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Abstract: Network identification by deconvolution is a proven method for determining the thermal
structure function of a given device. The method allows to derive the thermal capacitances as
well as the resistances of a one-dimensional thermal path from the thermal step response of the
device. However, the results of this method are significantly affected by noise in the measured data,
which is unavoidable to a certain extent. In this paper, a post-processing procedure for network
identification from thermal transient measurements is presented. This so-called optimization-based
network identification provides a much more accurate and robust result compared to approaches
using Fourier or Bayesian deconvolution in combination with Foster-to-Cauer transformation. The
thermal structure function obtained from network identification by deconvolution is improved by
repeatedly solving the inverse problem in a multi-dimensional optimization process. The result is a
non-diverging thermal structure function, which agrees well with the measured thermal impedance.
In addition, the associated time constant spectrum can be calculated very accurately. This work
shows the potential of inverse optimization approaches for network identification.

Keywords: compact thermal models; thermal impedance; transient thermal measurement; time
constant spectrum; thermal structure function; network identification by deconvolution

1. Introduction

In thermal response measurements, a system is exposed to a change in heating or
cooling power and the response of the system, i.e. the resulting temperature change, is
monitored. Typically, the impulse response or the step response is measured with the goal
to reconstruct the relevant thermal properties of the system. For the one-dimensional case,
this corresponds to the construction of an equivalent Cauer network with known resistances
and capacitances. One method to achieve this is known as the “network identification by
deconvolution” method [1]. The method is regularly used as an analysis tool for transient
thermal analysis [2–4]. The methodology itself is also subject to intense discussions [5–8].

As a first step in this procedure, the measured thermal step response of a device under
test, called thermal impedance, is plotted on a logarithmic time scale and differentiated to
obtain the logarithmic impulse response. Subsequently, a deconvolution is performed to
retrieve the time constant spectrum, which gives the parameters for a Foster-type thermal
equivalence network. As the last step, a Foster-to-Cauer transformation is performed to
identify the thermal resistances and capacities of the heat path and to construct the thermal
structure function.

Network identification by deconvolution is a challenging technique both with respect
to measurement setup and evaluation procedure. In their book, Lasance and Poppe state
that “Zth curves must be extremely noise free” ([9], p. 129). An industry standard for the
thermal characterization of electronic devices, the JEDEC standard JESD51-14, reports that
the solution is “extremely sensitive to noise” ([10], p. 16). Ezzahri and Shakouri note in
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their paper that the thermal transient should ideally be sampled at least 10 to 15 times faster
than the smallest time constant in the signal [11]. A study at Infineon Technologies warns
against misinterpretation of numerical artifacts in the structure function, highlighting the
importance of accurate algorithms and careful interpretation of the results [12].

The input signal is typically recorded at a constant rate on a linear timescale. The
conversion from a linear to a logarithmic scale, z = ln(t), presents a first challenge as it
leaves the thermal impedance sparsely sampled in the beginning and dense at the end. The
result is a relatively low accuracy for the derivative at short times, which is particularly
detrimental for the subsequent, noise sensitive deconvolution. The final step, the Foster-
to-Cauer transformation, typically introduces a divergence to the structure function. In
principle, the divergence in thermal capacitance reflects the infinite heat capacity of the am-
bient. In practice, the divergence is significantly smeared out and masks the true behavior
of the structure function at the end, which is an artifact of the algorithm [13]. A detailed
analysis of the numerical challenges during network identification by deconvolution and
suggestions to systematically improve its performance are given in [8].

In this work, an alternative approach is used for the task of network identification. The
idea of the so-called optimization-based network identification is to avoid the numerically
challenging steps by solving the inverse problem to network identification repeatedly.
When solving the equations in this direction, an integration and convolution has to be
performed instead of a differentiation and deconvolution. This promises a higher accuracy,
as these tasks are numerically much simpler. In optimization-based network identification,
an initial estimate for the thermal equivalence network, i.e., the thermal structure function,
is first generated by conventional network identification by deconvolution. Next, the
solution is refined by a multi-dimensional optimization to find a good match between
optimization and measurement data. In this way, the algorithm does not rely on the
differentiation and deconvolution of noisy data only.

2. Inverse Calculations

The goal of network identification by deconvolution is to derive a thermal equivalence
network, i.e., the thermal structure function, from a thermal transient measurement. In this
context, an inverse calculation means to derive a step response from a thermal equivalence
network, i.e., a structure function.

The thermal structure function describes a system via numerous small sections with
constant resistance and capacitance density, ri and ci. However, real physical systems
comprise significantly fewer components. Most of the ri and ci represent the same layer
or component. Thus, the relevant information is also captured by a simplified thermal
equivalence network, which is constructed from the full thermal structure function. As
a model for the simplified thermal network, a chain of uniform RC transmission lines is
used [14]. Its corresponding structure function is called piecewise uniform structure func-
tion. A comprehensive treatment of non-uniform RC lines can be found in [15,16]. Once the
total resistances, R′i, and the total capacitances, C′i , of each section of the piecewise uniform
transmission line are known, its total impedance can be constructed. The impedance up to
each section, Zi(s), can be calculated via

Zi(s) =

√
R′i
sC′i

ZL,i +

√
R′i
sC′i

tanh(
√

sR′iC
′
i)√

R′i
sC′i

+ ZL,i tanh(
√

sR′iC
′
i)

. (1)

Here, ZL,i denotes the load impedance of section i and s the complex frequency. The total
impedance of the entire transmission line, Z(s), is calculated sequentially by using the
input impedance of the previous section as the load impedance of the next. The calculation
begins at the short-circuited end with a vanishing load impedance. In Figure 1, a structure
function calculated via network identification by deconvolution is shown together with a
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piecewise uniform approximation comprising ten sections. Note that due to the decadic
logarithmic scaling of the cumulative capacitance the sections do not appear linear.

0 10 20 30 40 50

10−7

10−5

10−3

10−1

101

cumulative resistance, 𝑅Σ, in K/W

cu
m

ul
at

iv
e

ca
pa

ci
ta

nc
e,
𝐶
Σ
,i

n
J/

K

conventional structure function
piecewise uniform approximation

Figure 1. Conventional structure function and piecewise uniform approximation with ten sections.
The divergence at the end is truncated in the optimization as it is a numerical artifact.

Once Z(s) is known, the logarithmic time constant spectrum, R(ζ), is calculated. It is
proportional to the imaginary part, =, of Z(s) on a path along the negative real axis,

R(ζ) =
1
π
=[Z(s = − exp(−ζ))] . (2)

Due to poles on this path, Equation (2) cannot be evaluated directly. Instead, a small angle,
δ, is introduced which rotates the path into the complex plane,

s = (cos(δ) + i sin(δ)) exp(−ζ) . (3)

This has the effect of smoothing the poles, making them finite as described in [17].
The smaller δ is, the more accurate the calculations become. However, a small angle of
δ produces high and narrow peaks, which requires a dense sampling of s to be captured
correctly. Moreover, for accurate calculations it is required to capture all side lobes of the
time constant spectrum. This means, that for small angles of δ the time constant spectrum
has to be sampled densely over a wide range. In effect, calculating theoretical thermal
impedances with very high accuracy becomes computationally demanding, requiring
calculation times of up to several minutes on an ordinary desktop computer. In the
literature, it is stated that the angle, δ, should not exceed 5° [17]. Typically, the time
constant spectrum is sampled at approximately 30 points per decade [18,19].

Ideally, the asymptotic value of the thermal impedance, Zth(t → ∞), should match
the total thermal resistance of the structure function, Rth,Σ, exactly. In this case, the relation
Rth,Σ = Zth(t→ ∞) is exactly satisfied. However, due to the discretization error and the
finite angle, δ, the asymptotic thermal impedance, Zth(t→ ∞), is different from Rth,Σ. The
absolute difference between them is denoted as ∆Rth, i.e., ∆Rth = |Rth,Σ − Zth(t→ ∞)|.

In the following, an analysis is performed to determine appropriate parameters for
inverse calculations. The accuracy is mainly determined by the angle δ and the sampling
parameters. The computational workload depends significantly on the number of points
used for ζ. To strike a balance between computation time and accuracy, 106 points in the
range [−20, 10] are used. To determine an optimum value of δ for this sampling rate, a test
series is performed. Figure 2 shows the relative deviation, ∆Rth/Rth,Σ for different values
of δ and fixed sampling frequency. As a test case, structure 1 (see Table 1) is used. At high
angles, the accuracy is relatively low due to the error made in Equation (3). At very low
angles of δ, the peaks are too narrow to be captured correctly, given the sampling frequency.
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A value of δ = 0.03° limits the error made in Equation (3) while making sure that all peaks
are captured correctly. For smaller angles and higher sampling frequencies, the error is also
limited by the width of the chosen interval.
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Figure 2. Relative deviation in thermal resistance for structure 1 at 106 points for ζ ∈ [−20, 10].

Table 1. For the purpose of comparison, three reference structures are defined as a chain of uniform
RC transmission lines, where each section has a thermal resistance and capacitance.

Structure 1 Structure 2 Structure 3

Rth Cth Rth Cth Rth Cth

Sections K/W J/K K/W J/K K/W J/K

Section 1 5 10−5 10 10−4 20 10−1

Section 2 15 10−3 10 10−1 20 10−4

Section 3 10 10−4 10 10−4 10 10−3

Section 4 10 10−2 10 10−3 - -

Section 5 10 10−1 10 100 - -

3. Optimization-Based Network Identification

The idea of optimization-based network identification is to find a piecewise uniform
structure function via multi-dimensional optimization, which has a thermal impedance
which matches well with the measured thermal impedance. In this way, a structure function
belonging to the system is known by definition and the associated time constant spectrum
can be readily calculated with high accuracy.

The scheme of Figure 3 visualizes the procedure of optimization-based network
identification. Starting from the measured step response (top left), a conventional network
identification by deconvolution is performed first. Then, a network simplification is
performed (see Figure 1). In this step, the thermal structure function resulting from network
identification by deconvolution is approximated by a piecewise uniform structure function,
truncating the divergence at the end. A multi-dimensional optimization is performed,
which optimizes the resistance and capacitance of each section. The goal is to minimize
the discrepancy between the conventional thermal network and the simplified thermal
network with a given number of sections. As a last step, an optimization-based network
identification is performed. In this step, the simplified thermal network is optimized to
best match the measured thermal impedance. The result is the optimized thermal network.
For each function evaluation during the optimization, an inverse calculation is performed.
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Once the optimized thermal network is in good agreement with the measured thermal
impedance, the optimization is successful.
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Optimization
– similarity between measured and optimized

thermal impedance (Eq. 5)
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2. time constant spectrum
3. thermal impedance

Initialization
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Figure 3. Scheme for optimization-based network identification. First, a network identification by deconvolution is
performed. Then, the steps of network simplification and optimization-based network identification follow.

For the success of optimization-based network identification, it is important to have
good initial values. A strategy to obtain good initial values is to perform a conventional
network identification by deconvolution first. To ensure a good fit between the interme-
diate thermal network, CΣ,intermediate(RΣ), and the thermal structure function, CΣ(RΣ),
an optimization is performed during network simplification. The number of piecewise
uniform sections, NS, in the step of network simplification is chosen manually. Typically, a
suitable number of sections lies between 2 and 20. The number of sections has to be high
enough to provide a sufficient number of degrees of freedom while keeping the optimiza-
tion as simple as possible. Each section is completely defined by the thermal resistance
and the thermal capacitance it contributes to the structure function. For the optimization,
the best-performing objective function is the square root of the integral of the squared
logarithmic deviations, i.e.,

ostruc =

√∫ R

0
[log(CΣ,intermediate(RΣ))− log(CΣ(RΣ))]

2dRΣ . (4)
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The initial intermediate thermal network, i.e., the starting values for the optimization
during the network simplification, are given by points, (RΣ,i, CΣ,i), evenly spaced along
the arc length of the forward structure function. In addition, truncating the divergence at
high RΣ, which is a numerical artifact of the Foster-to-Cauer transformation, increases the
accuracy and the stability of the convergence. For a good convergence, it should be ensured
that the total thermal resistance of the initial intermediate thermal network is identical to
the total thermal resistance of the measured thermal impedance.

The degrees of freedom provided to the solver are the cumulative resistances and the
cumulative capcitances, (RΣ,1, . . . , RΣ,NS , CΣ,1, . . . , CΣ,NS), of the piecewise uniform struc-
ture function. In this way, the total thermal resistance represented by the piecewise uniform
structure function is only determined by RΣ,NS and does not change when modifying the
other RΣ,i.

The objective function employed for the main optimization is given in (5). It has
the form of an L2-norm, i.e., it is the square root of the integral of the squared difference
between optimized and measured step response,

oimp =

√∫ zmax

zmin

(
ameasured(z)− aopt(z)

)2dz . (5)

Note that ameasured(z) is typically not evenly spaced. The optimized thermal impedance,
aopt(z), is interpolated to be defined on the same set of zi as the measurement data.

To compare the optimized thermal impedance to results from a network identification
by deconvolution, the time constant spectrum, which appears during network identification
by deconvolution, is reconvolved. Subsequently, it is integrated to reproduce a thermal
impedance. This impedance is henceforth called backwards thermal impedance. It is
the impedance represented by the time constant spectrum, i.e., it reflects the effects of
differentiation and deconvolution. To have a valid solution, the discrepancy (as measured
by oimp) between the optimized thermal impedance and the measured thermal impedance
must be similar or even smaller than the discrepancy between the optimized thermal
impedance and the backwards thermal impedance.

For network simplification as shown exemplarily in Figure 1, the results of the follow-
ing optimization-based network identification are shown in Figure 4. The value of the objec-
tive function resulting from the initial simplified thermal network is oimp, initial = 1.1449. Af-
ter the main optimization, the value of the objective function is reduced to oimp, optimized =
0.0305. For comparison, the value of the objective function for the backwards thermal
impedance is oimp, backwards = 0.0244. To calculate accurate structure functions, a low value
of oimp is an important sanity check and suitable to validate solutions. However, it is not
a sufficient measure of accuracy for a solution. A holistic comparison of the accuracy of
various methods is performed in the following section.

For optimization of the objective function (5), two solvers yield good results. Powell’s
conjugate direction method provides a good convergence [20], while constrained Optimiza-
tion BY Linear Approximations, abbreviated COBYLA, is also suitable [21]. A common
feature of both solvers is that they do not calculate derivatives of the objective function
and are therefore suitable for problems with complicated objective functions.

Moreover, both solvers are able to respect boundary conditions which is used here
to restrict the search space to physically possible values. For example, it is required that
all cumulative resistances and capacitances are positive. Additionally, the total thermal
resistance, RΣ,NS , is unlikely to significantly exceed Zth(t→ ∞).

As a physical constraint, the structure function must be monotonically increasing. This
means that both the list of resistances, (RΣ,1, . . . , RΣ,NS), and capacitances, (CΣ,1, . . . , CΣ,NS),
should be strictly monotonically increasing, i.e., each RΣ,i and CΣ,i has to be greater than
its left neighbor and smaller than its right neighbor. However, the solvers do not uphold
these conditions during the optimization strictly. There has to be a mechanism to repair
unphysical structure functions that appear during the optimization. This is done by sorting
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the RΣ,i and CΣ,i in each evaluation. Furthermore, a minimum size for RΣ,i − RΣ,i+1 and
CΣ,i − CΣ,i+1 is set to avoid numerical instability.
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Figure 4. Result for the optimization-based network identification using the Powell solver with ten sections. The initial
values are as shown in Figure 1. The measures of accuracy are mR = 3.52 and mS = 2.46. For the calculation, structure 2 is
used as an example (see Table 1).

In general, the COBYLA solver is able to accept constraints, that force the parameters
to fulfill certain boundary conditions. This can be used to restrict the solution to remain
physically meaningful in the sense explained above. Still, validity should be checked every
function evaluation because of possible constraint violations. Furthermore, significant
speed increases for the Powell solver are achieved by using an LRU (least recently used)
cache on parts of Equation (1). On the computer used in this work (Windows 10, Intel Core
i7-8665U CPU with 1.90 GHz, 16 GB RAM), the computation time for an optimization-
based network identification is on the order of a few minutes depending on the speed
of convergence for the specific problem. The conventional network identification by
deconvolution, which is performed at first, takes a few seconds.

4. Methodology

Three reference structures are defined to compare the performance of optimization-
based network identification with that of other methods such as network identification
using Fourier or Bayesian deconvolution (Table 1). To judge the accuracy of each method,
the exact thermal impedance of each reference structure is calculated as described in
Section 2. This thermal impedance is then used as input data for a network identification
algorithm. The accuracy of each method is measured by comparing the recovered structure
functions and time constant spectra with the reference.

To evaluate the algorithms under different conditions, the sampling rate and the
signal-to-noise ratio of the reference thermal impedances are artificially degraded. As a
first test case, the exact thermal impedance is provided to the algorithm without noise
and with a high sampling rate. This allows to judge the performance of the algorithms for
perfect input data. Second, an imperfect measurement is simulated by a reduction of the
sampling rate and the addition of Gaussian noise. The corresponding standard deviation,
σ, is defined by the signal-to-noise ratio, RSN, and the asymptotic thermal impedance,
Zth(t→ ∞), via

RSN =
Zth(t→ ∞)

σ
. (6)
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Third, in addition to the introduction of noise, the thermal impedance is resampled
with a constant sampling rate in linear time, t. This results in unevenly spaced points in
logarithmic time, z.

For the comparison of the recovered solutions with the theoretically ideal reference,
several measures of accuracy are defined. For a derivation and discussion of these measures
of accuracy, the reader is referred to ([8] Section 3.1—Measures of Accuracy). There, also
an analysis of network identification algorithms using Fourier and Bayesian deconvolution
on the basis of these measures is given (Section 6—Performance Quantification). The calcu-
lations presented here are conducted as similarly as possible to allow a fair comparison.

To quantify differences between two time constant spectra, the integrated spectrum,
R(ζ), is used, i.e.,

R(ζ) =
∫ ζ

−∞
R(ζ ′)dζ ′ . (7)

The measure of accuracy for time constant spectra, mR, is then defined as an L2-norm of
the differences between the integrated spectra,

mR =

√∫ ∞

−∞

(
Rtheo(ζ)−R(ζ)

)2dζ . (8)

When comparing two structure functions, a suitable definition for the integration
limits is crucial, as there are divergences in the structure function and potentially different
domains. The lower integration limit, RΣ,min, and the upper integration limit, RΣ,max, are
defined as

RΣ,max = arg max(CΣ) and RΣ,min = arg min(CΣ,theo) (9)

where CΣ,theo is the theoretical reference structure function and CΣ is the structure function
it is compared to. Using these definitions, the measure of accuracy for structure functions,
mS, is

mS =
∫ RΣ,max

RΣ,min

∣∣ log(CΣ,theo(RΣ))− log(CΣ(RΣ))
∣∣dRΣ . (10)

Here, CΣ(RΣ) is measured in units of J/K. To assess the absolute accuracy of the total ther-
mal resistance, a third measure of accuracy, ∆RΣ, is required [8], as the upper integration
limit, RΣ,max, is defined by the recovered structure function itself,

∆RΣ = |RΣ,th − RΣ,max| . (11)

Here, RΣ,th is the exact thermal resistance.

5. Performance
5.1. Performance for the Case of Perfect Data

First, the performance of optimization-based network identification is analyzed in the
ideal case of noise-free measurement data. A test of the algorithm on experimental data is
presented in [7]. The exact thermal impedance provided as input consists of 106 points for
ζ uniformly distributed in the range [−20, 10]. A summary of the results is given in Table 2.
To allow a fair comparison between the different methods under study, all parameters
are chosen to be identical for all methods and structures wherever possible. In particular,
this includes the network identification by deconvolution, which is computed as part of
the optimization-based network identification, which uses a Bayesian deconvolution. The
accuracies for the Fourier and Bayesian methods in Table 2 are taken from [8]. For the case
of Fourier domain deconvolution, the Hann filter is chosen.
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Table 2. Best accuracy for all methods in the absence of noise. The best performing method in each
column is highlighted in bold, the second best result is underlined.

Structure 1 Structure 2 Structure 3

mR mS ∆RΣ mR mS ∆RΣ mR mS ∆RΣMethod

K/W K/W K/W K/W K/W K/W K/W K/W K/W

Fourier 4.4 7.4 0.28 6.3 7.5 0.44 8.9 10.8 0.91

Bayesian 3.4 3.7 0.04 3.8 4.4 0.02 5.7 3.1 0.01

Powell 1.2 1.2 0.13 2.0 1.3 0.14 2.4 1.8 0.15

COBYLA 1.5 2.0 0.13 2.4 2.6 0.14 2.5 1.9 0.14

For optimization-based network identification, several parameters have to be specified.
This includes termination and convergence criteria for the iteration such as the maximum
number of iterations, the acceptable relative error in (RΣ,1, . . . , RΣ,NS , CΣ,1, . . . , CΣ,NS), and
the acceptable relative error in the objective function, oimp, as defined in Equation (5). For
the use of a COBYLA solver, a tolerance for constraint violations must be set. A robust
configuration is found for these parameters, which will be used in the following.

The accuracy also depends on the number of uniform sections used in the step of
network simplification. For this parameter, the optimum value is used for each test struc-
ture. As many inverse calculations are required to perform an optimization-based network
identification, each thermal impedance is calculated with reduced accuracy compared to
the input data. Here, an angle of δ = 0.5° with 104 points for ζ ∈ [−20, 10] is used.

The results presented in Table 2 show the method with the best performance for
each accuracy measure and structure in bold, the second-best result is underlined. In
terms of mS and mR, the optimization-based network identification with a Powell solver
performs best for all test structures, while the second-best result is consistently obtained
by optimization-based network identification with a COBYLA solver. The best resistance
accuracy, ∆RΣ, is achieved in all cases by network identification via Bayesian deconvolution.
This comes from the property of Bayesian deconvolution to preserve the total resistance
during deconvolution.

5.2. Performance in the Presence of Noise

Next, the performance of optimization-based network identification when confronted
with noisy input data is evaluated. A summary of the accuracy values for test structure 1 is
given in Table 3. Tests on structures 2 and 3 reveal similar trends.

Table 3. Accuracy for all methods as a function of the signal-to-noise ratio, RSN.

Fourier Bayesian Powell

RSN mR mS mR mS mR mS

K/W K/W K/W K/W K/W K/W

50 8.81 24.4 7.59 23.0 4.14 5.6

100 7.13 18.0 5.27 13.4 3.79 3.8

200 6.62 14.3 4.39 8.8 3.49 2.6

500 6.22 11.6 4.07 6.0 3.15 2.1

1000 5.87 10.5 4.00 5.0 2.92 2.0

2000 5.84 9.6 3.98 4.5 2.84 2.0

5000 5.66 9.0 3.98 4.2 2.66 2.0
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As input data, the exact thermal impedance is interpolated to 1000 uniformly dis-
tributed points for ζ ∈ [−20, 10]. To each data point Gaussian noise is added according
to (6). The tested signal-to-noise ratios are 50, 100, 200, 500, 1000, 2000, and 5000. To pro-
vide an example, a signal-to-noise ratio of RSN = 5000 corresponds to a transient thermal
measurement with a total temperature rise of 100 K, which is observed with an accuracy of
20 mK.

As the results should not depend on a single distribution of noise only, 2000 indepen-
dent realizations of noise are randomly generated. Each method is tested with the same
set of randomly generated measurement data. As a result, the median over the recovered
structure functions and the recovered integrated time constant spectra are calculated. For
this, the structure functions are interpolated to a common set of RΣ,i. Subsequently, the
median functions are inserted into the measures of accuracy Equations (8), (10), and (11).
Results comparing the performance of Fourier deconvolution, Bayesian deconvolution,
and optimization-based network identification are presented in Table 3. The computations
employing Fourier and Bayesian deconvolution are conducted exactly as described in [8].

For optimization-based network identification, the number of sections in the piece-
wise uniform approximation is set to six. While this does not necessarily provide the
best accuracy possible, a low number of sections reduces the computation time signifi-
cantly. The total computation time for 2000 optimization-based network identifications,
when calculated in series, is on the order of days. The precise computation time of an
optimization-based network identification depends on the trajectory the solver takes in
parameter space, which is mainly affected by the quality of the initial values and the
noise level.

Table 3 shows that for both mR and mS the optimization-based network identification
performs best and the Fourier deconvolution performs worst for all signal-to-noise ratios.
In particular for high noise levels, optimization-based network identification achieves
a significant improvement in accuracy. In addition, the accuracy of optimization-based
network identification is much less affected by lower signal-to-noise levels.

5.3. Constant Frequency Sampling with Noise

In a last step, the quality of the data is reduced further. The exact thermal impedance
is resampled using a fixed sampling rate in linear time of 107 and also including the starting
point of the original impedance at t = 2× 10−9. To limit the number of data points, the
sampling rate is slowed down beyond a certain density of points in logarithmic time, z,
which is constant from there on. The total number of data points for constant frequency
sampling amounts to 784.

An example of a thermal impedance with a signal-to-noise-ratio of RSN = 50 is
shown on the bottom right of Figure 5. In addition, the backwards thermal impedance
from Bayesian deconvolution and the optimization-based solution are plotted. The other
parts of the image show the corresponding evaluations using Bayesian deconvolution and
optimization-based network identification. The impulse response and thermal impedance
for the Bayesian solution are generated by reconvolving the time constant spectrum. This
is done to reveal effect of deconvolution and to shown the impulse response as well as the
thermal impedance actually belonging to the time constant spectrum. The exact input data
belonging to structure 1 are shown for comparison.

In Table 4, the accuracy values achieved by the Bayesian and the optimized solution
are shown in addition to the median accuracy values, which are taken from Figure 6.
The noise pattern presented in Figure 5 leads to a solution with a quality significantly
below average. Still, the optimization algorithm is able to increase the accuracy of the
time constant spectrum and the structure function. The thermal impedance resulting
from an optimization-based network identification matches better with the exact thermal
impedance of structure 1 than the original Bayesian solution. While the optimization
procedure is able to increase the accuracy of a forward solution significantly, it is still based
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on the initial values. The optimization might converge to a local minimum which does not
represent the global optimum.
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Figure 5. Example solution for network identification using Bayesian deconvolution and Powell optimization on the basis
of six sections for a single realization of sparse noisy data with RSN = 50. The Bayesian solution is used to generate initial
values for the optimization. In Table 4 the corresponding accuracy values are summarized.

Table 4. Accuracy values for the solutions in Figure 5 and comparisons to the respective median
values from Figure 6.

Bayesian Powell Bayesian Median Powell Median

mR in K/W 9.80 4.68 6.32 4.29

mS in K/W 27.09 7.25 18.66 5.14

For a systematic analysis of the performance, 2000 sets of the resampled noisy thermal
impedances are generated and their respective solutions are averaged by calculating the
median. Each of the 2000 Bayesian solutions is used to generate the initial values for the
corresponding optimization. In the case of Fourier deconvolution, the filter width of the
Hann filter employed is fine-tuned for each noise level.

As expected, the Fourier deconvolution still performs the worst on all metrics. The
Bayesian solution is improved by the optimization-based network identification for all
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noise levels. Concerning the optimization-based network identification, the accuracy of the
structure function is only marginally affected by the constant frequency sampling.

As solvers for the optimization-based network identification, the Powell solver is
faster than COBYLA, but less reliable as sometimes it fails to converge. COBYLA is slower
but more stable due to more stringent constraints. On average, the accuracy is similar for
both solvers, possibly slightly better for the Powell solver. The non-monotonic behavior
of the optimization results in Figure 6 is attributed to a decreased quality of the Bayesian
initial values in the case of constant frequency sampling. This forces the solver to take a
longer path in parameter space, leading to a larger spread of the results. Fine-tuning the
differentiation parameters to each noise level would further improve the average quality
of the initial values leading to more reliable convergences.
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Figure 6. Accuracy of the median integrated time constant spectrum and median structure function for Fourier deconvolu-
tion, using a Hann filter, Bayesian deconvolution and the optimization-based network identification using the Powell solver,
calculated from 2000 noise realizations for structure 1.

6. Conclusions

In this work, an alternative evaluation method is presented to generate thermal
structure functions from transient thermal measurements. The presented optimization-
based method is able to reliably improve the accuracy of a previous solution by solving the
inverse network identification problem repeatedly.

To quantify the performance of the optimization-based network identification and
to compare it with other methods, three measures of accuracy and three test cases are
set up. Tests on noisy and noise-free data show a significant improvement in accuracy
in the time constant spectra and the structure functions. In particular for low signal-to-
noise ratios, bypassing the process of differentiation and deconvolution provides a clear
advantage over conventional network identification. The first test case with perfect data
shows that optimization-based network identification using Powell (COBYLA) solvers
achieve an average performance advantage in terms of mR and mS by a factor of 2.5 (1.9)
compared to Bayesian deconvolution and 4.7 (3.6) compared to Fourier deconvolution.
The second test case with added noise reveals that Bayesian deconvolution slowly loses
its accuracy advantage over Fourier deconvolution with increasing noise levels. The test
of constant frequency sampling with noise shows that there is further potential to refine
the optimization routine and to increase the performance advantage. Future goals are to
improve the speed and the convergence reliability even further, in particular for inaccurate
initial values.

When working with experimental data, optimization-based network identification
opens up new possibilities for the evaluation. As the optimization is based on a physical
model to generate the thermal impedances, it is not necessary to perform an extrapolation
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to hide the electrical transient. An extrapolation for low times is naturally generated by
the algorithm. The division of the thermal structure function into sections given by the
algorithm can help to interpret the structure function and to attribute its shape to the
components of the device under test. Moreover, the interpretation is not complicated by a
divergence, which is a purely numerical artifact.

7. Patents

The technical content of the paper is related to a patent held by the authors under DE
10 2019 214 472.
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