

C =
C
E
× E

G
× G

P
× P (1)

where C represents carbon dioxide emissions; E represents total energy consumption; G
represents gross domestic product (GDP); C/E represents carbon emissions per unit of
energy consumption, that is, energy structure carbon intensity; E/G represents energy
consumption (l) per unit of GDP, that is, energy intensity; G/P represents GDP per capita;
P represents total domestic population.

2.2. Grey Relation Analysis

Grey relation analysis (GRA) is a method of multi-factor statistical analysis that
measures the degree of relevance between factors based on the degree of similarity or
dissimilarity in development trends between factors (grey relation). There are three forms
of generalized grey relation analysis model, which are listed below.

Absolute gray relation analysis model: This analyzes the relationship between the
absolute quantities of a series

εij =
1+|si|+

∣∣sj
∣∣

1+|si|+
∣∣sj

∣∣+ ∣∣si − sj
∣∣ (2)

Relative gray relation analysis model: This analyzes the relationship between the
change rate of the series relative to the starting point

rig =
1+|si

′|+
∣∣sj
′∣∣

1+|si
′|+

∣∣sj
′
∣∣+ ∣∣si

′ − sj
′
∣∣ (3)

Integrated gray relation analysis model: This is obtained by combining the first two
models, and it considers both the relationship between the absolute quantities of a series
and the relationship between the change rate of the series relative to the starting point

ρij= θεij+(1 − θ)rij (4)

where si and sj represent the absolute sequence of the two factors, respectively; si
′ and sj

′

represent the relative sequence of the two factors, respectively; θ is the synthesis coefficient,
which can be adjusted appropriately according to the degree of emphasis on the two factors.

2.3. Best Subsets Regression

Best subsets regression is required when there is severe multicollinearity among
the factors, which is an efficient way to confirm the target model with as few predictor
variables as possible. Therefore, the method requires a multicollinearity diagnosis for all
the factors first. Multicollinearity refers to the fact that the explanatory variables in the
linear regression model have precise or highly correlated relationships, making the model
estimates distorted or easily inaccurate. The principle of the best subsets regression is as
follows.

Assuming a total of k variables, the variable dataset used in the original regression is
as follows

X = [x 1, x2, . . . , xk−1, xk] (5)
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Subsequently, xi is used to represent the dataset corresponding to the i-th variable,
and i ∈ (1, k). According to the subset, there are 2 k in total, and they are named M0, M1,
M2, and M3. A linear regression is performed as shown in Equation (6)

ŷm =
m

∑
i=0

bixi (6)

Then, the R2 error calculation method is used to calculate each subset, and the principle
is as follows

R2
m = 1−

∑
(

yj − ŷmj

)2

∑
(

yj − y
)2 (7)

Among them, yj is the response value of the j-th sample point; ŷmj is the predicted
value of the equation fitted by the subset m at the j-th sample point; y is the average of the
historical response values.

Then, the optimal subset is

M∗ = argmin
(

R2
m

)
(8)

2.4. VAR Model

The VAR model examines multivariate time series variables and builds relationships
among variables based on the statistical nature of the data using an unstructured approach.
It constructs the model by treating each endogenous variable in the system as a function
of the lagged values of all endogenous variables to estimate the dynamic relationships
of the joint endogenous variables without any prior constraint. Considering that the
factors affecting carbon emissions also influence each other, the VAR model without prior
constraints was chosen in this study

Yt= A1Yt−1+A2Yt−1+ · · ·+ ApYt−p+µt (9)

where Yt is the n-dimensional endogenous variable in period t; at any period t, the observed
vector is yt =

(
y1t, y2t, . . . , yNt

)T. Moreover, the number of variables in the observed vec-
tor is N, Ap is the corresponding coefficient matrix, p is the lag order of the n-dimensional
endogenous variable, and µt is the disturbance term.

The complete VAR model validation includes units such as data stationarity test, VAR
model establishment and lag order determination, variable exogeneity test, model stability
test, cointegration test, variable causality test, variable impulse response, and impact
level analysis.

3. Determination of Carbon Emission Impact Factors
3.1. Determination of Decisive Factors Based on the Kaya Identity and Grey Relation Analysis

As the driving force for exploration is the driving force for exploring the amount
of change, based on Equation (1), after taking the amount of change and performing
a logarithmic transformation, the additive function of CO2 emissions is obtained, as
shown below

∆C = Ct −C0 =
Ct −C0

lnCt − lnC0
× (lnCt − lnC0) = ∆E+∆I+∆B+∆P (10)

where ∆C represents the difference between the CO2 emissions in year t and the carbon
emissions C0 in the base year, ∆E represents the energy structure carbon intensity effect,
∆I measures the energy intensity effect, ∆B measures the economic growth effect, and ∆P
measures the population effect. The above equation illustrates that the change in carbon
dioxide emissions is determined by the four main indicators: the energy structure carbon
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intensity effect, the energy intensity effect, the economic growth effect, and the population
effect [22].

The four indicators are calculated for any year to evaluate the contribution of the
above four effects to the change in carbon dioxide emissions. If the calculation yields a
positive result, the indicator has increased carbon dioxide emissions. Conversely, if the
contribution is negative, the indicator has reduced carbon dioxide emissions. Figure 5
shows the calculation results, showing the contribution of each effect to carbon emissions
from 1991 to 2010 [10].
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It can be seen from the Figure that from 1991 to 2010, with the development of time,
the contribution value of each effect increased, especially the economic growth effect and
the energy intensity effect.

In addition to the contribution value, the importance of the variables can be judged by
calculating the correlation between the factors and carbon emissions. The generalized grey
relation analysis was conducted for China’s carbon emission data and GDP data from 2001
to 2020 using Equations (2)–(4). The correlation between the two was calculated, and the
results were: the absolute correlation was 0.87, the relative correlation was 0.98, and the
integrated correlation was 0.93. The grey relation between GDP and carbon emissions was
very large; that is, economic growth had a greater impact on carbon emissions.

The combined results of the two evaluation indicators indicate that the economic
growth effect and energy intensity effect play a decisive role in carbon emissions.
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3.2. Supplement to the Decisive Factors—Research on the Problem of Embodied Carbon Transfer

As the above study was built with formulas and theorems, there will be deviations be-
tween the actual process and the theory. To improve the comprehensiveness and timeliness
of the study, we investigated and analyzed the impact of carbon emissions.

According to the data released by the International Energy Agency (IEA), the growth
of global carbon dioxide emissions before 2000 was mainly caused by developed countries
such as the United States, Japan, and those in the European Union. However, since 2000, the
emissions of these countries have generally decreased, while the emissions of developing
countries such as China and India have increased significantly. There are many reasons
for the rapid growth of carbon emissions in developing countries; one that cannot be
ignored is the embodied carbon transfer from trade between developed and developing
countries [23,24].

The production of any kind of product generates carbon emissions directly or indi-
rectly. The carbon dioxide emitted in the whole production chain to get a certain product is
called “embodied carbon”. From the perspective of foreign trade, the meaning of “embod-
ied carbon” and “transferred emissions” are basically the same. In the current industrial
division of labor, developed countries are at the upper end of the industrial chain, and their
export products are mainly high-tech or belong to service industries, with relatively low
carbon emissions; in contrast, developing countries’ export products are mainly low-end
products with high carbon emissions. For a country such as China, which exports low-end
products but has a huge trade surplus, the amount of carbon dioxide emissions transferred
for other countries through international trade is considerable [25].

Based on the calculation data of embodied carbon emissions from import and export
trade from 2002 to 2007, we found that the embodied carbon emissions from the net exports
of machinery and equipment manufacturing, metal products manufacturing, and chemical
industry always ranked at the top in each sector. The total import and export of these three
sectors accounted for 61.41% of the total import and export in 2007, while the net embodied
carbon exports of the three sectors accounted for 69.1% of China’s total net embodied
carbon exports. Therefore, reducing the embodied carbon content of exports from these
three sectors is of great significance to reduce the embodied carbon emissions of China’s
import and export trade.

By further study of the relationship between embodied carbon and the structure of
export trade sectors from 2002–2010, we found that the sectors with low carbon emissions
were: food (1.09), communication (1.42), and textile (1.5) industries. Furthermore, the
sectors with high carbon emissions were: metal (6.7), building materials (2), and chemical
(4.6) industries. Among them, the chemical sector ranked second after the metal sector in
terms of carbon emission share. Similarly, the embodied carbon emissions of high-carbon-
emission sectors were closely related to their export volume and export volume share, as
shown in Figure 6 [10]. Therefore, reducing the embodied carbon in exports of high-carbon
sectors by optimizing the trade structure is of great significance to reduce the embodied
carbon emissions of China’s import and export trade.
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3.3. Determination of Influencing Factors for Energy Intensity Effect Based on Best Subsets Regression

Among the decisive factors affecting carbon emissions, the influencing factors of
energy intensity effects need further discussion. In this study, we used the best subsets
regression method to analyze it. Energy intensity refers to the energy consumption per
unit of GDP, and the specific expression is as follows

I =
E
G

=
∑i Ei

∑i Gi
= ∑i

Ei

Gi
× Gi

∑i Gi
= ∑iIi× Si (11)

where Ii denotes the energy intensity of each industry, and Si denotes the industrial
structure of each industry. Therefore, the main influencing factors of energy intensity are
the four industrial structures and the corresponding energy intensities. The four industries
are primary industry, industry, construction industry, and tertiary industry, and are denoted
by 1, g, j, and 3, respectively.

From the China Energy Statistical Yearbook 2011 [7], the total energy consumption
(E) and GDP (G) of each year, the energy consumption (Ei) of each industry, and the GDP
(Gi) of each industry were obtained. Then, the energy intensity (I) and its main influencing
factors were calculated. Before using the best subsets regression, it is necessary to diagnose
the multicollinearity. If there is no multicollinearity, it is not necessary to perform the
best subsets regression. The correlation coefficient of the data from 1980 to 2010 was then
calculated. The correlation coefficient results of energy intensity and influencing factors
are shown in Table 1.
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Table 1. Correlation coefficients of energy intensity and influencing factors.

lnI lnI1 lnIg lnIj lnI3 lnS1 lnSg lnSj

lnI1 0.849
lnIg 0.991 0.806
lnIj 0.922 0.878 0.894
lnI3 0.995 0.863 0.977 0.943
lnS1 0.955 0.870 0.967 0.876 0.943
lnSg −0.047 0.058 −0.162 −0.069 −0.015 −0.246
lnSg −0.842 −0.878 −0.820 −0.913 −0.852 −0.842 0.128
lnS3 −0.979 −0.869 −0.951 −0.900 −0.986 −0.921 −0.096 0.789

The results in the table indicate severe multicollinearity among the factors. The best
subsets regression was further used to determine the best-fitting model between energy
intensity and various factors. The results are shown in Table 2. The regression equation of
energy intensity and each factor is obtained from the above operation as follows

lnI = 0.234 + 0.618lnIg + 0.270lnI3 + 0.465lnSg (12)

Table 2. Best subsets regression results.

Independent Variable Coefficient Standard Error T p

Constant 0.23383 0.04562 5.13 0.000
lnIg 0.61815 0.04049 15.27 0.000
lnI3 0.26957 0.02420 11.14 0.000
lnSg 0.46533 0.0692 6.72 0.000

The coefficients of Equation (12), obtained from the fit, indicate that industrial energy
intensity and industrial structure play a dominant role in the total energy intensity.

The coefficients of Equation (12), obtained by fitting, show that industrial energy
intensity and industrial industry structure play a dominant role in total energy intensity.

4. Empirical Analysis of the Impact Level of Carbon Emissions

Next, we developed a VAR model to analyze the long-term equilibrium, integrated
effects, dynamic relationship, and impact level of economic growth, energy consumption,
foreign trade, and carbon emissions. The data used for the empirical analysis were obtained
from the data of carbon emissions (LC), energy consumption (LE), import and export trade
(LF), and gross domestic product (LG) from 1981 to 2008 in the China Energy Statistics
Yearbook 2011, with a total of 28 samples. As the values of the variables were all large, the
data had to be pre-processed, as in Equation (13), before using EViews.

X = ln(x) (13)

4.1. ADF Stationarity Test

Before the empirical analysis, it is necessary to test the stationarity of the data. Only a
stationary time series can be used for quantitative analysis, otherwise pseudo-regression
will occur. In this study, the ADF unit root test method was used to test the stationarity of
four variables: LC, LE, LF, and LG. This method assumes that there is at least one unit root
in the tested time series. If the hypothesis is passed, the series is not stationary, and if the
reverse is true, the series is stationary. The results are shown in Table 3.

As can be seen from Table 3, the p values of the original time series all exceed 0.05, and
the null hypothesis is accepted at the 10% critical value, so the original data equation is
non-stationary. In contrast, the p value of ∆LC is 0.0001, which is far less than 0.05, rejecting
its null hypothesis and showing a stationary state. Therefore, the time series of ∆LC is
stationary. This shows that the first-order difference series are all stationary series at the 5%
significance level.
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Table 3. Results of the ADF stationarity test for time series.

Variable ADF 1% Critical Value 5% Critical Value 10% Critical Value p Conclusion

LC 1.433 −3.700 −2.976 −2.627 0.9986 Non-stationary
∆LC −22.687 −3.700 −2.976 −2.627 0.0001 Stationary
· · · · · · · · · · · · · · · · · · · · ·
LF −1.350 −3.700 −2.976 −2.627 0.5914 Non-stationary

∆LF −3.291 −3.711 −2.981 −2.630 0.0259 Stationary

4.2. Construction and Testing of VAR Model

It is known that the above four variables are all stationary time series, so the original
series of these variables can be used to construct multivariate VAR models directly. First,
the optimal lag order of the VAR model needs to be determined. Five VAR models with
different lag orders were constructed through software, and the results are shown in
Table 4.

Table 4. VAR model test results for each lag order.

Lag LR FPE AIC SC HQ

0 NA 3.52 × 10−9 −8.112216 −7.915874 −8.060126
1 199.6532 3.74 × 10−13 −17.28695 −16.30524 −17.02650
2 22.25364 3.66 × 10−13 −17.43719 −15.67011 −16.96838
3 32.21775 * 1.07 × 10−13 −19.03274 −16.48029 −18.35558
4 16.95755 8.73 × 10−14 * −20.12192 * −16.78410 * −19.23639 *

Note: * denotes the optimal lag order determined under this criterion.

Therefore, the VAR model equation is as follows

Yt= A1Yt−1 +A2Yt−2+A3Yt−3+A4Yt−4+µt, (14)

The stationarity of the VAR model is the premise of empirical analysis. To test whether
the VAR model is effective, the AR unit root test was used to test its stationarity, and the
test results were obtained through software. As shown in the graph of AR root test results
of THE VAR model, the characteristic roots were all in the unit circle, and the mode of all
eigenvalues was less than 1, indicating that the VAR model is stationary and satisfies one
of the conditions required for the next impulse analysis and variance decomposition.

4.3. Johanson Cointegration Test

If there is a linear combination of two or more non-stationary time series that are
stationary, these non-stationary (with unit roots) time series are considered to have cointe-
gration relationships with each other, and such a stationary linear combination is called
a cointegration equation and can be interpreted as a long-term equilibrium relationship
between variables. In this study, Johansen cointegration was used to test the long-term
equilibrium relationships among economic growth, energy consumption, foreign trade,
and carbon emissions. The results of the test are shown in Table 5.

Table 5. Cointegration test results based on the Johansen methodology.

Number of Cointegration Relationships Trace Statistic 5% Critical Value p

None 57.714 47.856 0.0045
At most 1 29.424 29.797 0.0552
At most 2 15.459 15.495 0.0506

It can be seen from the table that under the critical value of 0.05, the null hypothesis is
rejected, and the model has a cointegration vector, which has a cointegration relationship.
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Therefore, we conclude that there is a long-term equilibrium relationship between carbon
emissions, energy consumption, economic growth, and foreign trade.

4.4. Granger Causality Test

Granger defines causality by A causes B, if by including A in the prediction of B we
reduce its variance. The Granger causality test examines “who causes who to change”
between variables, that is, the causal relationship between variables. The Granger causality
test is often interpreted as whether a variable can be used to improve the predictive ability
of other related variables in a VAR model. The test results are shown in Table 6. The
null hypotheses tested in the table were all “not a Granger cause”. If the probability
of the p value was less than 5%, the null hypothesis was rejected and was a Granger
cause. Therefore, we concluded that energy consumption, economic growth, and foreign
trade are the unidirectional Granger causes of carbon emissions. Note that C represents
carbon emissions, E represents energy consumption, F represents trade volume, and G
represents GDP.

Table 6. Granger causality test.

Null Hypothesis F p Conclusion

E is not a Granger cause of C 6.510 0.006 Reject
C is not a Granger cause of E 0.423 0.660 Accept
F is not a Granger cause of C 6.443 0.006 Reject
C is not a Granger cause of F 0.928 0.410 Accept
G is not a Granger cause of C 6.669 0.005 Reject
C is not a Granger cause of G 0.621 0.547 Accept

4.5. Impulse Response and Variance Decomposition

VAR models are unstructured models that do not analyze the individual impact of
changes in a single variable on another variable, but rather study the overall impact of
changes in the error term on the system. This method is known as the impulse response
function analysis method. Impulse response function is used to measure the changes
that occur in the whole system when a certain factor in the system changes or fluctuates.
After a disturbance term change in a certain period causes a change in the corresponding
dependent variable, both the current and later values of other variables change through
the dynamics changes of the system. To study the impact of changes in other variables in
the VAR model on the variable LC, the impulse response function was established through
software. The corresponding figures are shown in Figures 7–9. In the figures, the solid line
indicates the impulse response function, and the dashed range indicates the change of the
impulse response function within twice the standard deviation.

Figure 7 illustrates that when energy consumption rises, carbon emissions will rise in
the long run. Figure 8 shows that carbon emissions will rise in the short term when foreign
trade increases. Figure 9 shows that as the economy grows, carbon emissions will fluctuate
in the short term.

To compensate for the deficiencies in impulse response analysis and investigate the
contribution of other variable changes to the structural impact of the endogenous variable
LC, the study further conducted variance decomposition. Variance decomposition is used
to explain the extent to which experimental variables are caused by other variables or by
themselves, and to further evaluate the importance of different variables by analyzing the
contribution of each variable to changes in experimental variables (usually measured by
variance). The contribution rate refers to the percentage that a variable contributes to the
change of the experimental variable in a certain period. The variance decomposition of the
changes of each endogenous variable in the VAR model is shown in Table 7. The results of
variance decomposition of carbon emission (C) are shown in Table 8.
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Table 7. The variance decomposition of the changes of each endogenous variable in the VAR model.

Variance Decomposition of SER01:
Period S.E. SER01 SER02 SER03 SER04

1 0.025733 100.0000 0.000000 0.000000 0.000000
2 0.056976 96.73998 1.225831 1.112449 0.921744
3 0.079187 87.04111 9.700954 2.745691 0.512242
4 0.094239 75.44090 19.58162 4.576308 0.401167
5 0.104619 69.32924 24.76672 5.346238 0.557800
6 0.108300 66.55994 27.72079 5.164244 0.555024
7 0.109762 65.06747 29.14005 5.053891 0.738591
8 0.111848 65.24086 28.66245 5.220183 0.876511
9 0.113692 65.55068 27.83112 5.646488 0.971721

10 0.115048 65.21887 27.48758 6.088597 1.204949

Variance Decomposition of SER02:
Period S.E. SER01 SER02 SER03 SER04

1 0.020834 98.12985 1.870154 0.000000 0.000000
2 0.051500 94.74248 2.991239 1.476769 0.789516
3 0.074116 85.22627 11.43216 2.931871 0.409702
4 0.089169 73.24124 21.62727 4.828528 0.302963
5 0.099671 66.52714 27.37933 5.586158 0.507374
6 0.103455 63.67268 30.46147 5.370023 0.495831
7 0.104881 62.06387 32.03155 5.242322 0.662256
8 0.106766 61.98580 31.79349 5.383107 0.837608
9 0.108334 62.20047 31.13616 5.721797 0.941576

10 0.109463 61.73712 31.05388 6.056211 1.152789
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Table 7. Cont.

Variance Decomposition of SER03:
Period S.E. SER01 SER02 SER03 SER04

1 0.131208 57.14547 20.18304 22.67149 0.000000
2 0.227305 68.57391 20.14005 10.10791 1.178123
3 0.251208 67.23248 22.51300 9.216138 1.038378
4 0.274134 61.84624 27.05847 9.566619 1528666
5 0.282499 59.07566 30.44035 9.024226 1.459772
6 0.284262 58.43094 31.18387 8.919180 1.466014
7 0.285619 57.97010 31.65483 8.842031 1.533044
8 0.287076 57.49799 32.15562 8.767445 1.578948
9 0.289421 56.84986 32.92185 8.642984 1.585303

Table 8. The results of variance decomposition of carbon emission (C).

Period E F G

1 0.000000 0.000000 0.000000
2 1.543961 3.082727 3.832238
3 12.40868 2.266033 8.119802
4 29.31902 7.735098 9.054170
5 40.07627 16.41087 7.218044
· · · · · · · · · · · ·
9 44.80328 31.73862 7.068328
10 44.88771 31.68107 7.019272

Note: E represents energy consumption, F represents trade volume, and G represents GDP.

As can be seen from the table, the contribution of energy consumption to carbon
emissions increases with the increase in the period, reaching 44.89% in the 10th period.
Energy consumption plays an important role, contributing 44.89% to the predicted variance
of carbon emissions, followed by foreign trade, with a contribution of 31%. Economic
growth has the smallest contribution rate. The results indicate that China consumes a lot
of energy, has a low utilization rate, has an unreasonable structure of import and export
commodities, exports a large number of pollution-intensive products, and achieves rapid
economic growth at the cost of the environment.

5. Summary and Recommendations

Economic development and environmental protection are inseparable.. Based on the
results of qualitative analysis, we concluded that the reasons for the increase in carbon
emissions in China are high energy consumption, low utilization rate, and an unreasonable
structure of import and export commodities. Reducing energy intensity and optimizing
energy structure, industrial structure, and trade structure will effectively reduce China’s
carbon dioxide emissions. In this study, we drew the following conclusions through VAR
example verification: (1) According to the established VAR formula, carbon emissions
increase by 0.686%, increase by 0.112%, and decrease by 0.031% when energy consumption,
foreign trade, and economic growth increase by 1%, respectively. (2) There is a long-term
equilibrium relationship among carbon emissions, energy consumption, and economic
growth. Moreover, foreign trade, and energy consumption, economic growth and foreign
trade are the unidirectional Granger causes of carbon emissions. (3) Economic growth
leads to an increase in carbon emissions in the early stage, but it reduces carbon emissions
and improves environmental quality in the later stage. (4) The increase in carbon emissions
is mainly due to large energy consumption, a low utilization rate, and an unreasonable
structure of import and export commodities in China. (5) Energy consumption, which
plays an important role, contributes 44.89% to the variance of carbon emissions prediction,
followed by foreign trade, with a contribution rate of 31%.

Therefore, according to the country’s development concept and actual national condi-
tions, the following recommendations are proposed according to the key factors affecting
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carbon emissions: (1) Encourage enterprises to research, develop, and promote energy-
saving technologies, and stimulate them to promote innovation in energy conversion and
utilization through preferential policies. Furthermore, increase investment in advanced
energy-saving technologies. (2) Strengthen the incentives and guarantees of laws, regu-
lations, and systems to speed up the improvement in production technologies, achieve
industrial upgrading faster and increase unit energy production. (3) Optimize the energy
structure, reduce the proportion of coal consumption, vigorously develop clean energy
(e.g., hydrogen, wind power, solar energy, and geothermal energy), safely develop nu-
clear power, and reduce the dependence on fossil energy. (4) Build a hydrogen industry
system with a full industrial chain similar to that in the coal industry and the petroleum
industry, with green hydrogen as the core. This should cover business processes including
hydrogen production, hydrogen storage, hydrogen transportation, hydrogen refueling,
hydrogen utilization, hydrogen detection, and hydrogen safety, as well as fields involving
hydrogen transportation, hydrogen energy storage, hydrogen chemical industry, and hy-
drogen metallurgy. (5) Introduce corresponding policies to guide and promote the effective
implementation of carbon emission reduction projects. (6) Encourage the development
of tertiary industries to reduce greenhouse gas emissions and promote the optimization
and transformation of the steel and coal industry to realize low-carbon green industries.
(7) Accelerate the optimization of trade structure and reduce the export of embodied carbon
in high-carbon sectors.
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