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Abstract: The present investigation aims to devise a thermal management system (TMS) for electric
vehicles able to improve on limitations like charging time and all-electric range, together with the
safety and environmental impact of the chosen thermal medium. A research gap is identified, as focus
is often on addressing system thermal performance without considering that the thermal medium
must not only provide suitable performances, but also must not add risks to both passengers and the
environment. Thus, this work proposes an innovative cooling system including graphite sheets and
a Loop Heat Pipe, filled with Novec™ 649 as working fluid, due to its exceptional environmental
properties (GWP =1 — ODP = 0) and safety features (non-flammable, non-toxic, dielectric). A
three-cell module experimental demonstrator was built to compare temperatures when the proposed
TMS is run with Novec™ 649 and ethanol. Results of testing over a bespoke fast charge driving cycle
show that Novec™ 649 gave a faster start-up and a slightly higher maximum temperature (0.7 °C),
meaning that the gains in safety and lower environmental impact brought by Novec™ 649 came
without lowering the thermal performance. Finally, the TMS was tested under three different fast
charge conditions (1C, 2C, 3C), obtaining maximum temperatures of 28.4 °C, 36.3 °C and 46.4 °C,
respectively.

Keywords: electric vehicles; batteries; thermal management; loop heat pipe; low pollutant fluid;
experimental characterisation

1. Introduction

The evident deteriorating of planetary conditions during the last 40 years has pushed
governments worldwide to take actions to reduce the emissions of greenhouse gases
(GHG). These long-life gases trap radiating heat that would otherwise be released to outer
space, and eventually emit this heat back to the atmosphere in the so-called “greenhouse
effect”. Amongst the sources of these harmful emissions, the transportation sector is a
major contributor, accounting for 28% of the 2018 overall UK CO, emissions (this being the
predominant cause of the GHGs) [1], and for the 34% of all CO, emissions in the US [2].
This is part of the reason why the electrification of the transportation sector is considered
one of the solutions to tackling the climate emergency. The most suitable energy storage
method for this application, for now, is Li-ion batteries.

Electric vehicle (EV) sales had increased with respect to the previous year by 40% in
2019 [3], and by 43% in 2020 [4], despite the Covid-19 pandemic. However, ownership cost,
limited all-electric driving range and long recharging times remain the main areas [5] where
improvements must be made in order to further increase the worldwide dissemination
of electric cars, which are still stuck at 1% of the global stock of vehicles. These three
factors are all linked to the thermal management of the energy storage unit of the vehicle,

Energies 2021, 14, 7738. https:/ /doi.org/10.3390/en14227738

https://www.mdpi.com/journal/energies


https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4019-6434
https://orcid.org/0000-0001-6083-1509
https://orcid.org/0000-0002-8833-2178
https://orcid.org/0000-0002-3195-4945
https://doi.org/10.3390/en14227738
https://doi.org/10.3390/en14227738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14227738
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14227738?type=check_update&version=1

Energies 2021, 14, 7738

20f19

namely the battery pack. In fact, temperature has been proven to greatly influence the
behaviour of Li-ion cells, from power output to operative life. Research has shown that,
considering extremely severe low temperature test conditions such as —40 °C, an 18650
type Li-ion battery can only deliver 5% and 1.25% of the initial energy capacity and power
capacity, respectively [6]. At higher temperatures, the same type of cell shows capacity
loss of 36% after being cycled 800 times at 45 °C and lost more than 70% at 55 °C after
490 cycles [7]. Furthermore, another crucial consideration regarding temperature control for
Li-ion batteries is safety: in fact, a potentially disruptive condition called thermal runaway
begins around 130 °C, where the separator melts and a strongly exothermic reaction takes
place leading to smoke, fire and explosions [8].

Therefore, a properly designed thermal management system (TMS) dedicated to an
EV battery pack needs to be able to contain cell temperature in an interval identified as
25-40 °C [9] for optimal performance and operative life, or below 50 °C for still acceptable
performance [10], while not exceeding 60 °C under normal operating condition for safety
reasons [11]. Moreover, the temperature difference between the cells inside a single module
should not exceed 5 °C, and across a single cell should be between 3-5 °C [12]. Until
now, EV manufacturers have relied on two methods of thermal management, air [13]
and liquid convection [12], to manage the abovementioned requirements, both having
their pros and cons. Typically, air convection is regarded as the simplest, lightest and
cheapest of the two methods, whereas for liquid, TMS costs and complexity increase with
the number of parts. However, air convection cannot cope with the high thermal loads
that are usually connected with the high C-Rates typical of fast charging. Moreover, due
to the inadequate thermal properties of the thermal medium (air), this method cannot
maintain a homogeneous temperature distribution along the battery module. On the
other hand, a liquid TMS, usually in the form of tubing or cold plates, is more efficient in
containing the temperature increase during fast charging than the air counterpart. Liquid
TMS generally result in a lower parasitic power consumption than air TMS, due to the
presence of the fans in the latter. Extensively researched but not yet employed is the use of
other TMS technologies such as phase change materials (PCM) [14], heat pipes [15] and
boiling [16] (also referred to as immersion cooling). PCM based TMS have the benefit of
passively cooling or heating the battery module and absorbing or releasing latent heat,
respectively. However, they have low thermal conductivity and they tend to increase
weight, encumbrance and cost of the design. Heat pipes and boiling, despite being very
promising for their exceptional heat transfer capabilities, still present design challenges
in terms of selecting the best cooling solutions for the condenser, minimizing weight and
optimizing interfacing with the modules.

In a previous work by the Authors [17], a comparison between these technologies
was carried out over parameters such as power consumption, weight and encumbrance
(both influencing the energy density), cost, maintenance, complexity (number of parts)
and cooling performance. The ranking was assigned on a low, medium and high basis
and is reported in Table 1. Thanks to Table 1, the heat pipe technology was chosen and,
in particular, the Loop Heat Pipe (LHP), which was preferred to standard sintered HP for
their ability to transport heat along long lengths. In that work, it was demonstrated that not
only can LHP successfully contain the cell maximum temperature during fast charging, but
also it can outperform a standard liquid cold plate TMS by giving a 3.6 °C lower maximum
temperature [17]. The proposed TMS was able to respect both cell and module temperature
requirements as well.

Temperature requirements are not the only requirements for EV TMS. In fact, safety,
environmental impact and temperature range are three crucial aspects original equipment
manufacturers (OEMs) are pressured to consider when selecting the working fluid for a
battery TMS. Given the recent surge in interest on the TMS for EV, research is focused on
achieving the best possible performances perhaps disregarding other important limitations
posed by the automotive industry, especially with regard to safety (intended as added risk
in case of failure) and environmental impact. One important factor often overlooked is
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the flammability of the thermal medium, as, for instance, most research on PCM cooling
for batteries employs paraffin wax, which is a flammable material [14]. Moreover, in HP,
most common working fluids are flammable, such as ethanol, acetone, ethyl alcohol, or
electrical conductors, such as water [17]. Similarly, liquid-based TMS used a various range
of working fluids, such as water [18,19], an ethylene glycol-water mixture [20,21], and
refrigerants (R134a) [22,23], which have issues in of being electrical conductors, flammable,
and have very high GWPs (1300), respectively.

Table 1. Comparison of TMS solutions for EVs, over key parameters linked to the issues raised by
the costumers in purchasing an EV [17].

Parameter Air Liquid PCM Boiling Heat Pipes
Power Consumption High Medium Low Low Low
Weight Low High High Medium Medium
Encumbrance Medium Medium High Medium Medium
Cost Low High High High Medium
Maintenance Medium Medium Low Low Low
Complexity /#parts Low High Low High Medium
Cooling Performance Low High Low High High

From this analysis of the current research on EV TMS, what emerges is a lack of an
efficient cooling method for TMS that considers not only the thermal performance but
also the safety and environmental impact of the cooling medium. With this in mind, in
this work, a thermal management system with LHPs and graphite sheets is proposed
together with the use of a novel synthetic fluid Novec™ 649, developed by 3M™. This
design allows for excellent cooling performance with no parasitic power consumption
(due the passive nature of the LHP), thereby ideally increasing the all-electric range of the
vehicle and allowing for shorter fast charge times. The chosen fluid possesses the desired
physical properties, in conjunction with favorable features such as non-flammability, a low
freezing point and a GWP of 1, hence standing out from the other working fluids used in
both passive and active TMS for EV.

LHPs were only employed twice before in a battery thermal management system,
firstly in a work by Putra et al. where they applied the device to a single cell [24], then by
the current authors [17], with regard to the application of LHPs to a battery module. This
would make the present work the third experimental work on the application of LHPs to
battery thermal management systems. It is the first time a novel environmentally-friendly
fluid is used as a working fluid of an LHP, but likely it is also the first time that a fluid with
these properties (non-flammable and non-toxic, ultra-low GWP, inert, low freezing point)
is used as working fluid for a heat pipe in general.

The aim of this investigation was to experimentally assess the performance of the
Novec™ 649 fluid in the proposed TMS by comparing them against the performance of an
already well-established working fluid in the sector of passive two-phase devices such as
ethanol. After this, the performances of the proposed TMS are evaluated over a series of
fast charge cycles in order to address its applicability to the EV market. The present paper
will describe first the proposed design in Section 2; in Section 3, the experimental set-up
is explained together with the motivations behind the choice of Novec™ 649 working
fluid. Section 4 presents the experimental results of the comparison with ethanol and the
performance during fast charge tests at 1C, 2C and 3C.

2. Loop Heat Pipe Thermal Management Design

A LHP, as shown in Figure 1, is a two-phase passive thermal device, evacuated and
partially filled with a working fluid whose motion is ensured by capillarity due to the
positive pressure gradient arising in the evaporator section.
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Figure 1. Loop Heat Pipe with flat plate evaporator schematic.

The evaporator consists of the compensation chamber and the wick: the compensation
chamber is a two-phase reservoir that feeds the system with liquid to delay dry-out and
sets the working pressure of the device. The wick is a porous structure responsible for the
fluid motion, as the pores are small enough so that the fluid entrapped inside them is in a
capillary state, hence it provides a positive pressure gradient following the Laplace-Young
equation [25] APy, = 20cost/7 , where 0 is the surface tension of the fluid, cos6 is cosine
of the contact angle of the meniscus, accounting for the effect of the wettability of the
wick and 7 is the pore size medium radius. If the pressure difference remains greater than
the sum of all the load losses in the rest of the loop, the fluid evaporating from the wick
will circulate in one direction only, without the need of a mechanical pump. It is this last
feature that makes LHPs interesting, as they can transfer fluid (and hence heat) for long
distances without the need of additional energy or moving parts. This passive operation
directly contributes to the reduction of the parasitic power consumption of the EV TMS,
thus contributing to the increase of the range of the vehicle and tackling one of the main
customer issues against the purchase of an EV.

The proposed TMS design foresees placing a LHP at the bottom of the battery module
(as presented in Figure 2), where the cells are sandwiched between graphite sheets, allowing
for an increment of heat transfer in the x-y plane, while at the same time hindering the
heat transfer in the z direction. This is because of graphite sheets’ typical woven structures,
giving high thermal conductivity values on the parallel direction but minimal thermal
conductivity in the normal direction (typically two orders of magnitude lower).

The LHP will act as thermal vector between the battery module and a remote chiller
connected to the HVAC system already present in the vehicle. The feasibility of this design
has been proven by an in-house experimentally validated Lumped Parameter Model in [17],
but in this work only the results from the experimental demonstrator will be presented.
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Figure 2. Loop Heat Pipe and Graphite based Thermal Management System.

3. Experimental Set-Up

In the schematic of the experimental set up, shown in Figure 3, the battery module is
composed of three dummy cells, made from 5083-O aluminium plates having the same
dimension of the considered cell type (presented in Table 2). The use of dummy cells is a
proven practice already used in literature [26-28] that eliminates the risks associated with
thermically stressing a real battery cell, while still allowing the evaluation of the efficiency
of the cooling methods. The dimensions and physical properties of the dummy cells and
graphite sheets (RS PRO) are reported in Table 2.

Programmable
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Figure 3. Block diagram of the experimental set up with details of thermocouples positioning
and numbering, as well as instrumentation utilized. The thermocouples TCO to TC8 measure the
temperature on the cell surface in contact with the graphite sheet.
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Table 2. Cells and graphite geometrical specifications and physical properties used in the LPM

models.
Parameter Cell Graphite Units
Thickness 10 0.8 mm
Height 96 96 mm
Width 280 240 mm
Thermal Conductivity planar 46 350 W/m-K
Thermal Conductivity normal 0.7 10 W/m-K
Density 3720 1300-1500 kg/m?3
Mass Heat Capacity 1726 810 J/kg-K
Battery Capacity 65 - Ah

The cells were machined to accommodate three T-type thermocouple probes each (RS
PRO, SS probe, 3 mm diameter, 150 mm length, £0.5 °C) and one polyimide (Kapton®)
flexible heater (Omega KHLVA-105, 7.8 um thickness, 10 W/ in?, 50 W), respectively. The
three heaters allow to replicate the heat generation rate profile of the cells depending
on their utilization. They are powered by a programmable power supply (TENMA 72-
2710, 30V, 5 A), which is controlled by a bespoke LabVIEW software. All thermocouples
underwent a five-point calibration procedure, so the factory precision of £0.5 °C typical of
T-type thermocouples could be retained.

The LHP used in the present experimental campaign had wick, evaporator envelope
and piping made in copper, with the exception of the stainless steel hydraulic unions
(Swagelok). The LHP evaporator was obtained from Thercon, Russia, and the rest of the
LHP was completed in-house. This was then instrumented with a pressure transducer
(Omega PXM319, 0-7 bar range, 0.25% FS BSL accuracy) fitted directly in the vapour line
and 6 T-type thermocouples measuring the temperature of the external surface of the copper
pipes, as shown in Figure 4. It was chosen not to measure the fluid temperature directly
to favour the simplicity and robustness of the design, without risking the introduction of
any additional leakage source (a practice already adopted in [29]). The selected condenser
configuration is a tube in tube heat exchanger, where the LHP tube is surrounded by
another copper pipe connected to a thermal bath (Fisherbrand™ Isotemp 5150 R28, cooling
capacity 500 W) running DI water. The geometry of the utilized LHP is detailed in Table 3.

Pressure
Transducer

Compensation
Chamber

Heating Zone

=i

¢ Filling
Line

—— ﬁ ==
—

[ Eveporaor |
i Ty
Line ppE— R

Eotarnfn Bl

(i K

Vapour
Line

Figure 4. Copper/copper LHP used in the present investigation noted with parts description and
thermocouple numbering and positioning.



Energies 2021, 14, 7738 7 of 19

Table 3. Geometry of the LHP used in the present investigation (all parts are made in copper).

Part Value Units
Condenser ID/OD 44/6 mm
HEX ID/OD 15/11 mm
Length 580 mm
Liquid ID/OD 44/6 mm
Line Length 390 mm
Vapour ID/OD 44/6 mm
Line Length 400 mm
Wick Thickness 8 mm
Width 45 mm
Length 50.5 mm
Porosity 45%
Pore Size 7.3 um
Radius 15 mm
Vapour
G N 9 -
rooves Length 43 mm
E Thickness 1 mm
Vaslilorli‘tor Width 50 mm
€ Length 84 mm
C . Thickness 8 mm
ompensation Width 505 mm
amber Length 24 mm

Vacuum conditions are paramount for correct operation of two-phase passive devices
such as the LHP. When vacuum conditions are not sustained, it leads to generation of
non-condensable-gases (NCG), which alter the operational behaviour of the LHP. The
LHP was leak-tested with a helium mass spectrometer leak detector (Agilent Technologies,
VS MD15). The leak rate was measured to be 4.6:1071° mbar/L:s. It was evacuated by
means of a two-stage vacuum pump system, comprising of a volumetric scroll pump (Boc
Edwards XDS35i) and a turbomolecular pump (Boc Edwards EXT255Hi). The vacuum
level obtained with this system was 2.1-10~° mbar. Finally, Figure 5 shows an image of the
entire test set-up.

Programmable
Power Supply

=

Mass Flow
Meter -

v

Thermal N
Bath

Figure 5. Experimental Set-up used for this investigation.
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As shown in Figure 5, and from the data displayed in Tables 1 and 2, the disparity
between the footprint of the module and the heating zone of the evaporator is evident.
This is due to the fact that the LHP evaporator geometry was bound by the manufacturer
availability. However, although this factor negatively affects the cooling capability of
this particular experimental demonstrator design, it does not impede the studying of the
feasibility of the TMS system nor the validation of the numerical model (which was the
primary aim of the experimental demonstrator).

Novec™ 649 Selection Rationale

The working fluid selection is of paramount important not only for the performance
of the TMS, but also to ensure safety of the system and passengers, in addition to not
presenting a threat to the environment. As such, Novec™ 649 was chosen as the working
fluid, as it has the following characteristics:

e Itis non-toxic, so it will not harm passengers in case of leakage and presents advan-
tages for production, as it does not require precautions for handling;

e Itis non-flammable, as the TMS should not add any risk of incrementing a failure, not
only in cases of leaks, but also in disruptive cases (such as accidents, crashes);

e Itisinert and dielectric, so in case of leakage and contact with the battery cells, the
working fluid will not cause a short-circuit;

e It has a global warming potential (GWP) value of 1 and ozone depletion potential
(ODP) of 0, which are unparalleled values compared to other refrigerants and heat
transfer fluids used in the automotive sector. Moreover, regulation No. 517/2014 of
the European Parliament prevents the use of refrigerants with GWP higher than 150;

e It has alow freezing point of —108 °C, allowing it to be used in cold climates without
the risk of damage to the LHP;

e Its boiling point of 49 °C is lower than other standard working fluids used in two-
phase passive devices, which is makes it more suitable at keeping the cell temperature
in the desired range.

Table 4 compares standard working fluids used in LHPs and EV thermal management
systems, highlighting the reason why the authors believe that the Novec™ 649 is an
excellent candidate for the application.

Table 4. How Novec™ 649 compares against other standard LHP and automotive working fluids.

Boiling Freezing
Fluid Point Point Application Cons Compared to Novec™ 649
[°C] [°Cl
Novec™ 649 49 —108 This work
EV [30,31]; Freezing at 0 °C with expansion that
Water 100 0 a1 can break wick and piping of LHP;
LHP [32] .
electrical conductor
Ethanol 78 —114 LHP [33] Toxic and flammable
Ammonia _a33 _ LHP [34] High Vapou.r Pressure (10 bar@25 °C);
toxic and flammable
Acetone 56 —95 LHP [35] Toxic and flammable
R134a _26 103 EV [36] High GWP of 1430; bglhng point too
low (<20 °C)
Novec™ 7000 34 —123 EV [16,37] High GWP of 420
Ethylene Glycol 197 -13 EV [20,38] Toxic and flammable
R1234yf _30 150 EV [39] Mildly flammable per ASTM E-681-04;

boiling point too low (<20 °C)
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As mentioned in the Introduction, this work carries out a comparison between the
results obtained using ethanol and Novec™ 649, together with an assessment of the
performance of the proposed TMS design running Novec™ 649 over different C-Rates.

4. Experimental Results and Discussion
4.1. Comparison between Novec™ 649 and Ethanol

To compare the performance of Novec™ 649, Ethanol is chosen as the benchmark fluid
since it has already proven to be a well-performing working fluid both in LHP standalone
applications as well as LHP applied to EV. The comparison is carried out over a bespoke
highway—fast charging—highway (HFCH) driving cycle (detailed in Table 5), involving
a section of highway driving followed by a challenging fast charging section and finally
concluding with another identical highway driving section until complete depletion of
the charge. The choice of a bespoke driving cycle was motivated by the fact that standard
driving cycles (such as WLTP) are mainly used to test and evaluate CO, and other pollutant
emissions and fuel consumption, while they do not stress the vehicle for long enough
periods to result in a significant depletion of the charge, nor do they include a section for
fast charging. In Table 5, it is shown that the fast charge section lasts for only 10 min and
reaches a maximum c-rate of 4 °C, which is higher than the current state of the art [40].
The C-Rate is defined as the current through the battery divided by the theoretical current
which will completely deplete the cell nominally rated capacity in one hour, e.g., a 1C
C-rate will charge/discharge the cell in one hour, a 2C in half an hour, a 0.5C in two hours
and so on. During fast charge, the state of charge (SOC) goes from 20% to 80%, as this
is standard practice in automotive applications due to safety limitations [40]. SOC is a
quantity that denotes the capacity that is currently available as a function of the rated
capacity, defined as the ratio of the available capacity divided by the maximum possible
charge that can be stored in the cell [41].

Table 5. Highway—Fast Charge—Highway (HFCH) driving cycle C-rates and SOC. Negative C-Rate
indicates the discharge period (hence with negative current). The two sections with 0 c-rate stand to
represent the actual stops that the user would take before and after charging the vehicle.

C-Rate Duration (minutes) Final SOC
-1 48 20%
0 1 -
4 3 40%
3.75 3 59%
35 3 77%
25 1 81%
0 1 -
-1 48 20%

Following the presentation of the general results of the HFCH driving cycle tests, a
comparison is made of the average cell temperature in the two cases. As already presented
in Figure 3, thermocouples numbered from zero to eight are measuring the temperatures
of the module cells, whereas thermocouples numbered from nine to fifteen are measuring
the temperatures of the LHP and heat exchanger.

One notices that the cell temperature is above the threshold required by the pack
requirement, as maximum temperatures in the middle and side cells of the module are
57 °C and 53 °C for the ethanol case. This is due to the mismatch in available surface
between the battery module and the heating zone of the LHP evaporator, as shown in
Tables 2 and 3, as the latter was bound by the manufacturer availability. It has been already
proven that if the heating zone of the LHP evaporator has a size close to the battery module
footprint, the maximum cell temperature drops considerably below 40 °C [17].
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The average temperature spread (i.e., maximum temperature difference over a single
cell) over the three cells is 0.7 °C, which is below the threshold of 3-5 °C set by the cell
requirement. Furthermore, the difference between the temperature of cell 2 (TC3,4,5) and
the cell 3 (TC6,7,8) is 4.5 °C, whereas the temperature difference between the cell 2 and
the cell 1 (TCO0,1,2) is 1.8 °C. This difference is due to cell 1 being without the graphite
sheet, which was a design choice to investigate the effect of graphite on the side cells of
the modules. It shows that in both cases, with respect to the middle cell, the proposed
design respects the module thermal requirement as well (i.e., AT between the cell to be less
than 5 °C). Moreover, it shows that having graphite on both side of the cell reduces the
maximum temperature at the end of fast charge by 1.8 °C, compared to having graphite
only on one side and free convection on the other (AT between cell 1 and cell 2).

Looking at the test results obtained with ethanol presented in Figure 6, one can notice
that the onset of the predominant boiling condition typical of the LHP, the so-called start-
up, happens well into the fast charging section (around 3500 s), as shown by the sudden
increase of the temperature at the inlet of the condenser (orange line—TC11) and the
decrease of the temperature at the outlet of the condenser (green line—TC13) and at the end
of the liquid line back into the evaporator (yellow line—TC12). These temperature trends
mean that the vapour has reached the condenser to reject the heat (increase of orange line),
and condensation occurs, creating cooler subcooled liquid that exits the condenser (green
line) and reaches the evaporator by the end of the liquid line (yellow line).

However, the start-up took place halfway through the fast charging period, which
is not optimal. In fact, the comparison shown in Figure 7 between heat generated by the
module and heat received by the LHP (obtained from the simulations in [17]), shows a
great difference due to heat being stored as heat capacity in the cell material as a result of
the strongly transient nature of the driving cycle. As such, a design where the LHP starts
sooner or at lower power levels would be beneficial.

Fast |

70 + Chargei — 160 TCO

' --= TC1

60 + n T 140 - TC2
Start-up 6%, TC3

& 50 = 1s --1c4
% o TC5
< 40 = TC6
4@ -8 - TCT
g 30 Z ... TC8
£ 3 TC14
= 20 T —TC15
—TC9
10 + T 20 —TC10

0 | | I | | 0 TC11
T T T T T TC12
0 2000 3000 4000 5000 6000 —TC13

Time [s] Heat

Figure 6. Test results during a HFCH driving cycle using Ethanol as working fluid.
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Figure 7. Comparison between heat generated by the module and received by the LHP during the
HFCH driving cycle [17].

In Figure 8, the results of the test carried out with Novec™ 649 as working fluid
are presented. The sudden increase of the temperature of the condenser inlet (orange
line—TC11) denotes that the start-up is happening as soon as the fast charge section is
initiated, which is a clear improvement from the ethanol case. This behaviour was expected
since Novec™ 649 has lower boiling point, latent heat of vaporisation and mass specific
heat with respect to ethanol (Table 6).

Fast

70 1 /4 R + 160 TCO
/ s T
60 + + 140  ____. TC2
N Il TC3
050 T / StZart-up ’,‘;\::5:_'___.. 120 T ---TC4
> ~|_ Zoom e 11005 -----TC5

@ St fo)
= 40 ma— 3 TC6
© g ---TC7
8 50 = TC8
5 5 TC14
S T —TC15
—TCY
10 T20 —TC10
0 ; = : } } : 0 —TC11
0 1000 2000 3000 4000 5000 6000 TC12
Time [s] —TC13
Heat

Figure 8. Test results during a HFCH driving cycle using Novec™ 649 as working fluid.

Looking at the difference between the two fluids, their main physical properties are
presented in Table 6. Considering the lower boiling point, the significantly lower latent
heat of vaporisation and specific heat, one can expect that the LHP start-up while running
with Novec™ 649 would happen at lower temperatures and heat inputs than with ethanol.
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Table 6. Key physical properties of ethanol and Novec™ 649. All properties are evaluated at 20 °C.

Ethanol Novec™ 649
Boiling Point [°C] 78 49
Freezing Point [°C] —114 —108
Density [kg/m] 804 1600
Viscosity [mPa-s] 1.19 0.64
Thermal Conductivity [W/m-K] 0.17 0.06
Latent Heat of Vaporisation [k]/kg] 945 88
Specific Heat [J/kg-K] 3023 1103
Surface Tension [N/m] 0.022 0.011
Saturation Pressure [bar] 0.062 0.400

Figure 9 presents a comparison between the average cell temperature obtained using
the two working fluids. It is worth pointing out that the two tests were performed in
different lab temperatures (20 °C for the Novec™ 649 test and 25 °C for the ethanol test),
so in order to effectively compare the two cases, the temperature is expressed as AT from
the ambient temperature. Results show that the two fluids perform in a similar fashion,
with maximum temperature at the end of fast charging being different by only 0.7 °C in the
two cases. Ethanol looks slightly better at reducing the temperature in the final highway
driving section, giving a final temperature of 2.2 °C lower than the other fluids. However,
the important message of the comparison graph of Figure 9 is that using Novec™ 649
provides a non-flammable, environmentally friendly and non-toxic alternative to ethanol,
without a significant decrease in thermal performance.
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Figure 9. Average cell temperature comparison over the HFCH obtained using the LHP with Novec™
649 or ethanol as working fluids.

4.2. Assessment of TMS with Novec™ 649 during Different C-Rates

The previous section showed that there is no significant difference in maximum
temperature reduction between the two fluids investigated. Therefore, there is enough
confidence to proceed with the investigation on Novec™ 649 as a working fluid. This
section presents a study assessing the potential for using this design as an effective way to
contain the temperature during fast charge. The tests have been carried out supplying the
cells with power equivalent to fast charge cycle with three different c-rates, namely 1C, 2C
and 3C, from 20% to 80% SOC, as this is the standard practice due to safety limitations [40].
Figure 10 presents the power profile of the modules depending on the c-rate, showing the
necessity of using a programmable power supply to replicate the transient heat generation
rate typical of the cells. Thus, as shown in Table 7, these fast-charging profiles last for 36
min for 1C-Rate, 18 min for 2C-Rate and 12 min for 3C-Rate.
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Figure 10. Power vs. time (in minutes) profiles of the different C-rates used in this investigation.
These figures refer to a 20% to 80% SOC charge.

Table 7. Duration and average heat generation rate of single cell and module, considering a fast
charge from 20% to 80% depending on the different C-Rates.

C-Rate Charge Times Heat Cell Heat 3Cell
20-80% SOC [W] Module [W]
1C 36 min 3 9
2C 18 min 12 36
3C 12 min 27 81

At the moment of writing, the state of the art is represented by the Porsche Taycan,
which provides a maximum charging rate of 3C, whereas for the remaining EVs the charge
rate is limited to 1-1.5C [40]; hence why it was deemed appropriate to test the solution
presented in this work against the state of the art condition. All the below reported tests
were carried out at an ambient temperature of 20 °C.

Figure 11 shows the temperature and pressure trends when the cells are subjected to a
1C charge profile, hence an average total heat generated by the module of 9 W. As shown
by the temperature of the LHP nodes, no start-up is taking place, indicating in this case
that the heat provided to the evaporator is not sufficient or that the heat is not supplied for
a long enough time interval. The maximum temperature reached by the LHP evaporator
(TC9) was 25.1 °C. However, the maximum temperature of the cells is 28.4 °C (as also
provided in Table 8) so this condition remains within the optimal operating temperature
range of the cell. This shows that, for the charge time only, 1C fast charge is a condition
that does not require bespoke TMS.

Table 8. Comparison of maximum cell temperatures during the fast charge tests, together with the
maximum temperature difference across the module. Results are provided with the uncertainty
associated with calibrated T-type thermocouples (£0.5 °C and 0.7 °C for the A measurement).

C-Rate Cell1[°C] Cell 2[°C] Cell 3[°C] A[°C]
1C 28.4 4+ 0.5 28.1 £ 0.5 275+ 05 09 +0.7
2C 36.3 +05 34.8 £ 0.5 33.3+05 3.0£0.7

3C 46.4 £ 0.5 43.5+£ 0.5 41.0 £ 0.5 54+07
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Figure 11. Fast Charging test results with 1C.

Nonetheless, one of the aims of the present work is to allow for faster charge times,
so a 2C fast charge test is carried out, hence halving the charge time compared to the
previous case. In the results shown in Figure 12, the LHP start-up takes place around 850 s
as indicated by the increase in temperature of the vapour line inlet (TC10) followed by the
increase in the condenser inlet (TC11). The temperature of the evaporator (TC9) at start-up
is 25.4 °C, thus a bit higher than the maximum reached during the 1C test. Moreover,
another clear indicator is the pressure trend (grey line) that flattens and decreases ever so
slightly to indicate the depressurisation left by a departing bubble, as indicated by [42].

Due to the much higher heat generation rate that the cell is providing (four times as
much as the 1C case), the conditions are favourable to the onset of boiling and, consequently,
for the fluid to circulate in a preferential direction. In fact, one can notice from Figure 11
that the temperature of the outlet of the liquid line (TC12) is not increasing, rather it
decreases following the increase of the condenser inlet, thus proving that the condensed
liquid is flowing back to the evaporator. As proof that this behaviour is due to the start-up,
Figure 12 shows that when the power is subtracted from the evaporator, the trends of TC12
and TC10 are reversed.

During this test, maximum average temperature reached by the cells was 36.3 °C
degrees, while its SOC would reach 80% in 18 min.
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Figure 12. Fast Charging test results with 2C.
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Finally, the fast charge test with 3C is presented in Figure 13. Following the increased
cell heat generation rate, start-up happens sooner than in the other two cases, around 580 s,
noticeable by the small semi-steady section of the pressure trend. The temperature of the
evaporator (TC9) at start-up is 25.8 °C. Hence, looking at the LHP start-up temperatures
(25.4 °C for 2C test and 25.8 °C for 3C test), it looks like that in the 1C case the LHP does
not reach the required temperature for start-up (max Temp of 25.1 °C) in the allotted test
time.

In the 3C test case the maximum average temperature of the cell was 46.4 °C, at the
end of a fast charge profile that would allow 80% of the SOC to be reached in only 12 min.

Novec649 3C Test TCo

0 f f f f f f 0 TC12
0 200 400 600 800 1000 1200 1400 TC13
Time [s] Pressure

Figure 13. Fast Charging test results with 3C.

Looking at the pressure trends in Figures 11-13 one can notice how it follows the
trend of the vapour line temperature, as expected. Pressure values are always inside a
comfortable safe 0.4-0.6 bar range, due to the low temperature of the working fluid. Further
confirmation of the importance of the thermal mass of the cells is given by the fact the
pressure keeps on increasing even after the nullification of the heating power at the cells.
In fact, heat keeps on being transferred to the LHP evaporator for a few minutes, before
the pressure starts to decrease. This means that the TMS proposed in this work will keep
on removing the excess heat from the cells even after the fast charge section, ideally even
while the vehicle has resumed its journey.

In sum, Figure 14 shows the maximum temperature of each cell during the fast
charge experiments. In addition, Table 8 shows the numerical results, with the respective
errors, from the direct temperature measurements 6 and from the indirect A calculation
(vV/62 + 62 = 1/26). One can see that the maximum temperature during the 3C fast charge
is above the optimal threshold of 40 °C, but nonetheless it inside the acceptable range
(<50 °C) as well as being below the safety threshold of 60 °C, despite the LHP possessing
a much smaller active heating zone than required. In addition, Figure 14 shows that the
temperature difference between the cell surrounded by graphite (cell 2) and the one with
a naked side (cell 3), increases with the C-Rate, suggesting the efficacy of the graphite to
increase the thermal efficiency of the BTMS. This indicates the cooling potential of the
TMS proposed herein and underlines the need for further investigation by means of a
larger, bespoke prototype. Moreover, the temperature spread over the module is inside the
requirement at the module level.
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Figure 14. Comparison of the maximum temperature reached by each cell during the fast charge
experiments with Novec™ 649. Measures have an accuracy of +0.5 °C (T-type thermocouples).

The results prove that Novec™ 649 can be a valuable substitute to standard heat
transfer fluids already employed in two-phase applications, and if applied to the proposed
design with LHP and graphite sheets, the battery temperature can be contained within
acceptable levels, even during aggressive state of the art fast charge scenarios (3C).

5. Conclusions

In this work, an alternative to standard battery thermal management system for EVs
was provided, both in terms of thermal vector and working fluid. The aim of this work
was twofold: firstly, to propose a thermal solution able to allow for fast charging and not
affecting the all-electric range of the vehicle; secondly, to identify, implement and test a safe
thermal medium with low environmental impact. An LHP was chosen as a main thermal
vector to exploit its excellent heat transport capabilities and its passive nature (no parasitic
power hence more range). Novec™ 649 was selected as a working fluid because to its
outstanding properties of non-flammability, non-toxicity, and low freezing and boiling
points. More importantly, it possesses extremely low pollutant factors (GDP =1 and ODP
=0). The proposed design comprised a Novec™ 649 filled LHP applied to the bottom of a
three-cell module with graphite sheets sandwiched between the cells, allowing for efficient
heat transfer in the vertical plane and heat isolation from the transversal plane. The main
findings are presented below:

e  For the first time an LHP filled with Novec™ 649 as working fluid is utilized and
thermally characterized.

e  Comparing the results with the same LHP filled with ethanol over a bespoke driving
cycle including 4C fast charge, the cell temperatures when using the two fluids, ethanol
and Novec™ 649, in the TMS were very similar; in fact, the maximum temperatures at
the end of fast charge differed by only 0.7 °C.

e Ethanol was slightly better in reducing the temperature in the final highway driving
section, giving a final temperature 2.2 °C lower than Novec™ 649.

e  Quicker start-up was achieved while using Novec™ 649, as the lower boiling point
and latent heat of vaporisation compared to ethanol made the LHP start as soon as
the fast charge was initiated;

e  The proposed TMS running Novec™ 649 was tested for different fast charge cycles,
1C, 2C and 3C, where the maximum temperatures were 28.4 °C, 36.3 °C and 46.4 °C
respectively; these results are below the safety threshold of 60 °C and very close to the
25—40 °C optimum window.

e The maximum temperature difference across the cells belonging to the module is
5 °C @3C fast charge, which in line with the thermal requirement at the module level;
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moreover, it was proven that graphite improves the cell temperature reduction by
almost 21 °C.

These thermal results are very promising, especially considering that, due to man-
ufacturing limitations, the active heating area of the LHP evaporator was much smaller
than the battery module footprint, as already mentioned in the manuscript. In fact, even
pushing a demanding fast charge cycle in 12 min, the maximum cell temperature still
kept below 50 °C. Therefore, the important message of this work is that using this novel
LHP-based TMS with Novec™ 649 as working fluid provides a non-flammable, environ-
mentally friendly and non-toxic alternative to classical heat transfer fluid that not only does
not provide a noticeable decrease in thermal performance if compared to other standard
flammable and/or toxic heat transfer fluid, but is also able to respond to the thermal
requirements of the BTMS for EVs.
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EV Electric Vehicle

GHG GreenHouse Gases

HFCH Highway—Fast Charging—Highway
HP Heat Pipe

LHP Loop Heat Pipe

PCM Phase Change Materials

TC Thermocouple

™S Thermal Management System
SOC State of Charge

APcqp Capillary Pressure Gradient

T Pore Size Medium Radius

0 Meniscus Contact Angle

o Surface Tension
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