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Abstract: This paper considers the effect of wake expansion on the finite blade functions in blade
element/momentum theory for horizontal-axis wind turbines. For any velocity component, the func-
tion is the ratio of the streamtube average to that at the blade elements. In most cases, the functions
are set by the trailing vorticity only and Prandtl’s tip loss factor can be a reasonable approximation to
the axial and circumferential functions at sufficiently high tip speed ratio. Nevertheless, important
cases like coned or swept rotors or shrouded turbines involve more complex blade functions than
provided by the tip loss factor or its recent modifications. Even in the presence of significant wake
expansion, the functions derived from the exact solution for the flow due to constant pitch and
radius helical vortices provide accurate estimates for the axial and circumferential blade functions.
Modifying the vortex pitch in response to the expansion improves the accuracy of the latter. The
modified functions are more accurate than the tip loss factor for the test cases at high tip speed ratio
that are studied here. The radial velocity is important for expanding flow as it has the magnitude of
the induced axial velocity near the edge of the rotor. It is shown that the resulting angle of the flow
to the axial direction is small even with significant expansion, as long is the tip speed ratio is high.
This means that blade element theory does not have account for the effective blade sweep due to
the radial velocity. Further, the circumferential variation of the radial velocity is lower than of the
other components.

Keywords: horizontal axis wind turbine; finite blade functions; tip loss factor; blade element analysis;
induced velocities; expanding flow

1. Introduction

Blade element/momentum theory (BEMT) for horizontal-axis wind turbines is so
basic that it is covered in every textbook on wind turbine aerodynamics, e.g., Hansen [1]
and Schmitz [2]. BEMT balances the changes in axial and angular momentum in the wind
flow through the rotor against the lift and drag acting on the blades. The blades are divided
computationally into elements that intersect expanding annular streamtubes of the flow.
Their axial and angular momentum depend on the average axial (u) and azimuthal (w)
velocities of each streamtube whereas the lift and drag depend on the velocities at the
blade, ub and wb. In addition, the radial velocity (v) associated with flow expansion, is of
the same magnitude as u and thus needs to be considered in determining the accuracy of
BEMT, Limacher and Wood [3].

Throughout this paper, a subscript “b” indicates a velocity at the blades and an
unsubscripted velocity without an argument is a streamtube average. In addition, all
velocities are normalized by the wind speed, so that u is equivalent to the axial induction
factor, usually given the symbol a. To maintain a consistent nomenclature for the three
velocity components, a will not be used herein. It is reasonable to assume that u → ub
and w → wb as the number of blades, N → ∞ at any tip speed ratio, λ, or as λ → ∞ at
any N. Most actual wind turbines, however, have N = 2 or 3 and operate around λ ≈ 7,
and so there can be significant differences between the velocities at the blades and the
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streamtube averages. If the blades are equispaced, straight, and lie in the radial direction,
these differences are due entirely to the trailing vorticity. In general, the simplest way
to account for the differences is through “finite blade functions”, FBFs collectively, or
Fu = u/ub, Fv = v/vb, and Fw = w/wb individually.

The three main ways to determine the FBFs are:

1. The vast majority of wind turbine codes use Prandtl’s tip loss factor FP which as-
sumes FP = Fu = Fw. The modern form of FP was developed by Glauert [4] and
its implementation is described by Hansen [1] and Schmitz [2]. The formula for FP
is computationally cheap and this overrides its limitations of being derived from
modelling the trailing vorticity as two-dimensional sheets of vorticity. Modifications
to Prandtl’s formulation have been developed by a number of authors, including
Shen et al. [5]. A more recent example of this type of analysis is by [6]. None of these
modificatons address the effects of wake expansion.

2. It is common in propeller analysis, e.g., Epps [7], to use analytical approximations to
the complicated Kawada-Hardin (KH) equations for the velocities due to helical vor-
tices of constant pitch and radius. Wood et al. [8] showed that FP approached Fu and
Fw derived from the KH equations, as λ increased. Significant differences, however,
occurred for λ ≤ 7. Wood et al. [9] give a brief history of these methods and compare
three approximations to the KH equations for a range of vortex pitch applicable to
wind turbines and propellers. They showed the best of the approximations (which is
used here) is accurate and easy to incorporate in a BEMT code.

3. Wimshurst and Willden [10] and Schmitz and Maniaci [11] solved free-wake models
to calculate Fu and Fw. The former were the first to show a difference between Fu
and Fw. This work was followed by Wimshurst and Willden [12] and Wimshurst
and Willden [13] using further detailed computational fluid dynamics analysis of
the flow over the blades. Free-wake models account for wake expansion which is
significant for turbines near maximum power, but are computationally demanding in
comparison to BEMT.

A further consideration is that FP or its modifications should not be used when the
blade bound vorticity influences the FBFs. Wood et al. [9] give a number of examples where
this occurs, including rotors with swept or coned blades. Method 1 and its variations are
also inaccurate for a shrouded wind turbine where Fu and Fw do not go to zero at the blade
tips whereas FP does, Vaz et al. [14]. The last two references show that Method 2, either
alone or by including the effects of the bound vorticity, can be used for those cases where FP
is contraindicated. Method 2, therefore, has the potential to be significantly more general
and accurate than Method 1 and much less computationally demanding than Method 3.
Its main limitation would appear to be the restriction to trailing vortices of constant pitch
and radius, that is, to non-expanding flow. This limitation is due to the lack of analytic
solutions for the velocity fields of expanding helical vortices. The purpose of this paper is
to investigate the accuracy of Method 2 in the presence of significant flow expansion by
using a semi-analytic treatment of the expanding vortices. To the author’s knowledge, this
has not been attempted before.

There are several reasons to expect that flow expansion has differing effects on the
FBFs. The main reason to anticipate small effects is that Fu and Fw differ from unity
largely because of the 2π/N azimuthal periodicity of any wake, whether it expands or not.
This periodicity strictly applies only in the ideal case of equispaced and aerodynamically
equal blades, but is normally assumed in BEMT codes and is implicit in FP. It forces
wake uniformity as N → ∞. The expectation of large effects of expansion arise from its
association with a significant v at the rotor. Limacher and Wood [3] showed that the flow
immediately upwind of the rotor is constrained by the “expansion integral”:

∫ ∞

0

∫ 2π

0

(
v2(r, θ)− u2(r, θ) + w2(r, θ)

)
rdrdθ ≈ 0 (1)
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where the radial (r) integration is from the axis of rotation, r = 0. θ is the circumferential
angle. w = 0 anywhere upwind of the blades, so the integral is dominated by the first
and second terms. The integral is strictly zero only in the limit N → ∞ but is likely to be
approximately zero for all N. It is usually assumed that u and v are continuous through
the rotor so Equation (1) without the w−term holds immediately behind the rotor as well.
As shown by van Kuik [15] and Wood and Limacher [16], this is associated with v ≈ u at
the edge of the rotor, at least for large N. The radial velocity is almost universally ignored
in BEMT and there has not been any consistent assessment of its magnitude or importance.
This analysis considers v and Fv, the latter for the first time. There is also a good reason
to expect that expansion effects Fu and Fw in different ways. Within a helical vortex of
constant pitch and radius, u is proportional to the inverse of the pitch p, and Wood and
Limacher [16] show that expansion significantly changes the constant of proportionality.
On the other hand, expansion has no effect on w as the circulation around a circular contour
is zero if the contour is within the helix and proportional to wr if outside, whatever the
vortex geometry. Expansion clearly has different effects on u and w and this may well carry
over to Fu and Fw.

Wood and Limacher [16] explored the effects of wake expansion by means of a
“Joukowsky” wake which should be applicable at high λ. A single hub vortex lies along
the axis of rotation and there are N helical tip vortices. To generalize the KH analysis,
ref. [16] assumed the vortex pitch remained constant for the expanding tip vortices, on
the grounds that the changing vortex radius was more important than changing the pitch.
This allowed a semi-analytic determination of the induced velocities via the Biot-Savart
law, as explained in detail in the next Section. They found that wake expansion alters
the relationship between u and its far-wake value and that the area of the far-wake was
1.597 times that of the rotor for maximum power output. This is a 20% reduction from the
Betz-Joukowsky value of 2, but is still a significant expansion. The present paper extends
the Biot-Savart analysis of [16] to compute the three FBFs due to the trailing vorticity in an
expanding flow. A direct comparison is then made of Fu and Fw to Fp at high λ where they
should have the smallest difference. This point is critical: the comparison of Fu and Fw to
FP is confined in this analysis to conditions where FP should have its highest accuracy.

The Section 2 describes the three main ways of computing the FBFs and details the
test cases, for which p was specified as p = 0.1, 0.05 which resulted in λ = 7.13, 14.28,
studied by Wood and Limacher [16]. Section 3 has two parts. The first presents the basic
comparison of the FBFs and a method is developed to improve the accuracy of Fw for
expanding wakes. The second subsection concentrates on v and Fv and their relations to
the expansion integral. Section 3 contains the discussion and Section 4 the conclusions.

2. The Equations for the Induced Velocities and Finite Blade Functions

For completeness, Section 2.1 describes the evaluation of Prandtl’s tip loss factor even
though it is well-known. Section 2.2 covers the KH equations and the single formula for Fu
and Fw. Okulov’s approximations to the KH equations are introduced in Section 2.3, and
the Biot-Savart calculations are summarized in Section 2.4.

2.1. Prandtl’s Tip Loss Factor

Most BEMT codes assume Fu = Fw = FP where

FP =
2
π

cos−1
[

exp
(
−N(1− r)

2r sin φ

)]
. (2)

This equation is derived in Section 4.4 of Glauert [4] by assuming the wake comprises
two-dimensional vortex sheets without expansion. The sheets are a constant distance apart
which is a similar assumption to that of constant pitch in Wood and Limacher [16]. The
use of Equation (2) in blade element-momentum theory is described in most textbooks
on wind turbine aerodynamics, e.g., Hansen [1] and Schmitz [2]. The “inflow angle”, φ,
is the angle between the circumferential velocity and total velocity at the blades. For the
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present comparisons, we take sin φ = p/
√

p2 + r2. In practice, FP is often combined with
a similar “hub loss factor”, but this is not appropriate for a Joukowsky wake, as the hub
vortex is circumferentially uniform. It is the only straight trailing vortex and thus does not
contribute to the difference between w and wb, or to u or ub.

Γ does not appear directly in Equation (2) or any of the other FBF equations for a
Joukowsky wake detailed below. In many BEMT simulations, the bound vorticity changes
along the blade, so the strength of the vortex shed at the junctions of the blade elements is
the difference in the Γ of the elements forming the junction. Since each vortex can contribute
to the difference between u and ub, say, the final form of the FBFs depends on the bound
vorticity distribution. There is a corresponding dependence on any radial variation in p.

2.2. The Kawada-Hardin Equations

A semi-infinite single (N = 1) helical vortex of constant radius t and pitch p, defined
by dx/dθ = p for any point on the vortex, begins at (0, t, 0) in cylindrical polar co-ordinates.
u at any point (0, r, θ) in the rotor plane, is given by the KH equations as

u(0, r, θ) =
Γ

4πp
− Γt

2πp2 S1 = u− Γt
2πp2 S1 (3)

where

S1 =
∞

∑
m=1

mK′m(mt/p)Im(mr/p) cos(mθ). (4)

Γ is the vortex strength, and Im(.) and Km(.) are modified Bessel functions in standard
notation. m denotes the order and the prime a derivative with respect to the argument.
Helical symmetry requires pu = wr and so the calculation of w, say, is straightforward
once u has been found. There is a similar series solution for the flow external to the helix
but this is not needed for the present investigation. Kawada [17] and Hardin [18] derived
these equations from the velocity potential due to a helical vortex. This methodology
has interesting advantages and disadvantages compared to the more common use—an
example of which is shown below—of the Biot-Savart law to find the velocities associated
with a line vortex of known geometry.

When summed to determine S1 at the blades, denoted by S1,b, the result is Equation (13)
of [19]:

S1,b = N
∞

∑
m=1

mNK′mN(mNt/p)ImN(mNr/p) (5)

as a consequence of the previously mentioned 2π/N periodicity of the wake when the
blades are equispaced and identical. This simplification, called “Kawada cancellation” by
Fukumuto et al. [20], removes all terms in the series that are not multiples of N. Thus
the flow becomes circumferentially uniform as N increases. Cancellation removes the
majority of terms in the series even for N = 3, say, but this is of little help in accurately
determining S1,b. Okulov and Sørensen [21] show that the upper limit on m to sum the
series to a specified accuracy, m̂, increases without bound as the vortex is approached, i.e.,
r → t. Wood et al. [9] derive formulae for m̂ that show the unboundedness.

From Equations (3) and (5), Fu for a Joukowsky wake containing constant pitch and
radius helical vortices, is given by

Fu = 1
/[

1− 2S1,b(p)/(Np)
]
. (6)

and, like Equation (2) for FP, is not a function of Γ. Fu ≤ 1 everywhere along a blade
because S1,b is always negative. Equation (3) has no contribution from the hub vortex
which does not influence u and whose induced w must be circumferentially uniform.
Fw differs from unity because of the spatial variations caused by the tip vortex. These
variations also depend on S1 by the KH equations, with the consequence that Fu = Fw for
the Joukowsky wake with constant radius and pitch. This result was used to check the
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Biot-Savart formulation described below. It was also checked that the tip vortex gave no
contribution to w.

The KH equations were not used in this work to determine S1,b. Instead it was found
from the approximate equations described in the next Section and Fu and Fw were computed
from Equation (6).

2.3. Okulov’s Approximate Equation for S1,b

As described by Wood et al. [9] and in the Appendix to Okulov and Sørensen [21],
Okulov [22] derived an approximate equation for S1,b:

S1,b ≈ N2K′N(Nt/p)IN(Nr/p) + A
[

B
(
U + log(1−U)

)
− NU2

1−U

]
(7)

where

A =
p
2t

[ 1 + (t/p)2

1 + (r/p)2

]1/4
,

B =
1

24

[9(t/p)2 + 2
c3

t
+

3(r/p)2 − 2
c3

r

]
, and (8)

U =
[ r(ct + 1)

t(cr + 1)
exp

(√
1 + (r/p)2 −

√
1 + (t/p)2

)]N
.

The first term in Equation (7) is clearly the first term in the KH Equation (5). Wood et al. [9]
tested three approximate equations for S1,b and found that (7) was the most accurate over a
wide range of p. The evaluation of Equation (7) takes more time than Equation (2) but not
substantially more. Fu and Fw are then found by substitution in Equation (20).

2.4. Using the Biot-Savart Law

Wood and Limacher [16] analyzed a constant pitch, Joukowsky wake with an expand-
ing tip vortex. They used the Biot-Savart law to find the three induced velocities at any
point in the rotor plane as

(
u(r, θ), v(r, θ), w(r, θ)

)
=

Γ
4π

(Iu, Iv, Iw) =
Γ

4π

∫ ∞

0

(
iu(r, θ), iv(r, θ), iw(r, θ)

)

d3 dβ (9)

where Γ is the vortex strength and the dependence of Iu, Iv, and Iw on r and θ has been
suppressed. The integrands are

iu(r, θ) =t2 − rt cos(β− θ)− r
dt
dβ

sin(β− θ),

iv(r, θ) =− p
[

tβ cos(β− θ) +

(
t− β

dt
dβ

)
sin(β− θ)

]
, and (10)

iw(r, θ) =p
[

r +
(

β
dt
dβ
− t
)

cos(β− θ)− tβ sin(β− θ)

]
,

where
d2 = r2 + t2 − 2rt cos(β− θ) + p2β2. (11)

To evaluate these integrals, the vortex radius t must be known as a function of vortex
angle β. WL used the simple form

t = R∞ − (R∞ − 1) exp(−kβ) (12)
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where R∞ is the radius of the far-wake. It and the parameter k were set by satisfying the
expansion integral, Equation (1), in the form

∫ ∞

0

(
v2 − u2

)
rdr = 0, (13)

and then requiring the slopes of the vortex surface and streamsurface to be equal at the
blade tip. Table 1, taken from Wood and Limacher [16], provides the resulting geometry
and power coefficient, CP, of the Joukowsky wake for p = 0.05, 0.10 which will be used as
test cases to assess the effects of expansion in the next Section. As described by [16], these
values were found using a pattern search for each p.

Table 1. Results for the expanding Joukowsky wake with constant pitch. N = 3.

p R2
∞ k λ CP CT

0.10 1.597 0.4947 7.13 0.557 0.866
0.05 1.592 0.2482 14.28 0.556 0.864

In determining the integrands for u and v by integrating over 0 ≤ θ ≤ 2π, the
sin(β− θ) terms vanish as they are odd in θ. Wood and Limacher [16] obtained

iv(x) =
pβ

πx
√

p2β2 + (x + t)2

[(
1 +

m
2

)
E(mp)− K(mp)

]
, and (14)

iu(x) =
−1

π
√

p2β2 + (x + t)2

[(
1 +

m
2
− mt

2r

)
E(mp)− K(mp)

]
, (15)

where E(.) and K(.) are the complete elliptic integrals of the second and first kind, respec-
tively, whose argument, mp = m/(1 + m) where m = 4rt/

(
p2β2 + (r− t)2). Note that

integral K is distinguished from Bessel function Km as the latter always has the order (m)
as the subscript. The remaining β−integration for Equation (15) must be done numerically.
Wood and Limacher [16] document the tests done to ensure the accuracy of this integration
which included determining analytic remainders for the use of a finite upper limit on β.
These checks were extended in this work as described below.

The integration of Equations (14) and (15) gives v and u. ub was determined from
Equation (10):

iu,b =
N−1

∑
j=0

t2 − rt cos(β′)− r dt
dβ sin(β′)

(r2 + t2 − 2rt cos(β′) + p2β2)
3/2 (16)

where β′ = β− 2π j/N. The remaining β−integration was also done numerically using
the the Matlab routine integrate. vb, and wb were found similarly. One of the differences
between the Biot-Savart and KH determination of the FBFs is that Kawada cancellation
cannot be used for the former because the denominator of Equation (16) changes with
j. The previously mentioned remainders for the subsequent integration in β, arise from
cancellation in the far-wake where the denominators become independent of j.

The computational cost of the Biot-Savart determination of the FBFs is considerable
because of the numerical integration which, in turn, is only possible once the vortex
geometry is known. The method, therefore, is likely to be useful only in providing test cases.

The relationship between the KH equations and the Biot-Savart integrals is taken up
again the next Section to provide a modification for the KH determination of Fw to improve
its accuracy.

3. Results and Discussion
3.1. The Finite Blade Functions, Fu and Fw

Fu computed from Equation (16) and Fw determined similarly from the Biot-Savart
law for typical values of N = 3 and tip speed ratio λ = 7.13, for which p = 0.10, are
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shown as circles in Figures 1 and 2 respectively. They are the “target” results from the
full Biot-Savart integration. Note the lines showing Prandtl’s tip loss factor, FP, which is
assumed to equal Fu and Fw, and the FBFs are the same in both figures because Fu = Fw
from the KH equations with constant p. Only the results from the outer half of the blade
(r ≥ 0.5) are plotted. Clearly Fu differs from Fw in expanding flow and Fu from (6) is
significantly more accurate than FP but the reverse is true for the azimuthal FBF, Fw, in
general. The revised form of Fw, determined as explained below and shown as the dotted
line, is, however, more accurate than FP for r > 0.9.
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Figure 1. Axial finite blade function, Fu for conditions in Table 1, p = 0.1. Solid line shows FP, dashed
line is Fu = Fw from the Kawada-Hardin Equation (??), and dotted line, Fu = Fw from the modified
pitch Equation (20). ⃝ shows Biot-Savart calculation with Equation (12); ×, Biot-Savart calculation
with Equation (17) and upper limit 1000π; □ Biot-Savart calculation with Equation (17) but upper limit
= 2π.
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Figure 2. Circumferential finite blade function, Fu for conditions in Table 1, p = 0.1. Solid line shows
FP, dashed line is Fu = Fw from the Kawada-Hardin Equation (??), and dotted line, Fu = Fw from
the modified pitch Equation (20). ⃝ shows Biot-Savart calculation with Equation (12); ×, Biot-Savart
calculation with Equation (17) and upper limit 1000π; □ Biot-Savart calculation with Equation (17) but
upper limit = 2π.

Figure 1. Axial finite blade function, Fu for conditions in Table 1, p = 0.1. Solid line shows FP, dashed
line is Fu = Fw from the Kawada-Hardin Equation (6), and dotted line, Fu = Fw from the modified
pitch Equation (20). © shows Biot-Savart calculation with Equation (12); ×, Biot-Savart calculation
with Equation (17) and upper limit 1000π; � Biot-Savart calculation with Equation (17) but upper
limit = 2π.
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the modified pitch Equation (20). ⃝ shows Biot-Savart calculation with Equation (12); ×, Biot-Savart
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Figure 2. Circumferential finite blade function, Fw for conditions in Table 1, p = 0.1. Solid line shows
FP, dashed line is Fu = Fw from the Kawada-Hardin Equation (6), and dotted line, Fu = Fw from the
modified pitch Equation (20). © shows Biot-Savart calculation with Equation (12); ×, Biot-Savart
calculation with Equation (17) and upper limit 1000π; � Biot-Savart calculation with Equation (17)
but upper limit = 2π.
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To explore more fully the different behaviours of Fu and Fw compared to Equation (6),
both figures show the FBFs determined for a helical spiral having the local vortex sur-
face/streamsurface slope at the rotor:

t = 1 + k∗β, where k∗ = k(R∞ − 1). (17)

for the tip vortex. The implication of the figures is that Fw near the tip, but not Fu, is
determined largely by the slope of the bounding streamsurface. This is not surprising
given the form of the denominator in (11) makes Fu unbounded when the vortex trajectory
is a spiral. The significance of the local induction for Fw is shown further by the very small
effect of reducing the upper limit on the numerical integration from 1000π to 2π which
implies that only the vortex attached to the blade on which wb is being calculated, has a
large effect on Fw. Although not shown here, the dominance of local induction occurs also
for v and vb and hence Fv, which is considered in the next subsection.

If the integrand for Fw is determined largely by the closest vortex and its slope, it
follows from Equations (10) and (11) that

iw,b(r)
d3 ≈ p

r− cos(β)− β sin(β)− k∗β2 sin(β)

[r2 + 1− 2r cos(β) + (p2 + k2∗)β2 + 2k∗β(1− r cos(β))]
3/2 . (18)

Further, by ignoring the last term in the numerator and denominator on the grounds that
both are of order β3 as r → 1, then

iw,b(r)
d3 ≈ p

r− cos(β)− β sin(β)

[r2 + 1− 2r cos(β) + (p2 + k2∗)β2]
3/2 . (19)

The factor multiplying p in Equation (18) is identical to iw,b for a vortex of constant
radius, t = 1, at the “equivalent pitch” of p∗ =

√
p2 + k2∗. This changes the equation for Fw

from Equation (6) to
Fw = 1

/[
1− 2pS1,b(p∗)(Np2

∗)
]
. (20)

Figure 3 demonstrates the accuracy of the approximations leading to (20) for r = 0.95.
The equivalent pitch integrand in (19) has the same asymptote as β→ 0 but is less accurate
for β around 10−2. The inset shows that it does not capture the effects of the vortices
trailing from the other blades but the error is small.
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Equation (19).

figures because Fu = Fw from the KH equations with constant p. Only the results from the outer half1

of the blade (r ≥ 0.5) are plotted. Clearly Fu differs from Fw in expanding flow and Fu from (??) is2

significantly more accurate than FP but the reverse is true for the azimuthal FBF, Fw, in general. The3

revised form of Fw, determined as explained below and shown as the dotted line, is, however, more4

accurate than FP for r > 0.9.5

To explore more fully the different behaviours of Fu and Fw compared to Equation (6), both figures6

show the FBFs determined for a helical spiral having the local vortex surface/streamsurface slope at7

the rotor:8

t = 1 + k∗β, where k∗ = k(R∞ − 1). (17)

for the tip vortex. The implication of the figures is that Fw near the tip, but not Fu, is determined9

largely by the slope of the bounding streamsurface. This is not surprising given the form of the10

denominator in (11) makes Fu unbounded when the vortex trajectory is a spiral. The significance of11

the local induction for Fw is shown further by the very small effect of reducing the upper limit on the12

numerical integration from 1000π to 2π which implies that only the vortex attached to the blade on13

which wb is being calculated, has a large effect on Fw. Although not shown here, the dominance of14

local induction occurs also for v and vb and hence Fv, which we consider in the next subsection.15

Figure 3. Integrand for Iw for N = 3, p = 0.1, λ = 7.13 and r = 0.95. iw from Equation (12) for all
blades, ×; for Equation (12) and first blade only, +; for Equation (17) and all blades, �. Solid line
shows iw from Equation (19).
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The dependence of the modified pitch on the expansion requires numerical values of
v which are normally not computed in blade element analyses. One solution is to assume
u ≈ v near the tip where the finite blade functions are most important so that k∗ can be
approximated as k∗(r) ≈ u(r)/(1− u(r)). If u ≈ 1/3 at high λ, then k∗ ≈ 0.5 and so k2∗
can dominate p2 as it does for the values in Table 1.

3.2. The Radial Velocity and Fv

Neither the angular momentum equation nor the conventional axial momentum
equation for the flow through the rotor contain v. It does appear in the impulse-based
derivation of the axial momentum equation by Limacher and Wood [3] but is removed by
the assumptions of continuity through the rotor and the near-zero value of the expansion
integral. Wood and Limacher [16] show that the part of the expansion integral covering the
rotor is equal to the contribution to the axial thrust on the rotor due to the pressure acting
on the expanding upwind flow, ∆CT . When N is large, ∆CT , is given by

∆CT = 2
∫ 1

0

∫ 2π

0

(
u2 − v2

)
rdr. (21)

For p = 0.1 in Table 1, ∆CT = 0.061 which is 7% of CT = 0.866. This suggests that more
advanced and more accurate BEMT methods in the future will need to compute v and
Fv. Figure 4 shows Fv for the conditions of Table 1 with p = 0.1 compared to that for
a non-expanding tip vortex. v(r, θ) is clearly more uniform in expanding flow and Fv
deviates from unity much less than Fu and Fw.
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Figure 4. Radial finite blade function, Fv from Biot-Savart calculation with Equation (12) for condi-
tions in Table 1, p = 0.1;©. Fv for p = 0.1 but constant t = 1, ×.

One further aspect of non-zero v is that it causes the blades to act like swept wings
where the flow is not parallel to the chord in Figure 5. It is well-known from swept
wing analsys that this alters the lift and drag. The “sweep” angle φ between vb and the
(θ, z)−plane rotor flow is

φ = tan−1
[

vb

/√
(1− ub)2 + (λr + wb)2

]
. (22)
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The integrand for the expansion integral, u2 − v2, is shown for the conditions of
Table 1 and p = 0.1 in Figure 6. The θ−integrals used the trapezoidal rule with 360 equal
azimuthal increments. The same rule was used for the radial integral to find ∆CT . There
are apparent errors due to the singularities at x = 1 but it is reasonable to conclude that the
only significant difference between the square of the averaged velocities and the average
of the squares has little effect on ∆CT or the expansion integral. Generally, the azimuthal
variations in u(θ) are significantly less than those for the other two velocity components.
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For p = 0.1 in Table 1, ∆CT = 0.061 which is 7% of CT = 0.866. This suggests that more advanced and1

more accurate BEMT methods in the future will need to compute v and Fv. Figure 4 shows Fv for the2

conditions of Table 1 with p = 0.1 compared to that for a non-expanding tip vortex. v(r, θ) is clearly3

more uniform in expanding flow and Fv deviates from unity much less than Fu and Fw.4

One further aspect of non-zero v is that it causes the blades to act like swept wings where the flow5

is not parallel to the chord. It is well-known from swpt wing analsys that this alters the lift and drag.6

The “sweep” angle ϕ between vb and the (θ, z)−plane rotor flow is7

ϕ = tan−1
[

vb

/√
(1 − ub)2 + (λr + wb)2

]
. (22)

The integrand for the expansion integral, u2 − v2, is shown for the conditions of Table 1 and p = 0.1 in8

Figure 6. The θ−integrals used the trapezoidal rule with 360 equal azimuthal increments. The same9

rule was used for the radial integral to find ∆CT . There are apparent errors due to the singularities at10

x = 1 but it is reasonable to conclude that the only significant difference between the square of the11

averaged velocities and the average of the squares has little effect on ∆CT or the expansion integral.12

Generally, the azimuthal variations in u(θ) are significantly less than those for the other two velocity13

components.14

4. Conclusion15

This study considered the ways in which significant expansion of the wake at high tip speed ratios,16

influences the finite blade functions used in blade element/momentum theory for horizontal-axis wind17

Figure 6. u2 − v2 for p = 0.1 in Table 1. Circles show integrand using u and v, solid line shows
integrand from u(θ) and v(θ). Note that the x− scale is logarithmic.
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4. Conclusions

This study considered the ways in which significant expansion of the wake at high
tip speed ratios, influences the finite blade functions used in blade element/momentum
theory for horizontal-axis wind turbines. These functions can be estimated very quickly
and simply using Prandtl’s well-known tip loss factor, or they can be calculated using
accurate approximations to the Kawada-Hardin equations for the velocity field of helical
vortices of constant radius and pitch.

The first aim was to assess the accuracy of the constant-radius equations by using
the Biot-Savart law to find the functions for a tip vortex of constant pitch but increasing
radius. This was done on the grounds that radius is likely to change more rapidly than the
pitch. The study was limited to tip speed ratios in excess of 7 where Prandtl’s factor should
be most accurate. It was found that expansion has little effect on the finite blade function
for the axial flow which was generally more accurate than Prandtl’s factor, but had an
effect on the azimuthal function that depended on the expansion. A simple correction for
expansion was shown to provide a function that was more accurate than Prandtl’s, at least
near the tip.

The second aim of the work was to investigate further the radial velocity and its
circumferential variation. Although its magnitude equals that of the axial velocity, v is not
large enough to require corrections to the lift and drag used in blade element analysis, and
it varies less with azimuth than the other velocities. It has a small effect on the rotor thrust
through Equation.
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