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Abstract: The integrated production of bioethanol and biogas makes it possible to optimise the
production of carriers from renewable raw materials. The installation analysed in this experimental
paper was a hybrid system, in which waste from the production of bioethanol was used in a biogas
plant with a capacity of 1 MWe. The main objective of this study was to determine the energy
potential of biomass used for the production of bioethanol and biogas. Based on the results obtained,
the conversion rate of the biomass—maize, in this case—into bioethanol was determined as the
efficiency of the process of bioethanol production. A biomass conversion study was conducted
for 12 months, during which both maize grains and stillage were sampled once per quarter (QU-I,
QU-II, QU-III, QU-IV; QU—quarter) for testing. Between 342 L (QU-II) and 370 L (QU-I) of ethanol
was obtained from the organic matter subjected to alcoholic fermentation. The mass that did not
undergo conversion to bioethanol ranged from 269.04 kg to 309.50 kg, which represented 32.07% to
36.95% of the organic matter that was subjected to the process of bioethanol production. On that
basis, it was concluded that only two-thirds of the organic matter was converted into bioethanol.
The remaining part—post-production waste in the form of stillage—became a valuable raw material
for the production of biogas, containing one-third of the biodegradable fraction. Under laboratory
conditions, between 30.5 m3 (QU-I) and 35.6 m3 (QU-II) of biogas per 1 Mg of FM (FM—fresh matter)
was obtained, while under operating conditions, between 29.2 m3 (QU-I) and 33.2 m3 (QU-II) of
biogas was acquired from 1 Mg of FM. The Biochemical Methane Potential Correction Coefficient
(BMPCC), which was calculated based on the authors’ formula, ranged from 3.2% to 7.4% in the
analysed biogas installation.

Keywords: bioethanol; stillage; biogas; biomass conversion degree; biochemical methane potential
correction coefficient (BMPCC)

1. Introduction

At the moment, energy carriers used for transport are mainly derived from oil. This
leads to a reduction in natural fuel resources and the emission of greenhouse gases in
significant quantities [1–4]. Europe aims to be the first climate-neutral continent by making
its economy modern and resource-efficient. For that reason, the European Union has been
supporting the development of renewable energy sources, including biofuels, wind, water,
and solar energy, for many years [5]. The biofuel economy in Poland has been in develop-
ment since around 2000. Ethanol and esters have similar properties to commonly used fuels
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(ethanol and biodiesel), but the major difference between biofuels and petroleum-based
fuels lies in the content of oxygen [6]. Biofuels contain 10–45% oxygen by weight, whereas
petroleum-based fuels have basically no oxygen, meaning that biofuel molecules have
fewer carbon atoms than those of petroleum, which makes them less calorific. Naturally,
liquid biofuels have a higher oxygen content, due to their chemical structure—they are
esters of alcohols and higher fatty acids [7]. According to the scientific papers, this differ-
ence can be regarded as the most significant. Two liquid biofuels are currently in use in
Poland: (i) ethanol, which can substitute petrol; and (ii) biodiesel, used as a diesel additive.
Five per cent of ethanol is added to petrol and seven per cent of methyl esters are added to
diesel. This is related to the promotion of renewable energy sources and to the reduction
in carbon dioxide emissions from fossil fuels, which negatively affect the environment.
Emitted into the atmosphere, carbon dioxide is responsible for exacerbating the global
greenhouse effect [8].

In Poland, the main raw material for the production of ethanol for energy purposes is
maize grains. The maize grown nowadays is one of the most efficient crops in the world. Its
yield is associated with many factors, the most important of which include weather patterns,
crop variety, growing position, and agrotechnical treatment [9,10]. The vegetation period
has a major impact on potential yield. In Poland, there are three vegetation period groups
described by the FAO number (Food and Agriculture Organization of the United Nations),
which is the international index of the development of maize varieties. In Poland, the
FAO number for maize varieties is determined by the Research Centre for Cultivar Testing
(COBORU). These vegetation period groups are as follows: medium-late (FAO above 260),
medium-early (FAO 240–250), and early (FAO up to 230). According to official COBORU
data, in 2019–2020 early grain maize varieties yielded an average of 100.0 [dt-ha−1] (14% of
humidity); mid-early varieties yielded an average of 99.9 [dt-ha−1] (14% of humidity); and
mid-late varieties yielded around 100.1 [dt-ha−1] (14% of humidity). The average yield from
the three varieties of vegetation periods is 99.98 [dt-ha−1], which equals 9.998 [Mg·ha−1].
As a plant, maize has many applications. It is used as animal feed, for the production
of biofuel (as already mentioned), and sweetcorn is grown for human consumption. In
biofuel production, the whole plant (in the form of maize silage) can be utilised in biogas
production processes, and maize grains alone can be used in technologies for obtaining
ethanol [11,12]. Maize ears, stalks, and leaves can be processed into fermentable sugars
through cellulose-processing technology, which involves pretreatment, hydrolysis, and
fermentation involving yeast or other microorganisms. As opposed to cereal feedstocks,
the production of cellulose-based ethanol requires microorganisms capable of synthesising
ethanol from both glucose and xylose. Maize grains contain large amounts of starch, which
is easily converted to monosaccharides after pretreatment (i.e., cooking in water) and
the hydrolysis process [13]. The process of producing ethanol from maize has already
been consolidated in various countries. The inclusion of this feedstock into the system
of production, as pointed out by Brazilian researchers, will add value to the product and
contribute to the stabilisation of the ethanol supply in the country [14].

1.1. Maize Ethanol Production

The production of ethanol from maize involves the decomposition of the starch
contained in maize grains to glucose (C6H12O6) and maltose (C12H22O11). Subsequently,
both sugars are broken down through alcoholic fermentation to ethanol (see Equation (1)).
Starch is a chemical compound consisting exclusively of glucose structural units linked by
α-glycosidic bonds and hydrolyses only into α-D-glucose. However, it is not a chemically
homogeneous compound—it consists of two polymeric fractions: branched chains of
amylopectin, containing α-1,4 and α-1,6-glycosidic bonds, and a linear polymer with
α-1,4-glycosidic bonds of amylose [14]. During the process of ethanol production, the
starch structure is destroyed by enzymes and high temperatures. Even though starch
exhibits hydrophobic properties, it dissolves in water when heated, which results in the
weakening of the hydrogen bonds. As a result, the starch increases in volume; this stage
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is known as the gelation process. Due to the heat treatment and the enzymes involved,
the starch decomposes into glucose. At the first stage (hydrolysis), α-amylase reduces the
polymer chains of starch to dextrins; this process is called liquefaction. The dextrins are
then degraded (saccharified) to glucose and maltose in the presence of the glucosamine
enzyme [15]. The resulting product is subjected to alcoholic fermentation, resulting in
the extraction of ethanol and a by-product, the digestate pulp, which contains chemical
compounds that will not convert to ethanol.

Equation (1) illustrates the starch decomposition reaction in the alcoholic fermentation
process [16]:

3C6H10O5 + 3H2O→ C6H12O6 + C12H22O11 + H2O→ 6C2H5OH + 6CO2 (1)

When it comes to ethanol production, the by-product is stillage, which constitutes a
problematic waste product. This material can be used as a substrate for the production
of biogas in the process of methane fermentation. Both worldwide and in Poland, there
are installations in which ethanol is produced and the digestate is used as a substrate in a
biogas plant. Such solutions result in the optimal use of the energy potential of maize grain
fuel to produce the maximum number of energy carriers from renewable energy sources.

1.2. Biogas Production

Anaerobic technologies have considerable potential in the management of a wide
range of organic wastes [17–19]. These wastes most often include waste from animal
production, such as manure and slurry, and purpose-grown crops, mainly maize for silage
production, but also sewage sludge and food-industry waste [20–22]. In the absence of
oxygen, gas is generated from organic biomass containing proteins, fats, and sugars [23].
This gas is defined as biogas due to its origin and generation process, determined by the
activity of living micro-organisms. Its main components include methane and carbon diox-
ide, together accounting for about 95–99% of the mixture [24,25]. Other gases, contained in
biogas in small quantities, include hydrogen, ammonia, and hydrogen sulphide. Biogas can
be continuously generated under suitable environmental conditions that are friendly to the
perpetual recreation of the methane-forming bacterial flora. Its composition and quantity
depend on the parameters of the environment in which it is produced [26,27]. Essentially,
the anaerobic digestion process can be divided into four phases: hydrolysis, acidogenesis,
acetogenesis, and methanogenesis. A characteristic group of microorganisms, requiring
specific environmental conditions, are responsible for each respective cycle [28,29]. This
process is usually conducted in a one- or two-stage system involving two fermentation
tanks. To conduct anaerobic digestion effectively and maximise the production potential
of individual bacterial groups, it is necessary to prepare appropriate feed material and
environmental conditions [30–32]. During the production of energy carriers from renew-
able sources, it is worth introducing integrated technologies to improve the efficiency of
biomass conversion from the organic matter contained in it.

The stillage obtained in ethanol plants can be further processed in biogas plants be-
cause it contains a certain amount of organic matter from which biogas can be generated
(see Figure 1). The aforementioned material contains compounds—mainly lignocelluloses,
which can serve as a raw material for the production of biogas through anaerobic diges-
tion [33]. Therefore, the waste product from the first process (stillage) can function as the
raw material for a second process (the production of biogas). In their study, Lanzerstorfer
and Jäger (2008) identified three main correlations between the processes of bioethanol
and biogas production: (i) low-temperature energy is used for heating purposes in the
production of bioethanol at the fermentation stage, (ii) high-temperature energy from the
cogeneration of waste gas is used to produce steam for the distillation stage in bioethanol
production, and (iii) the distillery stillage is used as a raw material for biogas produc-
tion [34]. However, the industrial-scale application of this solution is often considered
groundless, due to its low economic competitiveness in comparison with the production
of energy from fossil fuels. These limitations are based on the high-energy requirements



Energies 2021, 14, 7763 4 of 16

associated with the treatment of biomass before the fermentation stage and with the man-
agement of stillage. In their study, Cesaro and Belgiorno (2015) regarded the combination
of bioethanol production and anaerobic digestion as a valuable option that can overcome
any limitations, such as those related to the pretreatment of biomass or the management of
stillage [35]. Furthermore, the experimental results obtained by the authors revealed that
fermentation acts as a pre-treatment of the biomass so that the energy needed to convert
stillage into biogas in the anaerobic digestion process is lower than the energy needed
to process the entire substrate. It has been unambiguously established that a synergistic
combination of alcoholic fermentation and anaerobic digestion can enable the production
of ethanol together with biogas, which can be used to produce heat and electricity (see
Figure 1—cogeneration aggregate), thus improving the overall energy balance. Martin et al.
also draw similar conclusions in their publication (2014) [36]. The findings of the studies
conducted within this concept demonstrate how important it is to understand the impact
of biofuel production and industrial symbiosis and how valuable the different flows of
matter and energy are. The concept of utilising waste biomass in a sequential combination
of two biochemical processes, ethanol fermentation and methane fermentation, can also
offer specific environmental protection benefits, such as the utilisation of waste from the
agricultural sector, a reduction in organic contaminants, and a reduction in dust and gas
emissions from the combustion of conventional energy sources [37]. It is rightly assumed
that symbiotic activities can lead to benefits regarding environmental performance, al-
though the choice of impact category and allocation method is crucial when comparing
local versus global impacts [36].
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Figure 1. Conceptual scheme of integrated bioethanol and biogas production (authors’ own scheme).

This study aimed to determine the energy potential of biomass used for bioethanol and
biogas production. Based on the results obtained, the conversion rate of biomass—maize
in this case—into bioethanol was determined as the efficiency of the bioethanol production
process. At the next stage, it was possible to identify the unused biomass energy potential
accumulated in the waste material in the form of stillage. The degree of the conversion
of biomass to bioethanol and the susceptibility of biomass to conversion into biogas was
therefore determined. The possibility to estimate the insufficient conversion of biomass
allows the production of energy carriers from renewable raw materials to be optimised.

2. Materials and Methods
2.1. Physicochemical Analysis of Materials

Physicochemical analyses of substrates and samples were performed with the use of
the methods and procedures described in the following standards: pH—potentiometric
analysis, with Elmetron CP-215, Zabrze, Poland (PN-EN 12176:2004); total solids (residue
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after drying)—gravimetric analysis, measurement by drying at 105 ◦C (Zalmed SML dryer,
Zalmed, Łomianki, Poland), PN-EN 12880: 2004; volatile solids (residue after roasting)—
gravimetric analysis, measurement by combustion at 550 ◦C (MS Spectrum PAF 110/6
furnace, MS Spectrum, Warsaw, Poland), PN-EN 12879:2004; sample collection for chemical
and physical tests, PN-EN ISO 5667-13:2011; carbon, EN ISO 16948:2015; hydrogen, EN ISO
16948:2015; nitrogen, EN ISO 16948:2015; oxygen, based on calculations; sulphur, PN-EN
ISO 11885:2009.

The quantitative determination of the chemical composition of maize grains, i.e.,
starch, total dietary fibre, mineral matter (insoluble ash), fat, and protein was performed
according to the following procedures:

• Starch—Luff–Schoorl titration method, range: (0.50–80)%; reduction in Cu(II) ions in
the Luff solution (sodium carbonate, citric acid, copper sulphate) by reducing sugars,
boiling point, pH approx. 9.5 [38];

• Fibre—chemical method (fibre is determined as the fraction remaining after digestion
with standard solutions of 0.25 N sulphuric acid and 0.25 N sodium hydroxide under
carefully controlled conditions) AOAC 962.09 [39];

• Fat—Soxhlet method, extracted with hexane using a Soxhlet automatic extractor,
model B-811 BUCHI, (Büchi Labortechnik AG, Flawil, Switzerland); AOAC 920.85 [40];

• Protein—calculated from TKN (total Kjeldahl nitrogen) using a conversion factor of
6.25 for crude proteins; AOAC 920.87 [41]; TKN—titration, Kjeldahl method, 0.1 n HCl,
Tashiro’s indicator; PN-EN 13342, EN 15104:2011;

• Mineral matter—ash, range: (0.02–40%), gravimetric analysis [42].

To determine the elemental composition of maize grains, the elemental analysis of
elements C, H, N, S, and O was performed using the CHNSO FlashSmart series ele-
mental analyser obtained from Thermo Fisher Scientific (Waltham, MA, USA), which is
Organic Elemental Analysis (OEA) equipment. The device uses the method of the dynamic
combustion of samples (of both organic and inorganic origin) in a reactor filled with an
oxidation-reduction catalytic bed, with the electronically controlled temperature reaching
1800 degrees Celsius (CHNS analyses) or in a pyrolytic reactor (O analyses). The analyser
works by separating combustion gases on a chromatographic pillar and then detecting
them on a highly sensitive thermoconductivity detector.

2.2. Laboratory Scale

The anaerobic digestion process was conducted in a periodic mode of operation
of the digesters, under mesophilic conditions. The authors of this study presented a
detailed diagram and described the design and operation of biodigesters in their previous
publications (Figure 2) [43,44].

According to the German standard DIN Guideline 38 414-S8 (DIN, Deutsches Institut
für Normung) [45], the experiment was conducted until the daily biogas production in
all biofermenters decreased below 1% of the total biogas production. The volume of
biogas, which was generated using the laboratory scale from stillage, was measured
every 24 h. The concentrations of methane, carbon dioxide, hydrogen sulphide, ammonia,
and oxygen in the biogas were measured using a Geotech GA5000 gas analyser (Geotech,
Bydgoszcz, Poland).

The estimation of the biogas efficiency (in m3·Mg−1) from dry matter or dry or-
ganic matter was based on experimental data. The biogas efficiency for a given substrate
was determined by subtracting the amount of biogas produced from the inoculum alone
(obtained in the control test) from the amount of biogas produced for the mixture (sub-
strate/inoculum). For bioreactors with a substrate or mixture of substrates tested, the
cumulative amount of biogas produced from the inoculum (digested sewage sludge) was
calculated based on the corresponding equation presented in other publications of the
authors [21–24]. Specific biogas production from the substrate (dependent on the duration
of the test) was calculated in stages—from one reading to another [21–24].
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Figure 2. Anaerobic bioreactor used in biogas production experiment: 1—water heater; 2—water
pump; 3—insulated tubes for heating medium; 4—water jacket (39 ◦C); 5—bioreactor (1.4 L);
6—slurry sampling valve; 7—tube for biogas transport; 8—graduated tank for biogas; 9—gas sam-
pling valve (authors’ own elaboration).

2.3. Construction and Operation of an Industrial Installation

The biomass conversion study was conducted for 12 months in a biogas plant that
used stillage derived from bioethanol produced in a Polish distillery (the exact location is
not given at the request of the owner). Stillage samples were collected at quarterly intervals
for accurate stillage analysis. The biogas plant (also in Poland) consisted of 2 digesters and
a lagoon for digestate. The anaerobic digestion process was conducted simultaneously in
both tanks, without division into primary and secondary digestion. The installation was
equipped with a 1 MWe cogeneration plant.

2.4. Collection of Samples for Tests

Samples for testing both maize grains and the stillage were collected every quarter
(QU-I, QU-II, QU-III, QU-IV; QU—quarter). During sample collection, the following points
were taken into account: the accessibility of the sampling point, the possibility of a safe
interruption of the material flow in case of manual sampling, and the type of digester
design due to the stratification of the test material. In addition, the safest and most practical
position for manual sampling was analysed and the practicality of the location of the
sampling site was considered due to the crucial role and representativeness of the material
collected for testing. At least 3 samples were collected and tested each time to increase
confidence in the representativeness of the material collected. The material analysed for
representativeness was then subjected to testing. Based on the analyses performed, the
uncertainty of the results was also determined.

Measurement uncertainty is a component of the individual stages of the analytical pro-
cedure. Uncertainty is a fundamental property of any measurement and it is encountered
at every stage of the measurement procedure. The measurement uncertainty estimation in
this study employed procedures in line with standards and literature data [46,47].

2.5. Determination of the Biochemical Methane Potential Correction Coefficient (BMPCC)

Due to the lack of reliable data in the source literature regarding biomass conversion
on a technical scale, the authors developed and applied the Biochemical Methane Potential
Correction Coefficient (BMPCC) in their previous paper [48]. The coefficient can be used
to verify the operation of the installation in terms of the decomposition of organic matter
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into methane as compared to laboratory conditions. With the application of chemical
formulae and laboratory tests, the potential amount of methane from the substrate can
be determined, allowing for a more accurate analysis of the installation’s efficiency on
a technical scale. Consequently, this parameter acts as a diagnostic tool for a biogas
installation over a specific time interval.

To calculate the BMPCC, it is necessary to determine the values of relevant parameters,
according to the coefficient formula (Equation (4)). In the first phase, the amount of biogas
obtained from the substrate (m3·Mg−1 fresh matter (FM)) was estimated in the labora-
tory [43]. At the same time, the biogas composition was analysed in order to determine
the CH4 and CO2 concentrations. After determining the composition of the biogas, the
process proceeded to the calculation of the volume of methane. Subsequently, the mass
of methane contained in the biogas was determined under laboratory conditions (mass
of methane in biogas obtained from fresh substrate matter under laboratory conditions,
MMB-L; L—laboratory). The third stage involved the analysis of the substrate for dry
residue, roasting losses, and the content of carbon, hydrogen, oxygen, nitrogen, and sul-
phur. Once the content of C, H, O, N and S was determined, the theoretically obtainable
amount of methane (theoretical methane mass, TMM) was calculated according to the
principle of mass conservation. It was followed by the fourth stage, in which the conver-
sion of organic matter contained in biomass under laboratory conditions was calculated
(conversion of organic matter under laboratory conditions—laboratory biomass conversion
degree, COM-L). Equation (2) is as follows [48]:

COM− L =
MMB− L

TMM
(2)

The next stage involved the calculation of the conversion of organic matter contained
in the biomass under the operating conditions of the installation (conversion of organic
matter in the installation—industrial biomass conversion stage, COM-I; I—industrial) [41].
Equation (3) is as follows [48]:

COM− I =
MMB− I

TMM
(3)

The final stage of the process was to calculate the BMPCC of each substrate as the
ratio of the mass of methane produced in the installation to the mass of methane produced
under laboratory conditions. Equation (4) is as follows [48]:

BMPCC = 100− COM− I
COM− L

× 100 (4)

3. Results and Discussion
3.1. Elemental Analysis of Maize Grains

The starting point for the calculations made in this study was the analysis of the
percentage content of chemical compounds in the maize grain, which acts as a substrate
in a distillery (see Figure 3). Grain analysis was performed quarterly; four consecutive
periods yielded very similar grain chemistry results, allowing them to be averaged. For the
values shown in Figure 3, the uncertainties of the results were ±1.9 for starch, ±0.34 for
fibre, ±0.042 for mineral matter, ±0.21 for fat, and ±0.24 for protein (amino acids).

Next, based on the elemental analyses of the maize grain sampled in each quarter, the
elementary formulae were determined, and are presented in Table 1.

Table 2 shows the molar mass of the individual elements that constitute the chemical
compounds that make up the maize grain and the intermediate compounds in the alcoholic
fermentation process (glucose and maltose). The presented data show that the C:H:O ratio
is similar.
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Figure 3. Chemical composition of maize grain (authors’ own elaboration).

Table 1. Content of individual elements in the molecules of the maize grain sampled in each quarter,
determined by elemental analysis.

Sample Elementary Formula of Maize Grain

QU-I C7.178O12.123H4.266N0.130S0.074
QU-II C7.218O12.126H4.246N0.130S0.074
QU-III C7.143O12.057H4,258N0.129S0.071
QU-IV C7.212O12.138H4.222N0.136S0.078

Explanations: QU—quarter; C—carbon; O—oxygen; H—hydrogen; N—nitrogen; S—sulphur.

Table 2. Molar mass of individual elements and of starch, glucose, maltose, and maize grain sampled in each quarter.

Element. Formula

Molar Mass (g·mol−1)
C H O N S Compounds

Starch, C6H10O5 72.07 10.08 80.00 — – 162.15
Glucose, C6H12O6 72.07 12.10 96.00 – – 180.17

Maltose, C12H22O11 144.13 22.18 176.00 – – 342.31
QU-I

C7.178O12.123H4.266N0.130S0.074
86.14 12.13 68.26 1.82 2.37 171.71

QU-II
C7.218O12.126H4.246N0.130S0.074

86.62 12.15 67.82 1.82 2.37 170.89

QU-III
C7.143O12.057H4,258N0.129S0.071

85.72 12.06 68.13 1.81 2.27 169.98

QU-IV
C7.212O12.138H4.222N0.136S0.078

86.54 12.14 67.55 1.90 2.50 170.63

Explanations: element. Formula—elementary formula; QU—quarter; chem.—chemical; C—carbon; O—oxygen; H—hydrogen; N—
nitrogen; S—sulphur.

3.2. Volume of Ethanol Obtained from One Tonne of Maize Grain in the Analysed Installation

According to different authors, between 340 and 410 L of ethanol can be obtained
from 1 Mg of maize grain [49,50]. In the analysed installation, which is located in Poland,
one Mg of maize grain yielded, as shown in Table 3, between 342 (QU-II) and 370 (QU-I)
litres of ethanol, expressed by 100% ethanol of 0.7893 g·mL−1 density, which confirms the
literature data [51,52].

According to Milanez et al. [53], the cycle of corn production is four months long,
has the advantage of storing grain, and also off-season maize production. As noted by
Quintera et al., (2008), compared to sugarcane ethanol, corn ethanol has some manufactur-
ing defects, but corn uses less water (mm) in its harvest cycle, and the harvesting cost is
lower [54] In addition, maize grains contain more starch than, for example, potatoes or
rye [55,56]. Regarded as the greatest energy source in cereals [57], for this reason, corn is
the primary material in Poland for the production of ethanol for energy purposes. Amylose
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(15–25%) and amylopectin (75–85%) are the two polysaccharides that comprise starch [58].
Amylose is essentially linear and made up of D-glucose molecules of alpha-1,4 bonds,
whereas amylopectin is a highly branched macromolecule consisting of short chains of
D-glucose with alpha-1,4 bonds and 1,6 branching points. Corn starch contains approxi-
mately 25–28% amylose, which affects the structural characteristics of the starch—due to
the linearity of its chemical chain, it ensures granule resistance [59].

Table 3. Volume of pure ethanol obtained from the analysed maize in each quarter.

Sample Volume of Ethanol Obtained
(dm3·Mg FM−1)

Mass of Ethanol Obtained
(kg·Mg FM−1)

QU-I 370 292.04
QU-II 342 279.94
QU-III 356 280.99
QU-IV 364 287.31

Explanations: QU—quarter; FM—fresh matter; Mg—megagram (tonne, t).

Table 4 shows the basic parameters of the maize grain samples for each quarter.
According to the data, throughout the entire study period, the percentage content of total
solids was similar and ranged between 84.9% for QU-IV and 86.2% for QU-I. The value
of volatile solids was also similar for individual samples and ranged between 97.9% for
QU-IV and 98.6% for QU-III.

Table 4. Parameters of the analysed maize grain sampled in subsequent quarters.

Sample Total Solids
(%)

Measurement Uncertainty
(±)

Volatile Solids
(%)

Measurement Uncertainty
(±)

QU-I 86.2 1.88 98.4 2.20
QU-II 85.3 1.86 98.2 2.20
QU-III 85.8 1.87 98.6 2.21
QU-IV 84.9 1.85 97.9 2.19

Table 5 shows the percentage content of elements in relation to their mass in each
molecule. The highest carbon content was found in maize grain (from quarters QU-I, QU-II,
QU-III, and QU-IV) due to the presence of lignin, fat, and protein. On the other hand,
as shown in Table 5, the grain contains proportionally fewer oxygen atoms per molecule
compared to starch. Starch in maize grain breaks down into glucose and maltose during
the process of alcoholic fermentation. In contrast, the other compounds are inert and do not
participate directly in the process. However, because of temperature (mainly lignin) and
some random processes, particularly those that disrupt the alcoholic fermentation process,
their structure can be completely or partially destroyed due to the activity of competing
microorganisms. In the process of obtaining ethanol, the chemical compounds that do not
participate in the process penetrate the stillage and provide a potential source of energy for
subsequent stages of biomass utilisation. The results presented in Table 5 are juxtaposed to
illustrate the energy potential of maize grain as compared to starch as the main chemical
compound responsible for the alcoholic fermentation process efficiency.

Table 5. Percentage (mass) content of individual elements in 1 Mg of maize grain as derived from the elementary formula.

Element. Formula

Element C
(%)

H
(%)

O
(%)

N
(%)

S
(%)

Starch, C6H10O5 44.44 6.17 49.38 — –
Glucose, C6H12O6 40.00 6.67 53.33 – –

Maltose, C12H22O11 42.11 6.43 51.46 – –
QU-I

C7.178O12.123H4.266N0.130S0.074
50.46 7.10 39.98 1.07 1.39
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Table 5. Cont.

Element. Formula

Element C
(%)

H
(%)

O
(%)

N
(%)

S
(%)

QU-II
C7.218O12.126H4.246N0.130S0.074

50.69 7.11 39.76 1.07 1.39

QU-III
C7.143O12.057H4,258N0.129S0.071

50.43 7.09 40.08 1.06 1.34

QU-IV
C7.212O12.138H4.222N0.136S0.078

50.72 7.11 39.59 1.12 1.46

Explanations: element. formula—elementary formula; QU—quarter; chem.—chemical; C—carbon; O—oxygen; H—hydrogen; N—nitrogen;
S—sulphur.

The average yield of pure 100% ethanol from an Mg of maize grain can be used to
determine how much organic matter was converted into ethanol. Table 6 presents the
conversion of organic matter subjected to alcoholic fermentation, including a calculation of
the mass of each chemical compound.

Table 6. Conversion of organic matter into ethanol and carbon dioxide.

Sample
Ethanol

C2H5OH
(kg)

Carbon Dioxide
CO2
(kg)

Organic Matter
Converted by

Alcoholic
Fermentation (kg)

Organic Matter Not
Converted by Alcoholic

Fermentation
(kg)

Percentage of Organic
Matter Not Converted by
Alcoholic Fermentation

(%)

QU-I 292.04 279.34 571.38 276.82 32.64
QU-II 269.94 258.20 528.14 309.50 36.95
QU-III 280.99 268.77 549.76 296.22 35.02
QU-IV 287.31 274.82 562.13 269.04 32.37

The conceptual reaction for obtaining ethanol is as follows [60] (Equation (5)):

C6H12O6 → 2C2H5OH + 2CO2 (5)

During the alcoholic fermentation process, the starch contained in the maize grain
has an overarching impact on the amount of bioethanol obtained [61,62]. Nonetheless,
this process can be disrupted by infection with viruses or bacteria that will compete for
nourishment with the right microorganisms responsible for the actual process of alcoholic
fermentation. The data presented in Table 6 reveal that the most effective bioethanol
production process took place in QU-IV, where the percentage of non-converted mass was
the lowest, reaching 32.37%. The lowest degree of organic matter reactivity (528.14 kg) was
recorded in QU-II, where the degree of non-reactivity was 36.95%.

3.3. Analysis of Digestate Pulp from Bioethanol Production in a Biogas Plant—Tests in the
Laboratory and on a Technical Scale

The stillage derived from the production of bioethanol was subjected to laboratory-
scale testing of their biochemical methanogenic potential. For each tonne of maize grain
processed, the analysed industrial plant produces an average of 5 m3 of stillage, which is
used as a raw material to feed the biogas plant. The capacity of the biogas plant, which
remains in research-based cooperation during this experiment, amounts to 1 MWe. Table 7
lists the basic stillage parameters. Figures 4 and 5 present the volume of biogas obtained
and the concentration of biogas methane from 1 Mg FM (FM—fresh matter) of the stillage.

Figures 4 and 5 present the results concerning the amount of biogas obtained (Figure 4),
including methane (Figure 5), under laboratory and technical conditions. The highest
biogas yield was obtained in QU – n II, exceeding 35.6 m3·Mg FM

−1 on the laboratory scale
and 33.2 m3·Mg FM

−1 on the technical scale. In contrast, the lowest biogas volumes were
obtained in QU-I—in total, 30.5 m3·Mg FM

−1 was obtained on the laboratory scale and
29.2 m3·Mg FM

−1 on the technical scale. The methane content in biogas ranged from 50.1%
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in QU-I to 50.9% in QU-III. Remarkably similar methane contents in biogas point to a stable
anaerobic digestion process and high repeatability of the quality composition of the stillage
that was fed in. The differences in the amount of biogas volume obtained, on the other
hand, are mainly related to the quality of the alcoholic fermentation process, which directly
affects the content of organic matter (in the stillage), which is a nutrient substance for
anaerobic digestion bacteria [63]. It serves as the confirmation that these processes function
in an integrated manner and remain in industrial symbiosis with each other [64,65] to
comprehensively utilise organic matter for energy purposes. A full understanding of the
mechanism of this concept provides an opportunity to undertake process optimisation
in accordance with the technological principle of using the raw material and the energy
stored in it most effectively.

Table 7. Parameters of stillage samples fed to the biogas installation in consecutive quarters.

Sample pH Measurement Uncertainty
(±)

Total Solids
(%)

Measurement
Uncertainty (±)

Volatile Solids
(%)

Measurement Uncertainty
(±)

QU-I 4.2 0.08 5.54 0.12 76.1 0.86
QU-II 4.4 0.09 6.19 0.14 78.5 0.89
QU-III 4.3 0.08 5.92 0.13 76.8 0.87
QU-IV 4.4 0.09 5.38 0.12 77.9 0.89
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3.4. Conversion of the Organic Matter Contained in the Stillage

Figures 4 and 5 were used to determine the mass of methane in the biogas obtained
from the fresh matter of the substrate under laboratory conditions (MMB-L, see Section 2.5).
Then, the principle of mass conservation (stoichiometric Equation (6)) was applied to
calculate how much methane can theoretically be obtained when the values of C, H,
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O, N, and S are known, i.e., the theoretical methane mass (TMM) based on elementary
chemical formulae.

CcHhOoNnSs + yH2O→ xCH4 + (c − x)CO2 + nNH3 + sH2S (6)

Further, the conversion of organic matter to methane was determined (see Figure 6)
both on the laboratory and technical scales (Equations (2) and (3)). Under laboratory
conditions, higher biomass conversion rates were observed for each period compared to
the technical scale. The poorest biomass decomposition occurred during QU-III and the
best decomposition took place in QU-II and QU-IV under laboratory conditions.
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In the literature on the subject, there is a clear lack of information addressing the
underestimation of biomass conversion under actual conditions when compared to lab-
oratory conditions. The lack of knowledge in this regard can have a negative impact on
the economic balance of the entire process that is conducted on a real scale. The inte-
grated production of bioethanol and biogas presented in the literature mainly concerns
the implementation of processes on a laboratory scale, which, in turn, can only serve as a
model [36,37]. Only a few publications highlight the fact that hybrid biomass conversion
in combined technologies is very much needed and warranted, and they do not explain
what this need results from.

Based on the data presented above (Figure 6), it was possible to calculate the Biochem-
ical Methane Potential Correction Coefficient (BMPCC, Equation (4)), the values of which
are presented in Figure 7. With the BMPCC, it was possible to identify the quarter in which
the anaerobic digestion process on the technical scale deviated from the same process
under laboratory conditions. At the same time, information was acquired on the extent
to which biomass did not convert. It was found that biomass in QU-II had the weakest
degree of degradation, while biomass in QU-IV had the greatest—on the technical scale,
as compared to the laboratory scale. As previously mentioned, the BMPCC can serve as
a diagnostic parameter to determine the condition of a biogas installation over a specific
time interval [48].

In conclusion, the integrated production of bioethanol and biogas is an example of
industrial symbiosis—which, taking into account both environmental and economic needs
related to the emission of greenhouse gases, the diversification of biofuel production, the
creation of conditions for self-sufficiency, and the stimulation of economic development—
positively influences the efficiency of technological processes (optimisation of materials
and energy). It is worth mentioning that there are several examples of the biofuel industry
effectively using by-products in further applications, due to their organic makeup. In
addition to the previously discussed use of ethanol byproducts for biogas production, other
applications include the use of glycerol from biodiesel production for biogas production,
the use of digestate from biogas plants as a fertilizer, and the use of sewage treatment
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byproduct (sewage sludge) as a substrate in biogas plants (preferably adjacent to sewage
treatment plants) [21,24,36].
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Publications related to the topic of the integrated production of bioethanol and biogas
mainly address: (i) local and global symbiotic activities (potential acidification and eutroph-
ication due to system expansion, and global benefits); (ii) maize pretreatment methods
(improving access to cellulose in maize silage and extracting hemicellulose sugars from
maize silage fibres by, e.g., steam pretreatment, with or without a catalyst) that increase
the efficiency of ethanol production [66,67]; and (iii) applications of new, interesting raw
biomaterials for bioethanol and biogas production—such as a species of wild inedible
cassava, Manihot glaziovii (tubers obtained from three different areas in Tanzania) [68]—a
general evaluation of the efficiency of the process [65,69], and its economic aspects [70]. As
previously mentioned, the efficiency scores of the bioethanol production process, including
methane, quoted from other papers are comparable to those presented in this study. How-
ever, authors have often indicated that higher energy efficiency options (e.g., due to the
processing methods applied) did not necessarily result in lower ethanol production costs.
Yet, these works lack information addressing the underestimation of biomass conversion
under actual conditions when compared to laboratory conditions.

4. Conclusions

The integrated production of bioethanol and biogas makes it possible to optimise
the production of carriers from renewable raw materials. The organic matter subjected
to alcoholic fermentation yielded between 342 L (QU-II) and 370 L (QU-I) of ethanol,
expressed by 100% ethanol of 0.7893 g·mL−1 density. The mass that did not undergo
conversion to bioethanol ranged from 269.04 kg to 309.50 kg, representing 32.07% to 36.95%
of the organic matter processed to produce bioethanol. With this in mind, it was concluded
that only two-thirds of the organic matter was converted into bioethanol. The remaining
part, as post-production waste in the form of stillage, became a valuable raw material for
the production of biogas, containing one-third of the biodegradable fraction.

The installation analysed in this experimental paper was a hybrid system, in which
waste from bioethanol production was used in a biogas plant with a capacity of 1 MWe.
Under laboratory conditions, the organic material, derived from stillage and subjected to
anaerobic digestion, yielded between 30.5 m3 (QU-I) and 35.6 m3 (QU-II) of biogas per
1 Mg FM. On the other hand, under operating conditions, between 29.2 m3 (QU-I) and
33.2 m3 (QU-II) was obtained from 1 Mg FM, which directly translated to the degree of
conversion of biomass to biogas, including methane—the energy carrier. The content of
methane in the biogas produced on a technical scale was also lower than under laboratory
conditions. For this reason, it is important for biogas plant owners to be able to estimate
the insufficient conversion of biomass in their plants.
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The Biochemical Methane Potential Correction Coefficient (BMPCC), which was de-
veloped in an earlier paper by the authors, made it possible to determine the difference
between the efficiencies of the anaerobic digestion processes occurring in the installation
and in the laboratory (as the ratio between the mass of methane produced in the installation
and the mass of methane produced under laboratory conditions). With these calculations, it
is possible to carry out a thorough analysis of the process implemented in a given plant and
obtain clear information on the direction of solutions to improve installation efficiency. In
the biogas installation analysed in this paper, the BMPCC ranged between 3.2% and 7.4%,
which is indicative of the efficient conversion of biomass to biogas on a real scale. Biomass
subjected to the process of anaerobic digestion is more susceptible to decomposition during
anaerobic digestion.
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