
energies

Article

A Boosted Particle Swarm Method for Energy Efficiency
Optimization of PRO Systems

Yingxue Chen and Linfeng Gou *

����������
�������

Citation: Chen, Y.; Gou, L. A Boosted

Particle Swarm Method for Energy

Efficiency Optimization of PRO

Systems. Energies 2021, 14, 7688.

https://doi.org/10.3390/en14227688

Academic Editor: Sanghyun Jeong

Received: 19 October 2021

Accepted: 13 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China; yx.chen@nwpu.edu.cn
* Correspondence: goulinfeng@nwpu.edu.cn

Abstract: The analytical solutions of complex dynamic PRO systems pose challenges to ensuring
that maximum power can be harvested in stable, rapid, and efficient ways in response to varying
operational environments. In this paper, a boosted particle swarm optimization (BPSO) method
with enhanced essential coefficients is proposed to enhance the exploration and exploitation stages
in the optimization process. Moreover, several state-of-the-art techniques are utilized to evaluate
the proposed BPSO of scaled-up PRO systems. The competitive results revealed that the proposed
method improves power density by up to 88.9% in comparison with other algorithms, proving its
ability to provide superior performance with complex and computationally intensive derivative
problems. The analysis and comparison of the popular and recent metaheuristic methods in this
study could provide a reference for the targeted selection method for different applications.

Keywords: pressure retarded osmosis (PRO); metaheuristic algorithms; boosted particle swarm
optimization; optimization

1. Introduction

The hydrological cycle of nature provides significant renewable energy sources (RES)
through the salinity gradient. Chemical potential energy is increasingly considered a
promising RES that can resolve the problems of carbon emissions, air pollution, global
energy shortages, and the high price of fossil fuels. Pressure retarded osmosis (PRO) is
therefore developed and investigated as a popular clean energy production method using
the natural salinity gradient technology to mitigate such phenomena [1–4]. This sustainable
power can be yielded by mixing solutions of two different salt concentrations, such as
seawater mixed with fresh river water. The potential extractable energy is estimated to be a
huge amount, equivalent to 1.724–3.158 TW [5], and hence it attracts a lot of academic and
commercial interest. Among PRO, capacitance mixing (CapMix), reverse electrodialysis
(RED), hydrogel swelling, battery mixing, and other salinity gradient power generation
technologies, PRO has higher power density and efficiency [6,7]. Therefore, it has been
most widely studied.

At present, the energy efficiency of PRO systems is low. At the stage of implementation,
economically, a software upgrade that replaces MPPT with an advanced and efficient
algorithm presents a negligible cost increase. The first MPPT research for PRO systems was
conducted in 2015, considering dynamic changes, including incremental mass resistance
(IMR) as well as perturbation and observation (P&O) methods [8]. Both algorithms have to
find a balance between oscillations and the response time, resulting in greater power loss [9].
Studies have shown that the operational environment depends on specific circumstances,
materials, and other constraints [10]. However, modelling and design efforts for PRO
systems cannot adapt to changing environmental conditions, and it is difficult to make
real-time adjustments under operating constraints. Therefore, real-time control of PRO
power system-based MPPT has been investigated most recently [9,11]. The research of
the MPPT control methods is of great significance for improving the performance of the
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PRO system under varying operational conditions. It can be implemented not only on the
stand-alone PRO system, but also on the hybrid PRO system and other RES systems.

There are currently two main criteria utilized to rate the efficiency of MPPT algorithms,
namely the extractable power density and the convergence time. The higher the tracking
speed, the higher the extracted power and the smaller the output power loss, and vice versa.
A shorter tracking time results in higher oscillations. The optimization algorithm has unique
advantages in improving methods and systems in the engineering field, especially for
complex and computationally intensive derivative problems in the unknown search space,
which are capable of avoiding the local optima entrapments and steady-state oscillation
of the classic MPPT algorithm. A method for the real-time control of PRO systems using
feedback control have been proposed [9]. However, the actual complex and dynamic operat-
ing environment has not been taken into consideration. Considering the actual detrimental
effects, the whale optimization algorithm (WOA)-based MPPT control algorithm of the
PRO system was studied under fluctuating salinity conditions, and it showed encouraging
performance [11]. However, the temperature effect was not considered.

The motivation and significance of this work are threefold. First, there is limited
published research work on the maximum power density tracking of dynamic PRO
models [8,9,11]. The analytical solutions of complex dynamic systems pose challenges
to MPPT strategies to ensure that maximum power can be harvested in stable, rapid, and
efficient ways in response to varying operational environments. Inspired by the dispersion
and self-organizing behaviors of animal herds in nature, metaheuristic technology has been
extensively studied and explored in recent years. Not only do such herds interestingly
show the excellence of nature, but they have also proven to be efficient in solving real-world
engineering problems. Another motivation is that, according to the no-free-lunch (NFL)
theory, no specific optimization method can solve all optimization issues [12]. Thus, if the
performance of algorithm X in problem A is better than that of algorithm Y, there must be a
set of problem B in which algorithm Y is more efficient than algorithm X. In other words,
the best conditions and solutions are case-specific. This well-known theory has inspired an
endless stream of researchers that have utilized state-of-the-art optimization algorithms
in various groups of issues, as in this study. Third, the proposed method can also be ap-
plied to other systems, especially renewable energy systems, such as photovoltaic systems,
wind turbine systems, and hybrid renewable systems. This has, therefore, motivated the
research and application of metaheuristic-based maximum energy extraction methods in
PRO design optimization.

2. Materials and Methods
2.1. Particle Swarm Optimization

A flow chart of the classic PSO-based MPPT technique is illustrated in Figure 1. The
particle swarm optimization can be mathematically expressed by updating the position
and velocity of the searching agency using the following equations [13].

vi(k + 1) = wvi(k) + c1r1(pbest(k)− ∆Pi(k)) + c2r2(gbest − ∆Pi(k)) (1)

∆Pi(k + 1) = ∆Pi(k) + vi(k + 1) (2)

where k is the current iteration and vi and ∆Pi denote the velocity and position of the
ith particle, where the position indicates the best-obtained solution in the problem. w is
an inertia weight parameter equal to 1, and c1 and c2 are constants equal to 1.5 and 2,
respectively. r1 and r2 represent the normalized random values in the interval (0, 1), pbest
donates the best position found in the ith iteration, and gbest depicts the best acquired
global position.
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Figure 1. Flow chart of the PSO-based maximum energy extraction algorithm for the PRO system.

2.2. Boosted Particle Swarm Optimization

Detailed comparisons are listed in Table 1, including the key vectors and essential
coefficients in the process of the metaheuristic algorithms. In the essential coefficients of
Table 1, the current solution and global optimal position are expressed in the mathematical
models as (∆Pi)best and gbest, respectively. The population position is adopted in the
formulations in terms of the average position of the current population, namely (∆Pi)m
and the distance from each particle in the population di,j, respectively.

Among metaheuristic algorithms, the difference between the PSO and some other
well-regarded swarm-intelligence-based techniques is twofold. Take HGSO for instance,
first, there are two critical vectors in the PSO, namely the velocity and position vectors of
each particle. In the HGSO process, only one coefficient position is considered. Second, in
the PSO algorithm, the next location of the particle is updated regarding three essential
coefficients, namely the current optimal solution, global optimal solution, and current
solution. In the HGSO technique, the next step of the searching particle is formulated
in consideration of the current solution, optimal global solution, worst solution, and the
obtained solution using the population. Compared with the PSO, the HGSO method
involves the solutions obtained by the population, thus including more communication
between intelligent swarms. This is also another reason why the HGSO is capable of
performing better under rapid fluctuation profiles.
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Table 1. Detailed comparative analysis concerning the key vectors and essential coefficients in the metaheuristic algorithms.

Metaheuristic Algorithms Key Vectors Essential Coefficients

PSO velocity and position current solution, current best solution, global best solution
GWO position current solution, top three best solution
DA step vector and position current solution, current best solution, worst solution

WOA position current solution, current best solution, global best solution
GOA position current solution, global best solution, population solution

HGSO position current solution, current best solution, global best solution,
population solution, worst solution

Furthermore, a comparison and performance analysis of these proposed metaheuristic-
based MPPT strategies is performed, as shown in Table 2. Based on the above analysis, the
PSO can be boosted to combine the merits of other strategies considering the population
solution and worst solution for better performance.

Table 2. Detailed comparative analysis of PSO and BPSO.

Metaheuristic Algorithms Key Vectors Essential Coefficients

PSO velocity and position current solution, current best
solution, global best solution

BPSO velocity and position
current solution, current best
solution, global best solution,

population solution, worst solution

In the BPSO, the worst agent is replaced with a random solution within the boundaries
of the problem with the purpose of enhancing the exploration phase, which is formulated as

∆Pworst(k) = rand(1, d)× ubd + lbd (3)

where d, ubd, and lbd denote the dimension and the upper and lower boundaries of the
system, respectively. The velocity of the particle is updated considering the population
location to improve the exploitation process as follows:

vi(k + 1) = wvi(k) + c1r1(pbest
∗(k)− ∆Pi(k)) + c2r2(gbest − ∆Pi(k)) (4)

where pbest
∗ donates the mean best solution in the iteration. The position of the ith particle

is calculated as
∆Pi(k + 1) = ∆Pi(k) + vi(k + 1) (5)

The process of the proposed BPSO strategy is shown in Figure 2.
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3. Formulation of the Optimization Problem in the PRO System
3.1. Pressure Retarded Osmosis Model

The proposed method is utilized to solve the MPPT problem in PRO systems, and
the performance is validated by simulation. The first PRO model was promoted in 1975
by Loeb [1]. Then, PRO models were developed considering finite element approaches
employed to describe axial variations in concentration [3], different membrane types [8],
detrimental phenomena, including ICP, ECP, and RSF [10]. The mathematical model for
tracking the maximum power density is described and demonstrated above, so here is a
brief review [3,8–10,14].

The osmotic pressure difference drives the permeate throughout the membrane and
applies hydraulic pressure ∆P on the opposite side, namely ‘pressure retarded’. In an ideal
PRO system, permeation can be expressed as the water flux Jw, and it is defined as [4]

Jw = A(∆πm − ∆P) (6)
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where A denotes the membrane permeability. The osmotic pressure difference between
two solutions ∆πm is represented based on Van’t Hoff’s law as

∆πm = Cos

(
cd − c f

)
(7)

where Cos is the Van’t Hoff factor, and cd and c f denote the draw solution and feed solution
concentrations, respectively. The power density W is formulated as [10]

W = Jw∆P (8)

The mass transfer functions can be expressed as Equations (4) and (5), which represent
a one-dimensional model derived from the unsteady convection-diffusion equation.

d(qd(s))
ds

= Jw

(
cd(s), c f (s), ∆P

)
(9)

d(q f (s)c f (s))
ds

= Js

(
cd(s), c f (s), ∆P

)
(10)

where qd and q f denote the draw and feed flow rates. Detailly, considering the discharge
process of the PRO system in regard to the RSF detrimental effect, the mass flow rates of
the permeating solution ∆mp, and the reverse solute ∆ms are modelled as

d
(
∆mp

)
= ρP Jwd(Am) (11)

d(∆ms) = ρD Jsd(Am) (12)

In which ρP and ρD are the density of the permeate and the draw solution, and Am
is the membrane area. In consideration of the limitation of RSF, the concentrations on the
draw side and feed side are formulated from the mass transfer equations as [6]

cd =
c0

Dv0
D − ∆ms

v0
D + ∆vp

(13)

c f =
c0

Fv0
F + ∆ms

v0
F − ∆vp

(14)

The flow rates of the draw solution and feed solution vD and vF are described as

vD = v0
D + ∆vp (15)

vF = v0
F − ∆vp (16)

In which vp is the permeated solution flow rate. v0
D and v0

F are the initial draw flow
rate and feed flow rate, respectively. In fact, due to three inevitable detrimental phenomena,
namely ECP, ICP, and RSF, the water flux is lower. The active layer dilutes the solute near its
surface and reduces the effect of osmotic pressure on the draw side of the PRO membrane,
and the dilutive ECP occurs. The effect of ECP declines the solute concentration from the
draw solution to the active layer surface, while the effect of ICP reduces the concentration
of feed solution to the active support interface. The effect of driving force across the
membrane and water flux is thereby decreased [7]. Moreover, a certain amount of salt
permeates through the membrane during osmotic operation, affecting the concentration
gradient and the extractable power density [4].
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Considering ECP, ICP, and RSF, by solving the mass transfer equations, the water flux
Jw and salt flux Js can be determined as [8,15]

Jw = A(

 πD exp (−Jw
kd

)− πF exp
(

SJw
D

)
1 + B

Jw

[
exp

(
SJw
D

)
− exp (−Jw

kd
)
]
− ∆P) (17)

Js = B(

 cD exp (−Jw
kd

)− c f exp
(

SJw
D

)
1 + B

Jw
(exp

(
SJw
D

)
− exp

(
−Jw
kd

)
)

− ∆P) (18)

where B, S, D denote all the membrane parameters, including the salt permeability factors,
membrane structural factor, and solute diffusion factor, respectively. πD and πF denote the
osmotic pressure on the draw and feed sides, respectively. kd depicts the solute resistivity
of the porous membrane support. The water flux model is based on the solution-diffusion
model that assumes the transport occurs only by diffusion across membranes. Finally, the
water flux across the PRO membrane can be influenced significantly by the mass transfer
characteristics. The volume of the final total permeating water is expressed as [4]

∆Vf =
∫

JwdAm =
∫

A(

 πD exp (−Jw
kd

)− πF exp
(

SJw
D

)
1 + B

Jw

[
exp

(
SJw
D

)
− exp (−Jw

kd
)
]
− ∆P)dAm (19)

Assuming the reversibility, the available extracted energy WP in a constant-pressure
PRO plant can be calculated as the product of the permeate volume ∆VP and applied
energy ∆P [7]. The power density varies along the tube, so the extractable energy is utilized
to quantify the energy conversion speed, as in [7]

WP = ∆P∆Vf = ∆P
∫

A(

 πD exp (−Jw
kd

)− πF exp
(

SJw
D

)
1 + B

Jw

[
exp

(
SJw
D

)
− exp (−Jw

kd
)
]
− ∆P)dAm (20)

The detailed mathematical model can be found in [11]. It can be observed from the
model that the maximum power density and characteristic curves rapidly change with the
variations in the operation and salinity conditions. Thus, it is significant to accurately and
efficiently track MPPs during osmotic processes.

3.2. Optimization Performance Index

To objectively test the proposed algorithm for the MPPT problem in the PRO system,
the following mathematical performance measures are employed.

(1) The average fitness index (AFI) is applied as a significant factor to evaluate the
extracted energy of the proposed methods. To reduce the randomness and error rate of the
operation, all the methods are executed ten times in the test. The AFI is then expressed as

AFI(x) =
1
m ∑m

i=1(G
∗

m(x)) (21)

where m is the total execution time (set to 10), G denotes the fitness function of the designed
problem, and G∗ denotes the best fitness obtained in the mth run for every technique.

(2) Average CPU time (ACT): The MET is employed to emphasize the tracking effi-
ciency, which is mathematically formulated as

ACT(x) =
1
m ∑m

i=1(Tλ(x)). (22)

where Tλ depicts the cpu time in seconds in the mth operation.
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3.3. Problem Description

The optimization performance index is used to maximize the output power density
while taking into consideration variations in the operational and salinity conditions. The
maximization process is subject to the following variables, fitness function, and constraints.
The mathematical formula of the problem is as follows:

Subject to:
g(x) = {max(AFI(x)), min(ACT(x))}

where
g1(x) = 1

m

m
∑

i=1
(G∗m(x))

g2(x) = 1
m

m
∑

i=1
(Tλ(x))

S.t. x ∈ X, X v Rm,

(23)

where function T is employed to quantify the accuracy of all the algorithms, and m is the
total number of runs.

4. Results and Discussion

In this section, two scenarios are presented to test the proposed metaheuristic-based
MPPT control methods, including rapidly varying temperature and salinity operation
conditions. A comparative performance evaluation of nine popular MPPT techniques is
also performed, including two classic MPPT methods (P&O and IMR) and five existing
MPPT strategies based on the PSO, GWO, WOA, GOA, and DA. In addition, two novel
HGSO- and BPSO-based MPPT algorithms are proposed and evaluated to reflect the
effectiveness of the proposed MPPT controller.

4.1. Scenario 1: Variations in the Operating Temperature

In this scenario, the temperature suddenly increased from 20 to 40 ◦C, as shown in
Figure 3 from pattern 1 to pattern 2. Then, sustained growth occurs in the temperature range
up to 50 ◦C, which imitates the temperature variation from morning to noon throughout a
day, as illustrated in pattern 3. The temperature subsequently decreased to 30 ◦C, as shown
in pattern 3. Figure 3 depicts the temperature profile in the PRO system in scenario 1,
which mimics a classic temperature change during a day. The detailed parameters of
the membrane parameters in a PRO system under different operational temperatures are
previously investigated and studied in [16,17].

Energies 2021, 14, x FOR PEER REVIEW 8 of 13 
 

 

𝑔 (𝑥) = 1𝑚 (ℊ∗ (𝑥)) 

𝑔 (𝑥) = 1𝑚 (T (𝑥)) 

S.t.  𝑥 ∈ 𝑋, 𝑋 ⊑ 𝑅 , 

(23)

where function T is employed to quantify the accuracy of all the algorithms, and m is the 
total number of runs. 

4. Results and Discussion 
In this section, two scenarios are presented to test the proposed metaheuristic-based 

MPPT control methods, including rapidly varying temperature and salinity operation 
conditions. A comparative performance evaluation of nine popular MPPT techniques is 
also performed, including two classic MPPT methods (P&O and IMR) and five existing 
MPPT strategies based on the PSO, GWO, WOA, GOA, and DA. In addition, two novel 
HGSO- and BPSO-based MPPT algorithms are proposed and evaluated to reflect the ef-
fectiveness of the proposed MPPT controller. 

4.1. Scenario 1: Variations in the Operating Temperature 
In this scenario, the temperature suddenly increased from 20 to 40 °C, as shown in 

Figure 3 from pattern 1 to pattern 2. Then, sustained growth occurs in the temperature 
range up to 50  °C, which imitates the temperature variation from morning to noon 
throughout a day, as illustrated in pattern 3. The temperature subsequently decreased to 
30 °C, as shown in pattern 3. Figure 3 depicts the temperature profile in the PRO system 
in scenario 1, which mimics a classic temperature change during a day. The detailed pa-
rameters of the membrane parameters in a PRO system under different operational tem-
peratures are previously investigated and studied in [16,17]. 

 
Figure 3. Temperature profile in the PRO system in scenario 1. 

In the PRO system, the temperature gradient on the heterogeneous membrane causes 
heat transfer inside the membrane and along the membrane surface [14]. Previous mod-
elling and experimental studies illustrated that the temperature improvement in the feed 
and draw solution can simultaneously increase the osmotic pressure, the water permea-
bility (A), solute permeability (B), diffusion coefficient (D), and mass transfer coefficient 
(𝑘 ) [18]. The various parameters of solution properties, fluid mechanics, and membrane 
properties employed in this work are summarized in Table 3. The ICP factor is employed 
to demonstrate the membrane structure parameter 𝑆 = 𝐼𝐶𝑃 × 𝐷, donating the ICP effect 
that occurs in the support layer. These values are case-dependent. 

0 20 40 60 80 100
sample instant

15

20

25

30

35

40

45

50

55

op
er

at
io

na
l t

em
pe

ra
tu

re
 (o

C
)

P attern-1

P attern-2

P attern-3

P attern-4

Figure 3. Temperature profile in the PRO system in scenario 1.

In the PRO system, the temperature gradient on the heterogeneous membrane causes
heat transfer inside the membrane and along the membrane surface [14]. Previous mod-
elling and experimental studies illustrated that the temperature improvement in the feed
and draw solution can simultaneously increase the osmotic pressure, the water perme-
ability (A), solute permeability (B), diffusion coefficient (D), and mass transfer coefficient
(kd) [18]. The various parameters of solution properties, fluid mechanics, and membrane
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properties employed in this work are summarized in Table 3. The ICP factor is employed
to demonstrate the membrane structure parameter S = ICP× D, donating the ICP effect
that occurs in the support layer. These values are case-dependent.

Table 3. Parameters of solution properties, fluid mechanics and membrane properties. The studied
draw solution is 35 g/kg (about 0.6 M) NaCl solution [16,19].

Temperature
(◦C)

A
(m·s−1·bar−1)

B
(m·s−1)

D
(m2·s−1)

kd
(m·s−1)

ICP Factor
(m−1·s−1)

20 1.06 × 10−7 2.62 × 10−8 3.50 × 10−9 4.27 × 10−4 1.32 × 106

30 1.43 × 10−7 4.25 × 10−8 4.54 × 10−9 9.74 × 10−4 1.00 × 106

40 1.74 × 10−7 5.87 × 10−8 5.74 × 10−9 10.88 × 10−4 0.822 × 106

50 1.98 × 10−7 8.00 × 10−8 7.09 × 10−9 11.98 × 10−4 0.71 × 106

Based on the above parameters, the optimal power density values of all algorithms
under temperatures fluctuations are shown in Table 4. Five existing MPPT methods,
namely P&O, IMR, PSO, GWO, and WOA, are evaluated and compared with the two
proposed methods (HGSO and BPSO). The optimal values are highlighted in bold. It can
be observed from the table that the traditional strategies (P&O and IMR) failed to find
the optimal solution and yield the lowest values. In the five existing metaheuristic-based
MPPT algorithms, the performance of the PSO is worse than that of the other techniques.
Among all the metaheuristic methods, the HGSO extracted the highest values in pattern 2,
and the BPSO obtained the maximum power density of all the patterns.

Table 4. Comparative analysis of the average power density extracted by different proposed MPPT
algorithms under rapidly varying temperature profiles.

Temperature
Profile

20 ◦C 40 ◦C 50 ◦C 30 ◦C

AFI
(W/m2)

AFI
(W/m2)

AFI
(W/m2)

AFI
(W/m2)

P&O 0.66416819 0.97153503 1.04421445 0.88632589
IMR 0.69696450 1.00331396 1.05242449 0.88698557
PSO 0.70885323 1.00416366 1.05937919 0.88741486

GWO 0.70885340 1.00416453 1.05938074 0.88741477
WOA 0.70885377 1.00416649 1.05938071 0.88741489
HGSO 0.70885380 1.00416666 1.05938089 0.88741489
BPSO 0.70885382 1.00416668 1.05938090 0.88741491

As illustrated in Table 5, compared with classic P&O and PSO, the proposed BPSO
showed a distinct improvement of up to 6.73%. It is significant to point out that more
extractable energy can be generated in the dual-stage PRO plant, and the AFI improvement
of the proposed method would be more obvious.

Table 5. Comparative analysis between the BPSO and P&O.

Temperature
Profile

20 ◦C 40 ◦C 50 ◦C 30 ◦C

AFI
(W/m2)

AFI
(W/m2)

AFI
(W/m2)

AFI
(W/m2)

P&O 0.66416819 0.97153503 1.04421445 0.88632589
BPSO 0.70885382 1.00416668 1.05938090 0.88741491

Improvement (%) 6.73 3.84 1.45 0.12

4.2. Scenario 2: Variations in Concentrations and Flow Rates

In this scenario, the salinity operational conditions are fluctuated, including the salinity
flow rate and concentration, as shown in Figure 4.
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Figure 4. Operational profiles of the salinity in the PRO system in scenario 2: (a) concentration of the draw solution; (b) flow
rate of the draw solution.

The draw concentration started at 35 g/kg and then increased to 45 g/kg and 55 g/kg,
respectively. In the meantime, the feed flow rate initially started at 0.6 kg/h and then
increased to 1 kg/h and 1.5 kg/h, respectively. In this case study, two more novel MPPT
controllers for the PRO system, namely DA and GOA, are applied and tested with the
proposed BPSO method.

Similarly, the extracted optimal power density AFI and tracking rate ACT by all the
algorithms of the PRO system concerning different salinities are summarized in Table 6,
and the optimal values are highlighted in bold. It can be concluded from the table that the
P&O obtained the smallest values in both case studies. The HGSO extracted the highest
power density in pattern 2, and the BPSO showed better tracking effects than the other
algorithms in all the other cases. Regarding the ACT results, the P&O method showed a
relatively shorter execution time due to its simple mechanism. However, it failed to obtain
an optimal AFI, leading to a low tracking efficiency. The HGSO yielded a high AFI, but the
ACT value is relatively high due to its complex formulations and process. There are seven
stages in the HGSO that led to a long execution time and better accuracy.

Table 6. Comparative analysis of the extracted average power density from the different proposed MPPT
controllers under rapidly changing salinity profiles, namely the draw concentrations and flow rates.

Salinity
Conditions

(CS)

CS1 CS2 CS3

c0
d = 35 g/kg, q0

d = 0.6 c0
d = 45 g/kg, q0

d = 1 c0
d = 55 g/kg, q0

d = 1.5

AFI
(W/m2)

ACT
(s)

AFI
(W/m2)

ACT
(s)

AFI
(W/m2)

ACT
(s)

P&O 0.67859463 0.23 1.12592327 0.22 1.66253908 0.23
PSO 0.67871438 0.33 1.12648435 0.34 1.66288136 0.30
GOA 0.67871439 0.28 1.12642532 0.27 1.66287249 0.26
WOA 0.67871442 0.25 1.12648449 0.27 1.66288220 0.29

DA 0.67871438 0.31 1.12648348 0.28 1.66288201 0.32
GWO 0.67871440 0.29 1.12648430 0.31 1.66288197 0.25
HGSO 0.67871442 0.42 1.12648455 0.39 1.66288208 0.47
BPSO 0.67871445 0.21 1.12648455 0.18 1.66288247 0.22

In the MPPT problem, the power efficiency mainly depends on two factors: the
extractable energy and the convergence time. In Table 6, the AFI and ACT values of all
eight methods under the three given salinity conditions are illustrated. The optimal values
are highlighted in bold. Although all the metaheuristic algorithms had better performance
than the traditional P&O method, their optimization processes are more complex, so there is
a risk of longer running times. For metaheuristic strategies, a balance between exploration
and exploitation is essential. The ability of the proposed BPSO to obtain the maximum
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power and the fastest convergence speed is proven. This is because BPSO absorbs all the
advantages of the algorithms above.

The improved BPSO method enhanced the exploitation process by considering the
population solutions. The detailed comparative analysis between PSO and BPSO is demon-
strated in Table 7 and Figure 5. The improvement of the BPSO under three operational
salinity conditions in terms of the response speed is 57.1%, 88.9%, and 36.4%, respectively.
It is up to 88% better than PSO and other algorithms, which is a considerable improvement.
The time increase is of significance, and the computational speed-up will enable the PRO
process to be more adaptive to varying operational conditions for extracting salinity power.

Table 7. Comparative analysis between PSO and BPSO.

Salinity
Conditions (CS)

CS1 CS2 CS3

c0
d = 35 g/kg, q0

d = 0.6 c0
d = 45 g/kg, q0

d = 1 c0
d = 55 g/kg, q0

d = 1.5

ACT (s) ACT (s) ACT (s)

P&O 0.33 0.34 0.30
BPSO 0.21 0.18 0.22

Improvement (%) 57.1 88.9 36.4
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5. Conclusions

For the first time, seven metaheuristic-based MPPT techniques have been employed
and tested for PRO systems with various types of influential operations and salinity
factors, including variations in the solution rates and concentrations and various operating
temperatures based on detrimental effects. The comparative performance and the analysis
of all seven methods are discussed. In this study, the classic PSO is modified to combine
the essential parameters of other advanced methods. The consideration of the population
solution helps to avoid the local optimal traps. The elimination of the worst solution results
in reducing the search time and improving the search efficiency. The BPSO algorithm
with the enhanced essential coefficients is thus proposed to boost the exploration and
exploitation stage in the optimization process. From the results, the proposed BPSO-based
technique overcomes the steady-state oscillations and tracking efficiency problems during
the energy generation process, thereby achieving better performance regarding tracking
accuracy and efficiency.
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In conclusion, the BPSO method is conceived to have superior information collection
and exploitation capabilities compared with other metaheuristic methods. Moreover, the
analysis and comparison of the popular and recent metaheuristic methods could provide a
great reference concerning the targeted method selection for different applications.
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Nomenclature

k current iteration
vi velocity of the ith particle
∆Pi position of the ith particle
w inertia weight parameter
r normalized random values in the interval (0, 1)
pbest the best position found in the ith iteration
gbest the best acquired global position
d dimension
ubd upper bound
lbd lower bound
pbest

∗ the mean best solution in the iteration
A membrane permeability
Cos Van’t Hoff factor
∆πm osmotic pressure difference between two solutions
cd draw solution concentrations
c f the feed solution concentrations
qd the draw flow rates
q f the feed flow rates
∆mp mass flow rates of the permeating solution
∆ms mass flow rates of the reverse solute
ρP permeate density
ρD draw solution density
Am membrane area
vp the permeated solution flow rate
Jw water flux
Js salt flux
B salt permeability factors
S membrane structural factor
D solute diffusion factor
πD osmotic pressure on the draw side
πF osmotic pressure on the feed side
kd solute resistivity of the porous membrane support
∆VP permeate volume
∆P applied energy
WP available extracted energy
G the fitness function of the designed problem
G∗ the best fitness
Tλ the cpu time in seconds
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