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Abstract: Achieving the goals of distribution systems operation often involves taking vital decisions
with adequate consideration for several but often contradictory technical and economic criteria.
Hence, this paper presents a modified analytical approach for optimal location and sizing of solar
PV-based DG units into radial distribution network (RDN) considering strategic combination of
important power system planning criteria. The considered criteria are total planning cost, active
power loss and voltage stability, under credible distribution network operation constraints. The
optimal DG placement approach is derived from the modification of the analytical approach for DG
placement using line-loss sensitivity factor and the multiobjective constriction factor-based particle
swarm optimization is adopted for optimal sizing. The effectiveness of the proposed procedure is
tested on the IEEE 33-bus system modeled using Matlab considering three scenarios. The results are
compared with existing reports presented in the literature and the results obtained from the proposed
approach shows credible improvement in the RDN steady-state operation performance for line-loss
reduction, voltage profile improvement and voltage stability improvement.

Keywords: solar PV DG; line-loss sensitivity; voltage stability; project cost; PV capacity factor;
backward/forward sweep algorithm; particle swarm optimization with clerc’s constriction

1. Introduction

The power system is a complex network that consist of three operation levels, namely
generation, transmission and distribution, and each of these levels of operation has its
peculiar challenges. However, in recent times, optimal planning at the distribution levels
have been an issue of great priority for utilities. This is mainly because it is the most
vulnerable component in the power system network by the virtue of its closeness to the end
users which makes it account for a greater percentage of loss in the entire power system.
With investment in new electrical facilities continuing to be very expensive, techniques and
methods for improving the performance of existing distribution systems infrastructure vis-
a-vis reduction in losses, improved reliability of supply, enhanced security of operation and
profit maximization, have been developed by researchers and adopted by utility companies
over the years [1].

In recent times, consumers’ load demand pattern is changing, and the amount of
electricity demand is increasing beyond the existing power system capacity. Hence, the
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power system’s operation dynamics is becoming even more complex to monitor, control and
effectively dispatched [2]. More so, several countries, especially the developing countries,
are faced with the problem of shortage of electricity supply as a result of continuously
increasing load demand necessitated by the drive for industrialization and modernization.
However, the generation and transmission facilities are not growing at equal rates and
most of these facilities are old and inefficient. Hence, electric utilities in the developing part
of the world are forced to operate very close to their loadable limits (allowed capacities)
due to geographical, economic and technical reasons. Consequently, recently, the need for
adequate planning and scheduling of large interconnected power systems is becoming
more pronounced due to the need for economical operation and compliance with current
clean environment-oriented policies [3,4].

Introduction of localized renewable energy-based generators has been identified to
improve the steady-state operating condition of power system. Harnessing the renewable
energy resources properly can help bridge the gap that exists between load demand of
customers and the supply capacity in a way that is economical and ensure compliance with
environmental sustainability needs. Several renewable energy-based power generation
technologies have been deployed in the concept known as distributed generation. Dis-
tributed generators (DGs) are rapidly developing and gradually changing the face of power
generation in the world due to the cheap source of primary fuel and their closeness to the
load centers. Hence, they are often referred to as on-site generation, dispersed generation,
embedded generation or decentralized generation [5]. Properly designed DG systems can
reduce the risk of stressing the already overloaded transmission lines [6]. DG-enabled
microgrids are usually designed to provide power supply systems for communities by
ensuring on-site/local power generation for loads in either grid-connected or off-grid
configuration [7].

Dispersed generation (DG) is a concept where smaller, highly efficient power plants
would be built along the existing grid, close to the customers [8]. DG can provide grid
quality power supply for different customer types (residential, commercial and sometimes,
industrial) at significantly low cost. In 2013, 19.1 % of world energy consumption was
met by renewable energy-based technologies [9], and these includes both off-grid and
grid-connected dispersed generation. Dispersed generation setup, at mini-grid level, is
a decentralized power plant, feeding into either the sub-transmission or the distribution
level of power grid. The concept behind decentralized/dispersed generation is to inject
reliable and high-quality power using efficient power conversion technologies which are
to be built along the existing grid close to the energy end users. Apart from their techno-
economic benefits such as transmission loss reduction and reduced cost of primary fuel,
these generators promote environmental sustainability in terms of reduced greenhouse
gases emission and less noise [10,11].

Depending on the goal of the system planner, different DG types can be incorporated
into the grid to either inject or/and absorb active or/and reactive power. Some of the
crucial goals of DG inclusion in power systems are loss minimization, voltage regulation,
security/stability enhancements, reduction of greenhouse gas pollution that are common
with the burning of fossil fuels in conventional generators etc. Several works have been
done on the optimal sizing and siting of DGs in power systems, especially for distribution
systems. The optimal planning of DGs into distribution systems involve two significant
aspects namely optimal siting/location/placement and optimal sizing/techno-economic
analysis of injected capacity. Though both are often considered together in a DG planning
project, what they entails are significantly different. Often time, siting precedes sizing
because proper placement of DGs has the capacity to avert oversizing the DGs at the point
of injection.

Significant efforts have been dedicated to DG placement as contained in existing liter-
ature and the differences in the methodologies are seen in the criteria considered (technical,
economic and environmental), as well as the models used for placement/siting of DG and
the optimization algorithm deployed for sizing of the DGs. The main economic criteria
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are investment and operation cost reduction which is a very common objective to all such
research study reported. The common technical criteria include voltage profile improve-
ment, power loss minimization, supply reliability improvement, flexibility management
requirement, system security/voltage stability improvement etc. The environmental crite-
ria are usually the need to mitigate climate change through active decarbonization of the
power system and this is achieved by decommissioning of conventional fossil fuel-based
generators and increasing the percentage contribution from renewable resources.

The complexity involved in DG sizing problems have been notably simplified using
tested and verified evolutionary (nature-inspired) algorithms, such as Genetic Algorithm,
Particle Swarm Optimization, Chaotic Artificial Bee Colony, Imperialistic Competitive
Algorithm, Plant Growth Simulation Algorithm, Modified Cuckoo Search Algorithm for
fuel cost reduction, ant lion optimization algorithm for optimal reactive power solution and
more [10,12–16]. Evolutionary algorithms are population-based optimization techniques
that are easy to adopt for solving non-linear optimization problems [17,18]. However,
they may be limited in accuracy due to the problem of early convergence at local optimal
point for complex optimization problems, especially those with non-linear relationships. A
notable multi-criteria decision-making research study based on evolutionary algorithm
deployment for optimal sizing of DG units in distribution networks is proposed in [19]. The
target was to improve the voltage profile and reduce the network’s real and reactive power
losses using the IEEE 33-bus radial network as the test system. The biogeography-based
optimization approach for DG unit location and sizing in radial distribution systems was
proposed in [20] using the IEEE 33-bus and 69-bus radial systems and the obtained results
was compared with the results of genetic algorithm, particle swarm optimization and artifi-
cial bee colony algorithm. A hybrid approach that combines grasshopper optimization and
cuckoo search technique for DG sizing was reported in [21], with the target of improving
the voltage profile and minimize losses and cost. In [22], the DG sizing optimization is
achieved for power loss minimization and voltage stability improvement using particle
swarm optimization algorithm. Similar problem on IEEE 33 and IEEE 69 bus distribution
system have been solved using more recent evolutionary approach such as the differential
evolution [23] and improved Elitist-JAYA [24], algorithm. The challenges of solving com-
plex non-linear optimization problems with other techniques led to the evolution of the
several evolutionary algorithms (EA) reported in the literature. Generally, EA are easy to
use tool for providing good approximate solutions to quite several real-life optimization
problems that may be too computationally intensive to solve deterministically.

The vital and remarkably demanding aspect of electrical distribution system planning
with DG injection is the placement (siting); this is the hub of the planning problem which
determines whether the different contrasting objectives of the planning problem can be
met at minimal economic and computational requirements. Depending on the network
configuration and steady-state parameters of interest, several models have been developed
for efficient DG placement in power systems. A novel voltage stability index-based DG
placement approach under a load growth condition was reported in [25]; the load demand
is continually increased across all the buses and the effect on each bus is monitored to
determine the most sensitive bus for DG placement. Sensitivity factors approach for DG
placement based on loss reduction and voltage improvement was described in [26]. In
the paper, new sensitivity factors that can be useful for selecting the best locations for
DG injection are discussed. The authors in [27] presented a detail comparison of different
sensitivity approaches for efficient DG allocation in radial network. Some of the developed
sensitivity approaches for DG placement in distribution network that are reported in
the literature are power stability index [28], novel Q-PQV bus pair method [29], chaotic
maps integrated with stochastic fractal search [30], zero bus flow approach [31], power
loss sensitivity (PLS) on GAMS [32], pareto optimality with game theory [33], static and
dynamic network reconfiguration [34], combined power loss index [35], node voltage
deviation sensitivity [36], probabilistic generation with time-varying load models [37]. All
these methods mentioned above are obtained from direct approximation of the voltage



Energies 2021, 14, 7775 4 of 20

stability condition derived from the two-bus transmission line model that has been widely
reported in different works on steady-state voltage stability analysis [38]. The idea behind
the reported approaches is to determine the best loading point as well as the best injection
point (bus or node) for additional power from DG units by ensuring that the power system
security is not compromised. This goal is achieved by monitoring specific steady-state
parameters of the power system using different indices and sensitivity analysis.

One specific drawback of most of the existing approaches especially for loss mini-
mization is that they really do not consider the effect of the injected power at a selected
point of injection on the power loss along the associated branch/lines. More so, improper
placement of DGs in a distribution network can increase the criticality of the lines as
seen in the violation of the loadable limit which can be consequently reflected on their
effective voltage stability margins. In another way, most sizing approach discussed in the
literature do not give specific attention to solar irradiation for solar PV-based DGs. Hence,
researchers often employ an estimate DG size based on load demand at the identified
injection point. However, for real/actual case studies, there is a need to consider the solar
irradiance of the specific location of interest. In this research work, a new attempt was
made towards solving the problem associated with the impact of DG placement on line
losses by adopting a modified model of loss sensitivity factor presented by Tah and Das
in [39] and an absolute voltage stability margin index introduced by Furukakoi et. al. in [40]
for monitoring the system stability condition. To factor in the effect of the time-dependent
solar irradiance, the instantaneous PV output model is adopted with a capacity factor
approach introduced in [4] for estimating the per hour equivalent power injection from the
solar PV-based DGs to ensure compliance with the requirement for the load flow analysis
using the backward/forward sweep algorithm [41–43], which is the basic tool deployed
for distribution system parameter estimation in this study.

Voltage stability has been widely explained as the ability of a power system to maintain
steady acceptable voltage levels at all buses within the system under normal operating
conditions and after being subjected to a disturbance [44]. Heavily loaded (stressed) power
systems are at the risk of voltage instability due to insufficient capacity to provide reactive
power (VAR) support at the local load points. This can be empirically noticed by the dip in
the voltage profile at critical buses within the power system. If this situation persists, it
can lead to voltage collapse and wide-area power system blackouts; which is a common
experience in many developing countries. Hence, increasing the share of DGs especially
at the low and medium voltage sub-transmission/distribution level of the power system
can help to improve the voltage stability [45]. The significant of voltage stability analysis
in power system operation is seen in the fact that voltage stability indicates how quickly
the power system can return to within the safe operating limit after a sudden change
in the operating condition either due to disturbance or planned activities such as DG
inclusion. The voltage stability level of a power system is totally different from the voltage
magnitude levels which can be easily monitored by watching the fluctuations of the bus
voltages [46]. Thus, the significant contributions of the study reported in this manuscript
is the modification of the analytical approach reported in Tah and Das in [39] with the
inclusion of voltage stability condition considering the effect of injected power from solar
PV-DGs and, the consideration of site capacity factor in the determination of the effective
power injected from the solar PV-DGs.

For the optimization procedure, an enhanced multiobjective particle swarm optimiza-
tion algorithm with constriction factor reported in [47] is used due to its proven enhanced
capacity for handling non-linear problems, improved exploratory ability for solution accu-
racy with better convergence performance [48,49]. Three objective functions are considered
and combined to produce three scenarios of optimal DG sizing problem formulation; these
functions are minimization of total investment cost, minimization of power loss and maxi-
mization of voltage stability margin. The remaining section of this paper are organized as
follows: the adopted mathematical models and methods are described under Section 2. The
optimization problem formulation which includes the objective function and constraints for
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DG placement and sizing are described in Section 3. The simulation results are discussed
in Section 4 and the report is concluded in Section 5.

2. Mathematical Models and Research Methods

The different mathematical models employed at different stage of this research work
are discussed in this section.

2.1. Backward/Forward Sweep Load Flow for Radial Distribution System

This work takes into consideration the inherent characteristics of radial network as
analyzed using the backward/forward sweep (BFS) load flow algorithm. Considering a
simple two nodes distribution network of Figure 1, the real and reactive power flows and
losses are as expressed by Equations (1)–(4).

Figure 1. Two nodes distribution network [49].

Pi = P
′
i+1 + rik

(P
′2
i+1 + Q

′2
i+1)

V ′2i+1
, (1)

Qi = Q
′
i+1 + xik

(P
′2
i+1 + Q

′2
i+1)

V ′2i+1
, (2)

Equations (1) and (2) represent the active and reactive powers (Pj and Qj) flowing
through the branch ‘j’ from node ‘i’ to ‘i+1’ calculated backwards.

The real and reactive power losses of branch ‘j’ are calculated using Equations (3) and
(4) as follows:

Plossj
= rik

(P2
i + Q2

i )

V2
i

, (3)

Qlossj
= xik

(P2
i + Q2

i )

V2
i

, (4)

The above equations represent the active and reactive power losses along the branch ’j’
(Pj and Qj) from node ’i’ to ’i+1’ using the backward calculation. Vi is the voltage at node
’i’, rik and xik are the resistance and reactance of the branch ’j’ between any two nodes ’i’
and ’k’.

The superiority of this load flow analysis method is such that regardless of the original
network topology, the distribution network is first converted to a radial network. Addition-
ally, a node and branch-oriented approach is incorporated using an efficient numbering
scheme to enhance the numerical performance of the solution method as described with
details in [43].

2.2. Solar PV System Output Dynamics and DG Net Power Injection

To consider the effect of the time-varying solar irradiance in the solar PV DG sizing,
the capacity factor approach is deployed to obtain an estimate of the net power injectable
from the solar PV-DGs. The output power of the PV system at time, t, for each DG at any
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injection point (bus) i is calculated as a function of the size/rated power of the DG for each
injection point [4]:

Ppvi(t) =

Ppvratedi

(
G2

t
GstdRc

)
for 0 ≤ Gt ≤ Rc

Ppvratedi

(
Gt

Gstd

)
for Gt > Rc.

(5)

Ppvratedi is the optimal size of the PV system at each identified injection point i which is
the decision variable to be estimated in the optimization procedure, Gt is the instantaneous
solar radiation, Gstd is standard radiation and Rc is the radiation threshold.

By definition, the capacity factor of a solar PV facility is a measure of the energy
production efficiency of that facility over a period of time, usually a year, based on the
solar resource potential of the site. The power flow analysis is often calculated as per hour
simulation of the steady-state condition of the power system; thus, the maximum available
AC power injection into the distribution system from the solar PV DG units in per hour
equivalent can be obtained as a function of the site’s capacity factor (C fpv) and inverter’s
efficiency (ηinv.) as described [50]:

PDGi = ηinv. × Ppvratedi × C fpv (6)

The capacity factor of a good site with sufficient solar potential is estimated to be from
20% and above [51]. The solar data of a typical location with moderate solar potential is
used for analysis in this study and the site capacity factor is assumed to be 25%.

2.3. Modified Analytical Approach for Solar PV-DGs Placement Based on Line Loss Sensitivity

The analytical method for DG placement adopted in this study recognizes that the
rate of change of power loss along a branch against the injected power at the sending end
is a parabolic function which is known as the loss sensitivity factor, L f . This approach
is an adaptation of the analysis of DG placement using the exact loss equation reported
in [39,52]. The main difference between the reported approach and the modified approach
being proposed in this study is the priority given to individual line loss with respect to
the injected power by a DG placed at its sending end bus and the corresponding effect on
the loading at the receiving end. The exact line loss for distribution network is calculated
using the equation below:

PLj =
Nb

∑
i=1

Nb

∑
k=1

[αik(PiPk + QiQk) + βik(QiPk − PiQk)] (7)

where

αik =
rik

ViVk
cos(δi − δk); (8)

βik =
rik

ViVk
sin(δi − δk) (9)

The active and reactive powers from the DG injected into the network at the sending
end buses of each branch can be represented as PDGi and QDGi, respectively as given below.

QDGi = ℘PDGi

(
≡
√

S2
inv − P2

DGi

)
(10)

where
℘ = tan(cos−1(p f )) (11)

Sinv is the inverter’s ratings and ℘ is a function of the system’s power factor and Nb is
the total number of nodes (buses) in the distribution system. The modification of the exact
loss equation using the negative load model for DG power injection [50,53] give:

PLj =
Nb

∑
i=1

Nb

∑
k=1
{αik[(Pi − PDGi)Pk + (Qi −QDGi)Qk] + βik[(Qi −QDGi)Pk − (Pi − PDGi)Qk]} (12)
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The active power loss along a line increases as the partial derivative of the line loss
with respect to the active power injected from DG connected at its sending end bus i rises
up to a maximum point as illustrated in the Figure 2. Thus, for any branch/line j, the loss
sensitivity factor L f j due to power injected by a DG at its sending end bus i is described as:

Figure 2. Illustration of loss sensitivity factor as a function of injected power, L f j.

L f j =
∂PLj

∂PDGi
= −

Nb

∑
k=1

[αik(Pk + ℘Qk) + βik(℘Pk −Qk)] (13)

Hence, to determine the candidate buses, the line sensitivity factor, L f j is sorted in
descending order prioritizing the branches with high L f j values; and the candidate buses
for DG injection are the sending end buses (as long as it is not the main feeder which is the
bus 1) of the selected branches/lines.

2.4. Voltage Stability Margin and Optimal DG Sizing

One crucial feature of power system security vis-a-vis voltage stability analysis is
the assessment of line voltage stability condition as related to the critical loading limit
(stability margin) of the branches. This critical security criterion is defined as the ability
to maintain a stable voltage profile under all credible contingencies, i.e., no fault, faulty,
fault-cleared, as well as normal load and overload conditions. This is often analyzed as a
function of the maximum load increase that the system can withstand without violating its
stability expectations. This loading margin can be graphically portrayed by the relationship
between the real and reactive loading as shown in the Figure 3. The voltage stability
margin can also be a crucial parameter for determining the limit of extra generation that
the power system has the capacity to take, especially with the variable renewable DGs, as
illustrated in the Figure 4. At a point, though the VSM is enhanced, the system can become
overcompensated and this also threatens the power system stability condition.
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Figure 3. P-Q curve showing the voltage stability margin.

Figure 4. Voltage stability margin at different system conditions.

The estimation model used for evaluating the stability margin in this study is the
critical boundary index, CBI, which is derived from the simple transmission line model
described in [40]. The condition for a power system at steady state to be within the voltage
stability range is expressed as:√√√√(Pkrik + Qkxik −

V2
i

2

)2

−
(
r2

ik + x2
ik
)(

P2
k + Q2

k
)
≤ 0. (14)

Thus, the locus of a point C(X, Y) on the stability boundary can be obtained as:

C(X, Y) =

(
rikX + xikY−

V2
i

2

)2

−
(

r2
ik + x2

ik

)(
X2 + Y2

)
. (15)

The real and reactive load powers are Qk and Pk, respectively. Vi and Vk are the branch
sending and receiving end voltage, respectively. xik and rik are the line reactance and
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resistance. Applying, the distance between two points approach, the current operating
point, B(Pk, Qk) from any point, C(X, Y) on the stability boundary is:

D =

√
(X− Pk)

2 + (Y−Qk)
2. (16)

Subject to the stability criteria defined by Equation (15).
Hence, the non-linear problem is defined below using Lagrange constant method to

obtain X and Y.

F(X, Y, λ) = D(X, Y) + C(X, Y) (17)

Hence, the critical boundary index, CBI is calculated as:

CBI =
√
(X− Pk)2 + (Y−Qk)2. (18)

As CBI approaches zero, the stability of the power system is threatened/compromised.

3. Problem Formulations

For analyzing the consistency of the proposed approach for DG siting and optimal
sizing of DGs, three relevant objectives are considered and combined comparatively in a
three scenarios arrangement, as described in this section. The considered objectives are the
minimization of the total investment cost, the minimization of the total active power loss
and the maximization of the voltage stability margin. The result of the three scenarios is
compared with results from relevant literature on loss minimization and voltage stability
enhancement in the succeeding section.

3.1. Objective Functions

Three fitness functions are considered and compared in the designed optimization
procedure based on different decision scenarios. This includes the total cost minimization,
which is consistent with all considered scenario, power loss minimization and voltage
stability margin maximization [4,50].

(a.) F1: Total system cost
PVtotal

cost = Cinv. + Co&m − Csal (19)

(i.) Cost of investment:

Cinv =
Npv

∑
i=1

(
Ppvrated × Invcost

)
(20)

(ii.) Cost of operation and maintenance:

Co&m =
Npv

∑
i=1

(
Ppvrated × o&mcost ×

Ny

∑
n=1

(
1 + ε

1 + µ

)n
)

(21)

(iii.) Resale cost of salvageable component (after project lifetime):

Csal =
Npv

∑
i=1

(
Ppvrated × salcost ×

(
1 + ε

1 + µ

)Ny
)

(22)

where ε is the inflation rate, µ is the interest rate, Ny is the project lifetime, C fpv is
the site capacity factor, Npv is the number of the identified/selected PV sites, ηinv. is
the converter’s efficiency, Invcost is the unit cost of investment, o&mcost is the unit
operation and maintenance cost and salcost is the unit salvage cost. The full details of
all parameters and their values are provided in Table 1.
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(b.) F2: Total active power loss

Ptotal
loss =

Nbr

∑
j=1

Plossj (23)

(c.) F3: Voltage stability margin

CBImin = minimum (CBIj), ∀j ∈ Nbr (24)

Nb and Nbr are the number of buses/nodes and number of branches, respectively. The
optimization problem scenarios solved and compared are thus described:

• Scenario 1: Total cost minimization and power loss minimization-minimize [F1, F2]
• Scenario 2: Total cost minimization and stability margin maximization-minimize

[F1, −F3]
• Scenario 3: Total cost minimization, power loss minimization and stability margin

maximization-minimize [F1, F2, −F3].

For consistency with simulation model, the maximization problem is converted to the
minimization equivalent by expressing it as negative during initialization of optimization
process.

Table 1. Cost and technical parameters for solar PV system [4,50,53].

Symbol Meaning Value Unit

ε Inflation rate 4%
µ Interest rate 10%

Ny Project lifetime 25 years
Cfpv Site capacity factor 25.50%
ηinv. Converter’s efficiency 95%

Invcost Unit investment cost 1695 $/kW
o&mcost Unit oper. and maint. cost 26 $/kW/year
salcost Unit salvage cost 0.25 × Invcost $/kW

3.2. Network Constraints

The following constraints are considered alongside the power balance equations [48].

(i.) Power flow constraint: Power flow constraint in each line(S f lowj
) must be less than

the maximum limit of power flow on each line (Smax
f lowj

) as:

S f lowj
< Smax

f lowj
(25)

(ii.) Bus Voltage constraint The voltage at each bus Vi must be within their permissible
minimum and maximum limit as:

Vmin
i ≤ Vi ≤ Vmax

i (26)

(iii.) Voltage stability limit The critical boundary index value for each branch should be
greater than a specific limit:

CBIj ≥ CBIlimit (27)

The critical stability limits are considered to be at least 10% of the line’s thermal
limit [54].

3.3. Overview of Multiobjective Particle Swarm Optimization Algorithm

Classical Particle Swarm Optimization algorithm was developed based on the emer-
gent motion of a flock of birds searching for food. It is a population-based, self - adaptive
search optimization technique first introduced by Kennedy and Eberhart in 1995. The
PSO algorithm performance is based on the social behavior and interaction of particles
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within the swarm, therefore the global best solution is achieved by adjusting the trajectory
of each individual toward its own best location and toward the best particle of the entire
swarm at each time generation [55]. The movement of each individual particle in the
search space is adjusted by dynamically changing the velocity of each particle based on
its movement with respect to that of its neighbours in the search space. The velocity is
the additive factor for updating the position of each particle. The position and veloc-
ity vectors of the ith particle of a search space with d-dimension can be represented as:
Xi = (xi1, xi2, . . . , xid) and Vi = (vi1, vi2, . . . , vid), respectively. Based on the fitness function
value, if the best position of the particle at a particular time (known as the local best) is
obtained as Pbesti = (pi1, pi2, . . . , pid) and the best position so far (known as the global
best) is Pbestg = gbest = (pg1, pg2, . . . , pgd), the positions of the particles for the next fitness
evaluation are calculated using the following equations:

Vt+1
id = w× vk

id + c1 × rand1 × (Pbestid − Xid) + c2 × rand2 × (gbestd − Xid) (28)

Xk+1
id = Xk

id + Vk+1
id (29)

Here, w is the inertia weight that is linearly varying over the generation (iteration).

w = wdamp ×
itermax − iter

itermax
+ wi (30)

iter is the current iteration number, itermax is the maximum number of iterations. wi
and w f are the lower and upper boundary values of the inertia weight which are 0.4 and
0.9, respectively. c1 and c2 are the cognitive and social factors for the swarm interactions,
respectively. In the conventional PSO, c1 and c2 are both chosen to be constant (usually
2.0). In this study, however, a variant of PSO with improved convergence capability known
as the constriction PSO factor [47], is adopted. The algorithm involves introducing a
weighting coefficient, χ to the dynamic velocity as illustrated below [56].

χ =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ (31)

Vt+1
id = χ(w · vk

id + c1 · rand1 · (Pbestid − Xid) + c2 · rand2 · (gbestd − Xid)) (32)

where (ϕ = c1 + c2 and ϕ ≥ 4).

The multiobjective optimization problems described in this study are solved using
the multiobjective PSO algorithm defined in [57,58]. The use of secondary repository
particles helps to guide our search towards obtaining an efficient, non - inferior and admissible
pareto front, by sorting out the non-dominated vectors. A special mutation operator was
employed to reinforce the exploratory capacity of the algorithm; this resembles that of
genetic algorithm. If ~f (~x) consists of n objective functions each with m decision variables,
then the multiobjective problem can be defined as finding the vector ~x∗ = [x∗1 , x∗2 , . . . , x∗m]T

which minimizes ~f (~x):

min ~f (~x) = [ f1(~x), f~2(x), . . . fn(~x)] f or~x∗ ∈ ε (33)

~g(~x) ≤ 0 (34)

~h(~x) = 0 (35)

~g and~h are sets of inequality and equality constraints, respectively. Set of optimal
solutions, called pareto solutions, are obtained based on the concept of non-dominated
sorting. A point ~x∗ ∈ χ is pareto optimal if for every ~x ∈ χ
and I = 1, 2, . . . , k either
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∀i ∈ I( fi(~x) = fi(~x∗)). (36)

or at least there is one i ∈ I such that

fi(~x) > fi(~x∗)). (37)

4. Simulation Conditions, Results and Discussion

The method proposed in this study is tested on the standard IEEE 33 bus distribution
network [59] which is strictly a radial network with no tie line requirement as seen in
Figure 5. The system consists of 33 buses/nodes and 32 lines/branches, and it is operated
at a voltage of 12.66 kV with a load size of 3.715 MW of active power and 2.300 MVAr of
reactive power [6,53]. The location/number of the distributed generation unit is limited to
three with total size of about 40% of the total load, in consistent with standard practice as
reported in several studies. All simulations reported in this work are performed with the
steady-state analysis approach using the load flow methods designed on Matlab.

Figure 5. IEEE 33 radial distribution network.

Figure 6 shows the estimated loss sensitivity factor for all the lines as described in the
previous section and the candidate buses are selected to be buses 8, 30 and 24, considering
maximum DGs to be three in line with the siting/selection criteria previously described.

Figure 6. Line sensitivity factor ranking for the transmission lines.
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For the optimization procedure for DG sizing, the operating voltages is constrained to
be between 0.95 p.u. and 1.05 p.u. which is a safe voltage magnitude margin for distribution
network [53]. The cost and technical parameters adopted in the simulation procedures are
given in Table 1 and simulation parameters for PSO algorithm are provided in Table 2:

Table 2. PSO Parameters [47].

Parameter Values

Population size 200
Repository Particles 200
Number of Iterations 500
Cognitive factor, C1 2.05

Social factor, C2 2.05
Inertia weight, w 0.9–0.4

The simulation was performed for the three scenarios described in the previous section
towards establishing the consistency of the proposed approach for effective DG placement
based on line-loss sensitivity and optimal sizing considering the time-varying dynamics
of the PV system output. The pareto optimality plots for the three scenarios are shown in
Figures 7–9; and the summary of the obtained results is presented in Table 3 and this is
compared, as summarized in Table 4, with available results from some relevant literature
on loss minimization and voltage stability enhancement in radial distribution network
using IEEE 33 bus system.

Figure 7. Pareto optimality (Scenario 1).
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Figure 8. Pareto optimality (Scenario 2).

Figure 9. Pareto optimality (Scenario 3).
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Table 3. Simulation result

PARAMETERS No DG Scenario 1 Scenario 2 Scenario 3

Optimal size [MW]
Location/Bus number

(Bus 8) n/a 0.7503 0.7506 0.7542
(Bus 30) n/a 0.7501 0.7504 0.8354
(Bus 24) n/a 1.4611 1.2179 1.4608

Total DG size [MW] n/a n/a 2.9615 2.7189 3.0504

Total investment cost [$] n/a 2.4839 ×109 2.4576 × 109 2.5528 ×109

Total active power loss [kW] 202.66 74.44 74.34 74.33

Total reactive power loss [kVAR] 135.22 51.17 50.94 50.63

Minimum CBI [pu] (Line 16) 0.1591 0.1492 0.1702 0.2311

Minimum voltage [pu] (Bus 18) 0.9131 0.9345 0.9408 0.9467

Table 4. Result of comparison with other techniques

METHOD DG Location and (Size in MW) Total DG Size (MW) Total Loss (kW)

SFS [30] 13 (0.8020) 24 (1.0910) 30 (1.0530) 2.9470 72.7850

CMSFS [30] 13 (0.8020) 30 (1.0540) 24 (1.0910) 2.9470 72.7850

EA [60] 13 (0.7980) 24 (1.0990) 30 (1.0500) 2.9470 72.7870

EA-OPF [60] 13 (0.8020) 24 (1.0910) 30 (1.0540) 2.9470 72.7900

AM-PSO [61] 13 (0.7900) 24 (1.0700) 30 (1.0100) 2.8700 72.8900

TLBO [62] 10 (0.8246) 24 (1.0311) 31 (0.8862) 2.7419 75.5400

QOTLBO [62] 12 (0.8808) 24 (1.0592) 29 (1.0714) 3.0114 74.1010

Scenario 1 8 (0.7503) 30 (0.7501) 24 (1.4611) 2.9615 74.4400

Scenario 2 8 (0.7506) 30 (0.7504) 24 (1.2179) 2.7189 74.3400

Scenario 3 8 (0.7542) 30 (0.8354) 24 (1.4608) 3.0504 74.3300

The results obtained are presented in Table 3. The proposed approach yielded sig-
nificant performances for the three simulated scenario in terms of total active power loss
with 74.44 kW, 74.34 kW and 74.33 kW obtained for scenario 1, scenario 2 and scenario 3,
respectively. The obtained values agreed with the one found in existing literature as
shown in Table 4. Though no literature standard for investment cost comparison was
found due to the site capacity factor and cost estimation models deployed, however the
total investment cost obtained for the three scenarios shows remarkable consistency i.e.,
2.4839 ×109, 2.4576 ×109 and 2.5528 ×109 for scenario 1, scenario 2 and scenario 3, re-
spectively. The selected location for DG placement agrees to reasonably well with the one
obtained by other researchers; this can be seen with the consistency of buses 24 and 30 in
most of the referenced result. Moreover, the total DG size of 2.9615 MW, 2.7189 MW and
3.0504 MW for scenario 1, scenario 2 and scenario 3, respectively is significantly consistent
with the results of other methods reported in the literature as presented in Table 4.

The performance of the approach with respect to the voltage magnitude, line flow and
the voltage stability margin is presented in Figures 10–12, respectively. The figures show
consistency of the proposed DG siting and sizing approach with remarkable improvement
in the voltage magnitude, line flow and the voltage stability margin. Not much difference
is observed in the results obtained for the three scenarios; however, it is clearly noticed
that there is a significant improvement in the distribution network performance using the
proposed methods under the three considered scenarios. The significance of this improve-
ment under each scenario is clearly indicated in Table 3 as reflected in the improvement of
the minimum bus voltage at bus 18 from 0.9131 pu to 0.9445 pu, 0.9408 pu and 0.9467 pu
under the scenario 1, scenario 2 and scenario 3, respectively. The voltage stability margin as
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measured using CBI shows an improvement of the least CBI value (at line 16) from 0.1591
pu to 0.1702 pu and 0.2311 pu for scenario 2 and 3, respectively while there is a slight
reduction in the least CBI value to 0.1492 pu under scenario 1. The trend can be explained
by the fact that the formulation of the objective function for scenario 2 and 3 involves CBI
maximization directly.

Figure 10. Voltage magnitude at each bus.

Figure 11. Power flow along each branch.
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Figure 12. Voltage stability margin without and with DGs.

5. Conclusions

In conclusion, the increasing desire to increase the uptake of alternative energy re-
sources especially the variable renewable energy sources calls for improvement in the
methods of power system planning downstream. The concept of DG is directed towards
ensuring adequate management of available power system infrastructure i.e., the grid,
by locating modular generating unit close to the load points along the distribution end.
Hence, in this work, a new and more efficient approach for injecting power from renew-
able energy-based DGs into radial distribution network (RDN) with goals of ensuring
cost-effective planning and improved technical performance of the power system in terms
of power loss minimization and voltage stability improvement have been investigated
and discussed. The new loss sensitivity-based analytical approach for DG siting have
been derived and its influence on the optimal sizing of the DG units have been verified
in a three-scenario approach using a combination of three important objective functions
namely total investment cost minimization, total active power loss minimization and
voltage stability margin maximization. Finally, the results obtained using the proposed
methods are compared with available results in the literature that are focused on similar
objectives from system planning and operation perspectives. The future research direction
is to look at the possibility of merging the flexibility needs and voltage stability criteria for
radial distribution network with high renewable energy integration especially for large
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radial distribution network as well as mesh distribution system which includes tie line
requirements.
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