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Abstract: The Newton–Raphson (NR) method is still frequently applied for computing load flow
(LF) due to its precision and quadratic convergence properties. To compute LF in a low voltage
distribution system (LVDS) with unbalanced topologies, each branch model in the LVDS can be
simplified by defining the neutral and ground voltages as zero and then using Kron’s reduction to
transform into a 3 × 3 branch matrix, but this decreases accuracy. Therefore, this paper proposes a
modified branch model that is also reduced into a 3 × 3 matrix but is derived from the impedances of
the phase-A, -B, -C, neutral, and ground conductors together with the grounding resistances, thereby
increasing the accuracy. Moreover, this paper proposes improved LF equations for unbalanced LVDS
with both PQ and PV nodes. The improved LF equations are based on the polar-form power injection
approach. The simulation results show the effectiveness of the modified branch model and the
improved LF equations.
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1. Introduction

A low voltage distribution system (LVDS) is responsible for providing electricity to
end-users and connecting with its distribution transformer, which receives electricity from
a medium voltage feeder. Many LVDSs are usually built-in radial structures because of
reducing investment costs and simplifying coordination plans for protection devices [1].
Most LVDSs have unbalanced loads and have grounding resistances that range from 1 to
several ohms [2]. To analyze LVDSs more accurately, load flow (LF) calculations should
include neutral and ground conductors as well as grounding resistances.

Studies present various LF algorithms, such as the Gauss–Seidel (GS), forward–
backward sweep (FBS), and Newton–Raphson (NR) methods to handle the LF with various
applications and LVDS structures [1,3–12]. First, the GS method allows performing LF
with complex variables by reducing the number of required calculations and avoiding the
calculation of derivative equations. In [1], the GS method is applied to solve balanced
LVDSs, whereas [3] presents the modified GS method for solving LFs in unbalanced LVDSs.
Both [1,3] prove that the GS method has a very low computation time compared to the
other methods.

Second, the FBS method is preferred by many authors [4–6] due to its simple pro-
gramming for small-matrix calculation and its ability to guarantee convergence in radial
LVDSs. In [4], an improved FBS method is presented for LF calculations in balanced LVDSs
with weakly-meshed topology. In [5,6], the FBS method is used for LF calculations in
unbalanced LVDSs.

Finally, the NR method is still frequently used for LF calculations in LVDSs. This
method uses derivatives for approximation at each iteration. This method has precision
and quadratic convergence properties, and the calculation requires less iterations [7–12].
The power injection-based approach used in [7–9] corresponds to the traditional Newton–
Raphson method, whereas the current injection-based approach used in [10,11] was in-
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vented later by [12]. The latter approach tends to perform better because of the linearity of
its current injection equations. Overall, [7–11] solve LFs in unbalanced LVDSs, but [12] is
used for balanced LVDSs.

The advantage of each method was stated earlier. However, each method has its
weakness as follows. The GS method may face uncountable processing time when loads
or the number of nodes increase [1,3]. The FBS method used in [5,6] cannot be applied to
meshed LVDSs. Although the improved BFS method in [4] can perform in balanced LVDSs
with weakly meshed topology, it cannot perform in unbalanced LVDSs and can face non-
convergence problems in meshed balanced LVDSs with heavy loads. The total processing
time of the NR method will increase if it requires the inversion of high-dimensional matrices.
Moreover, the NR method can perform poorly for ill-conditioned LVDSs [7–12].

There are some weaknesses of the aforementioned reviews [1,4–12]. Determining the
balanced LVDSs in [1,4,12] is inaccurate because the loading of any LVDS is inherently
unbalanced due to the many unequal single-phase loads and non-symmetrical spacings
between conductors. Not determining the conductors, which include phase-A, -B, -C,
neutral, and ground, together with the grounding resistances, can cause inaccuracies in
the branch model [7–11]. In addition, Refs. [5,7] simplify the original branch model, which
includes a 5× 5 matrix of the phase-A, -B, -C, neutral, and ground conductors as well as the
grounding resistances into a 3× 3 matrix by defining the voltages of the neutral and ground
conductors as zero and, after that, using Kron’s reduction. This leads to inaccuracies in the
results from [5,7]. In [6–8,11], the LF calculations do not deal with LVDSs with PV nodes.
Finally, [9,11] regulate the PV nodes using a simplification by which the voltage magnitude
and real power output of each phase of PV node are regulated separately. However, the PV
node must regulate the voltage magnitude and phase angle of each phase to be balanced,
such as the connection of an advanced three-phase solar inverter [13] or a load-managing
converter [14]. Finally, the current injection NR method with the modified 4 × 4 branch
matrix can suffer from the lack of convergence in the LVDSs with PV nodes [10] where the
4 × 4 branch matrix neglects only the voltage existence of the ground conductor.

From the variety of all the methods previously reviewed, this paper chooses the NR
method due to its quadratic convergence property and range of applications (for both radial
or meshed LVDSs) [7–12]. Polar-form LF equations based on the power injection approach
are applied because of the intuitiveness and convenience of their direct specification of node
power injections [8]. The two modifications of this paper are proposed for the correction of
the weaknesses of the aforementioned reviews [1,4–12], as expressed in the following:

• A more accurate branch model is modified, which is in the 3 × 3 matrix deriving from
the impedances of the phase-A, -B, -C, neutral, and ground conductors together with
the grounding resistances.

• Improved LF equations are proposed for the application to the unbalanced DSs with
both PQ and PV nodes where, at the PV nodes following [13,14], the voltage magnitude
and phase angle of each phase are balanced and the sum of real power generation of
each phase is constant.

MATLAB is used for programming the NR method. Two unbalanced test LVDSs are
demonstrated to validate the two proposed modifications. The simulation results of the
modified branch model and the branch model simplified using Kron’s reduction will be
compared and discussed.

In this paper, the simplified branch model, by using Kron’s reduction, and its disad-
vantages are described in Section 2. Section 3 proposes a modified branch model, which is
in a 3 × 3 matrix derived from the impedances of the phase-A, -B, -C, neutral, and ground
conductors together with the grounding resistances. The improved LF equations for the
LVDSs with both PQ and PV nodes are also proposed in Section 3. Section 4 outlines
and discusses numerical simulations. Finally, the conclusions of this paper are drawn in
Section 5.
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2. The Simplified Branch Model and Its Disadvantage

The original branch model with grounding resistances is shown in Figure 1 [3,6,15,16],
where S is load (VA); RG is grounding resistance (Ω); V is voltage (V); I is current (A);
z is the impedance in the branch model (Ω); i and j are any node in the LVDS; and
{A, B, C, N, G} is the set of phases in the branch model. From Figure 1, the branch equation
can be written in two forms, as shown in Equations (1) and (2), in which direction is
different, where zpq

ij = zpq
ji following [3,6,15,16]; p, q ∈ {A, B, C, N, G}. The calculations of

grounding resistance and branch impedances and the branch model simplified by using
Kron’s reduction are described in Sections 2.1–2.3, respectively. Moreover, the disadvantage
of using the simplified branch model can be clarified in Section 2.4.
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2.1. Grounding Resistance Calculation

Grounding systems of LVDSs must be designed to meet the requirement for reliable
operation of connected electrical equipment, such as distributed generators and distribution
transformers. The appropriate design of the grounding system can help in the following: (i)
to prevent damage to insulation of connected electrical equipment; (ii) to ensure personal
safety from touch and step voltages [2]. In many LVDSs, the grounding system uses
cylindrical rods with each rod needing to have grounding resistance lower than 25 Ω
following [17]. To assess the grounding resistance of each rod (RG

rod), Equation (3) is
used [2].

RG
rod =

ρG

2·π·lrod ·ln
(

lrod

rarod

)
(3)
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where ρG is ground resistivity (Ω-m); lrod is length of the part of the cylindrical rod that is
underground (m); and rarod is the radius of the rod (m).

2.2. Branch Impedance Calculation

The resistance of each conductor (R) can be defined from the conductor datasheet,
such as 185 mm2 Weatherproof Aluminum Conductor (WAC) has R of 0.2008 Ω/km [18].
For the branch impedances (z) in Equations (1) and (2), they can be calculated from the
Carson’s equations with ground return, as shown in Equations (4)–(8) [5,6]. Note that
Equations (4)–(8) are based on 50-Hz DSs.

zGG
ij = 0.0493 + 1j·0.3643 (4)

zeG
ij = 1j·0.01·π·ln

(
deG√

0.02·ρG

)
(5)

zee
ij = Ree

ij + 1j·0.02·π·ln
(

2·deG

GMRe

)
(6)

ze f
ij = 1j·0.02·π·ln


√(

de f
)2

+
(
deG + d f G

)2√(
de f
)2

+
(
deG − d f G

)2

; e 6= f (7)

GMRe = 0.7788·rae (8)

where z is in Ω/km; 1j is complex value; e, f ∈ {A, B, C, N}; deG is height of phase-e
conductor (m); GMRe is geometric mean radius of phase-e conductor (m); de f is distance
between phase-e and phase- f conductors (m); rae is radius of phase-e conductor (m).

2.3. The Branch Model Simplified by Using Kron’s Reduction

From Equation (1), when the voltages of neutral and ground conductors are simply
defined as zero, Kron’s reduction can be used, and then Equation (1) is simplified into
Equation (9) [16], where zrs′

ij is the result of using Kron’s reduction; r, s ∈ {A, B, C}.

 VA
i

VB
i

VC
i

−
 VA

j
VB

j
VC

j

 =

 zAA′
ij zAB′

ij zAC′
ij

zBA′
ij zBB′

ij zBC′
ij

zCA′
ij zCB′

ij zCC′
ij


 IA

ij
IB
ij

IC
ij

 (9)

2.4. The Disadvantage of Using the Simplified Branch Model

The simplified branch model using Kron’s reduction is already stated in Section 2.3.
The main problem of this model is that the neutral voltage is set to zero although load
unbalance is varied. It contrasts with the load unbalance principle in [15] that the neutral
voltage will be changed when load unbalance is varied. For the example, as shown in
Figure 2a, when initial loads at phase A-N, B-N, and C-N of node j (SAN

j , SBN
j , and SCN

j )

are 100 + j50, 100 + j50, and 200 + j100 W, respectively, the neutral voltage at node j (VN
j )

is 0.57∠130.09
◦

V. After increasing the load unbalance, if SAN
j , SBN

j , and SCN
j equal to

100 + j50, 100 + j50, and 3000 + j1000 W, respectively, VN
j is changed to 17.56∠135.92

◦

V, as shown in Figure 2b. For another example, using Kron’s reduction in the circuit of
Figure 2, the simplified circuit can be obtained in Figure 3. Load in Figure 3 is used the
same as Figure 2, and then the voltage results can be marked in the figure. Both models
of Figures 2 and 3 will be compared with the phase-to-neutral voltage results, as shown
in Table 1 where VrN

j = Vr
j − VN

j ; r ∈ {A, B, C}. It can be noticed that the simplified
branch model using Kron’s reduction causes more error on the phase-to-neutral voltage
result when the load unbalance is increasing. It is because the simplified branch model
determines fixed neutral voltage at zero.
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Table 1. The comparison of the phase-to-neutral voltage results between the full and simplified branch models. 
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j , and SCN
j are 100 + j50, 100 + j50,

and 200 + j100 W, respectively; (b) when SAN
j , SBN

j , and SCN
j are 100 + j50, 100 + j50, and 3000 + j1000 W, respectively.
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j , SBN

j , and SCN
j are 100 + j50,

100 + j50, and 200 + j100 W, respectively; (b) when SAN
j , SBN

j , and SCN
j are 100 + j50, 100 + j50, and 3000 + j1000 W,

respectively.

Table 1. The comparison of the phase-to-neutral voltage results between the full and simplified branch models.

Phase-to-Neutral
Voltage (V)

At the Initial At Increasing Load Unbalance

Full Model Simplified Model Voltage Error Full Model Simplified Model Voltage Error

VAN
j 230.04 229.83 −0.09% 242.61 229.83 −5.27%

VBN
j 229.87 229.83 −0.02% 234.57 229.83 −2.02%

VCN
j 228.78 229.65 0.38% 203.28 225.29 10.83%

3. Modified Branch Model and Improved LF Equations

Using the modified 4 × 4 branch model in the current injection NR method can suffer
from the lack of convergence in the LVDSs with PV nodes [10]. Then, a modified 3 × 3
branch matrix is proposed in this paper for more convenience to modify the LF equations
with PV nodes but with slight error. The error is due to the neglecting of the neutral and
ground current injection from neighboring branches. Section 3.1 will clarify the derivation
of the modified 3 × 3 branch matrix. After that, the improved LF equations with both PQ
and PV nodes will be formulated in Section 3.2. The NR method for solving the improved
LF equations will be clarified in Section 3.3. The LF result from the NR method is in the
form of phase-to-neutral voltage. Following this, the voltages and currents of the neutral
and ground conductors will be assessed in Section 3.4. Finally, the method for verifying
the error of the LF results is explained in Section 3.5.
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3.1. The Derivation of the Modified 3 × 3 Branch Matrix

The modified 3 × 3 branch matrix is derived from the impedances of the phase-A, -B,
-C, neutral, and ground conductors together with the grounding resistances. To obtain this
modified branch model, there are three processes, as indicated in Sections 3.1.1–3.1.3, and
the relevant flowchart is shown in Figure 4. If a LVDS has many branches, the flowchart of
formulating a Ybus matrix can be seen in Figure 5, where the Ybus matrix is the matrix
that contains branch connections and impedance data of LVDS.
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Initially, the ground current equation (𝐼𝑖𝑗
𝐺 ) must be solved to reduce the original 

branch model into a 4 × 4 matrix in Section 4.2. Using matrix inversion for Equations (1) 

and (2), the following equations can be obtained, where 𝑦𝑖𝑗
𝑝𝑞
= 𝑦𝑗𝑖

𝑝𝑞  according to [3,6,16]; 
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3.1.1. Finding Ground Current Equation

Initially, the ground current equation (IG
ij ) must be solved to reduce the original

branch model into a 4 × 4 matrix in Section 4.2. Using matrix inversion for Equations (1)
and (2), the following equations can be obtained, where ypq

ij = ypq
ji according to [3,6,16];

p, q ∈ {A, B, C, N, G}.
IA
ij

IB
ij

IC
ij

IN
ij

IG
ij

 =


yAA

ij yAB
ij yAC

ij yAN
ij yAG

ij
yBA

ij yBB
ij yBC

ij yBN
ij yBG

ij
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ij yCB
ij yCC
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ij yCG

ij
yNA

ij yNB
ij yNC

ij yNN
ij yNG

ij
yGA

ij yGB
ij yGC

ij yGN
ij yGG

ij




VA

i −VA
j

VB
i −VB

j
VC

i −VC
j

VN
i −VN

j
VG

i −VG
j

 (10)


IA
ji

IB
ji

IC
ji

IN
ji

IG
ji

 =


yAA

ji yAB
ji yAC

ji yAN
ji yAG

ji
yBA

ji yBB
ji yBC

ji yBN
ji yBG

ji
yCA

ji yCB
ji yCC

ji yCN
ji yCG

ji
yNA

ji yNB
ji yNC

ji yNN
ji yNG

ji
yGA

ji yGB
ji yGC

ji yGN
ji yGG

ji




VA

j −VA
i

VB
j −VB

i
VC

j −VC
i
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i
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j −VG
i

 (11)

The ground currents of Equations (10) and (11) are found using Equations (12) and
(13). When Equation (12) is added to Equation (13), it can be proved that IG

ij = −IG
ji .

IG
ij = ∑

p

[
Vp

i −Vp
j

]
·yGp

ij (12)
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IG
ji = ∑

p

[
Vp

j −Vp
i

]
·yGp

ji (13)

At Equation (1), the voltage equation at the ground conductor can be found using
Equation (14). After that, VN

i is subtracted from Equation (14) and the result is divided by
RG

i,rod. Then, Equation (15) is obtained, where IG
ij =

(
VG

i −VN
i
)
/RG

i,rod following Figure 1.

VG
i −VG

j = ∑
p

zGp
ij ·I

p
ij (14)

IG
ij −

VG
j

RG
i,rod

=

∑
p

zGp
ij ·I

p
ij

RG
i,rod

− VN
i

RG
i,rod

(15)

From Equation (1), the voltage at node i phase N is given in the following Equation (16),
and then, by substituting Equation (16) into Equation (15), Equation (17) can be obtained.

VN
i =

(
∑
p

zNp
ij ·I

p
ij

)
+ VN

j (16)

IG
ij −

VG
j

RG
i,rod

=

∑
p

zGp
ij ·I

p
ij

RG
i,rod

−
(

∑p zNp
ij ·I

p
ij

)
+ VN

j

RG
i,rod

(17)

Reformatting Equation (17) following IG
ij = −IG

ji and IG
ji =

(
VG

j −VN
j

)
/RG

j,rod, the

ground current equation (IG
ij ) is obtained in Equation (18), where e ∈ {A, B, C, N}.

IG
ij −

VG
j

RG
i,rod

=

∑
p

zGp
ij ·I

p
ij

RG
i,rod

−
(

∑p zNp
ij ·I

p
ij

)
+ VN

j

RG
i,rod

(18)

3.1.2. Formulating the Original Branch Model into the 4 × 4 Matrix

Equation (1) is reformulated into Equation (19) by neglecting the variables VG
i and

VG
j . Substituting IG

ij from Equation (18) into Equation (19), the branch matrix is then in

a 4 × 4 matrix with vanishment of the variable IG
ij , as written in Equation (20), where

ke f
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zeG

ij

[
zG f

ij −zN f
ij

]
RG

i,rod+RG
j,rod+zNG

ij −zGG
ij

; e, f ∈ {A, B, C, N}.


VA

i
VB

i
VC

i
VN

i

−


VA
j

VB
j

VC
j

VN
j

 =


zAA

ij zAB
ij zAC

ij zAN
ij

zBA
ij zBB

ij zBC
ij zBN

ij
zCA

ij zCB
ij zCC

ij zCN
ij

zNA
ij zNB

ij zNC
ij zNN

ij




IA
ij

IB
ij

IC
ij

IN
ij

+


zAG

ij
zBG

ij
zCG

ij
zNG

ij

IG
ij (19)


VA

i
VB

i
VC

i
VN

i

−


VA
j

VB
j

VC
j

VN
j

 =


kAA

ij kAB
ij kAC

ij kAN
ij

kBA
ij kBB

ij kBC
ij kBN

ij
kCA

ij kCB
ij kCC

ij kCN
ij

kNA
ij kNB

ij kNC
ij kNN

ij

·


IA
ij

IB
ij

IC
ij

IN
ij

 (20)
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Equation (20) is reformulated into Equation (21) with IW
i = IN

i + IG
i . To solve the

variables hes
ij and heW

ij in Equation (21), Equation (22) is formulated following the equality

of Equations (20) and (21). The results of variables hes and heW are shown in Table 2.


VA

i
VB

i
VC

i
VN

i

−


VA
j

VB
j

VC
j

VN
j

 =


hAA

ij hAB
ij hAC

ij hAW
ij

hBA
ij hBB

ij hBC
ij hBW

ij
hCA

ij hCB
ij hCC

ij hCW
ij

hNA
ij hNB

ij hNC
ij hNW

ij

·


IA
ij

IB
ij

IC
ij

IW
ij

 (21)


kAA

ij kAB
ij kAC

ij kAN
ij

kBA
ij kBB

ij kBC
ij kBN

ij
kCA

ij kCB
ij kCC

ij kCN
ij

kNA
ij kNB

ij kNC
ij kNN

ij

·


IA
ij

IB
ij

IC
ij

IN
ij

 =


hAA

ij hAB
ij hAC

ij hAW
ij

hBA
ij hBB

ij hBC
ij hBW

ij
hCA

ij hCB
ij hCC

ij hCW
ij

hNA
ij hNB

ij hNC
ij hNW

ij

·


IA
ij

IB
ij

IC
ij

IW
ij

 (22)

Table 2. Variable results from solving Equation (22).

Variable Result

heW
ij = zeN

ij

[
RG

i,rod+RG
j,rod+zNG

ij −zGG
ij

]
+zeG

ij

[
zGN

ij −zNN
ij

]
RG

i,rod+RG
j,rod+2zNG

ij −zNN
ij −zGG

ij
;

hes
ij = zes

ij +

[
zeG

ij −heW
ij

][
zGs

ij −zNs
ij

]
RG

i,rod+RG
j,rod+zNG

ij −zGG
ij

;

e ∈ {A, B, C, N};
s ∈ {A, B, C}.

3.1.3. Obtaining the Modified Branch Model

The neutral voltage of Equation (21) is given in Equation (23), where r ∈ {A, B, C}.
When Equation (21) has Equation (23) subtracted from it, Equation (24) can be obtained,
where VrN

i = Vr
i −VN

i .

VN
i −VN

j =

(
∑

r
hNr

ij ·Ir
ij

)
+ hNW

ij IW
ij (23)

 VAN
i

VBN
i

VCN
i

−
 VAN

j
VBN

j
VCN

j

 =

 hAA
ij hAB

ij hAC
ij hAW

ij
hBA

ij hBB
ij hBC

ij hBW
ij

hCA
ij hCB

ij hCC
ij hCW

ij




IA
ij

IB
ij

IC
ij

IW
ij

−
 hNA

ij hNB
ij hNC

ij hNW
ij

hNA
ij hNB

ij hNC
ij hNW

ij
hNA

ij hNB
ij hNC

ij hNW
ij




IA
ij

IB
ij

IC
ij

IW
ij

 (24)

After that, Equation (24) is reformulated according to IW
ij = IN

ij + IG
ij = −

(
IA
ij + IB

ij + IC
ij

)
,

and then the modified branch model is finally obtained as written in Equation (25), where
zrs′′

ij = hrs
ij − hrW

ij − hNs
ij + hNW

ij ; r, s ∈ {A, B, C}.

 VAN
i

VBN
i

VCN
i

−
 VAN

j
VBN

j
VCN

j

 =

 zAA′′
ij zAB′′

ij zAC′′
ij

zBA′′
ij zBB′′

ij zBC′′
ij

zCA′′
ij zCB′′

ij zCC′′
ij


 IA

ij
IB
ij

IC
ij

 (25)

3.2. Formulating the Improved LF Equations

The improved LF equations, which include both PQ and PV nodes, can be seen in
Equations (26)–(28), where reactive power injection at PV nodes is not determined because,
at PV nodes, reactive power injections are not fixed during LF calculation using the NR
method. The LF equation at PV nodes is presented in Equation (28) with total real power
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generation at PV node, node i (Pi,PV), being constant [13,14]. Superscript rN and sN are
used for overall Equations (26)–(28) due to the reference voltage being neutral, as expressed
in Equation (25). Ybus matrix, applied in Equations (26)–(28), is formulated from the
modified branch model in Equation (25). If a DS includes one slack node, n− 1 PQ nodes,
and m PV nodes, the Ybus is in the 3(n + m)× 3(n + m) matrix.

PrN
i,PQ = ∑

s
|VrN

i,PQ||VsN
1 ||Yrs

i1 |cos(θrs
i1 − δrN

i,PQ + δsN
1 ) +

n
∑

j=2
∑
s
|VrN

i,PQ||VsN
j,PQ||Yrs

ij |cos(θrs
ij − δrN

i,PQ + δsN
j,PQ)

+
n+m
∑

j=n+1
∑
s
|VrN

i,PQ||VsN
j,PV ||Yrs

ij |cos(θrs
ij − δrN

i,PQ + δAN
j,PV + µsN

j,PV)
(26)

QrN
i,PQ = ∑

s
|VrN

i,PQ||VsN
1 ||Yrs

i1 |sin(θrs
i1 − δrN

i,PQ + δsN
1 )−

n
∑

j=2
∑
s
|VrN

i,PQ||VsN
j,PQ||Yrs

ij |sin(θrs
ij − δrN

i,PQ + δsN
j,PQ)

−
n+m
∑

j=n+1
∑
s
|VrN

i,PQ||VsN
j,PV ||Yrs

ij |sin(θrs
ij − δrN

i,PQ + δAN
j,PV + µsN

j,PV)
(27)

Pi,PV = ∑
r

PrN
i,PV −∑

r
PrN

i,load (28)

PrN
i,PV = ∑

s
|VrN

i,PQ||VsN
1 ||Yrs

i1 |cos(θrs
i1 − δAN

i,PV − µrN
i,PV + δsN

1 ) +
n
∑

j=2
∑
s
|VrN

i,PV ||VsN
j,PQ||Yrs

ij |cos(θrs
ij − δAN

i,PV − µrN
i,PV + δsN

j,PQ)

−
n+m
∑

j=n+1
∑
s
|VrN

i,PV ||VsN
j,PV ||Yrs

ij |cos(θrs
ij − δAN

i,PV − µrN
j,PV + δAN

i,PV + µsN
j,PV)

(29)

where Pi,PV is the sum of real power generation of each phase at PV node, node i (W); PrN
i,PV is

real power injection at PV node, node i, and phase rN (W); PrN
i,load is specified load, connected

at node i, and phase rN (W); r, s ∈ {A, B, C}; |Yrs
ij |∠θrs

ij , |Yrs
i1 |∠θrs

i1 ∈ Ybus3(n+m)×3(n+m);

µAN
i,PV , µBN

i,PV , and µCN
i,PV equal to zero, −120◦, and 120◦, respectively. Note that, in Equations

(26)–(28), δAN
i,PV + µrN

i,PV and δAN
j,PV + µsN

j,PV actually equal to δrN
i,PV and δsN

j,PV , respectively. For

the reason why Equations (26)–(28) are written in the form of δAN
i,PV or δAN

j,PV , it is because

phase angle at PV node is balanced and then only δAN
i,PV or δAN

j,PV is used for calculation in
the NR method.

To solve these improved LF equations, the NR method is applied as detailed in
Section 3.3. The LF result from Section 3.3 is in the form of phase-to-neutral voltage.
Following this, the voltages and currents of neutral and ground conductors will be assessed
in Section 3.4. Finally, the method for verifying the error of LF results is explained in
Section 3.5.

3.3. Solving the Improved LF Equations by the NR Method

In this section, Equations (26)–(28) are reformulated into the set of linear equations, as
shown in Equation (30), by expanding them into the Taylor’s series and leaving all higher
order terms. Each variable of Equation (30) is explained in Table 3. Following the conceptual
calculation of the NR method [15], Equation (30) will be iteratively calculated, and voltage
magnitudes and phase angles will be updated until the criteria in both Equations (31) and
(32) are satisfied. The relevant flowchart of solving the improved LF equations by the NR
method can be seen in Figure 6, where the superscripts of sch and cal mean the defined
and calculated values, respectively; t is iteration number.
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

∆PQABC−N
2,PQ

∆PQABC−N
3,PQ

...
∆PQABC−N

n,PQ

−−−

∆Pn+1,PV

∆Pn+2,PV

...
∆Pn+m,PV



=



J2,2 J2,3

J3,2 J3,3

· · · J2,n

· · · J3,n

...
...

Jn,2 Jn,3

. . .
...

· · · Jn,n

|

|

|

|

E2,n+1 E2,n+2

E3,n+1 E3,n+2

· · · E2,n+m

· · · E3,n+m

...
...

En,n+1 En,n+2

. . .
...

· · · En,n+m

− − − − − − − + − − − − − − −

Fn+1,2 Fn+1,3

Fn+2,2 Fn+2,3

· · · Fn+1,n

· · · Fn+2,n

...
...

Fn+m,2 Fn+m,3

. . .
...

· · · Fn+m,n

|

|

|

|

Kn+1,n+1 Kn+1,n+2

Kn+2,n+1 Kn+2,n+2

· · · Kn+1,n+m

· · · Kn+2,n+m

...
...

Kn+m,n+1 Kn+m,n+2

. . .
...

· · · Kn+m,n+m





∆|V|δABC−N
2,PQ

∆|V|δABC−N
3,PQ

...
∆|V|δABC−N

n,PQ

−−−

∆δAN
n+1,PV

∆δAN
n+2,PV

...
∆δAN

n+m,PV



(30)

max
i∈{PQ nodes}

(
|∆PrN

i,PQ|, |∆QrN
i,PQ|

)
≤ ε (31)

max
i∈{PV nodes}

(|∆Pi,PV |) ≤ ε (32)

Table 3. Meaning of variables in Equations (30).

Variable Meaning

∆PQABC−N
i,PQ =

[
∆PABC−N

i,PQ ∆QABC−N
i,PQ

]T
;

∆|V|δABC−N
i,PQ =

[
∆|VABC−N

i,PQ | ∆δABC−N
i,PQ

]T
;

∆PABC−N
i,PQ =

[
∆PAN

i,PQ ∆PBN
i,PQ ∆PCN

i,PQ

]
;

∆QABC−N
i,PQ =

[
∆QAN

i,PQ ∆QBN
i,PQ ∆QCN

i,PQ

]
;

∆|VABC−N
i,PQ | =

[
∆|VAN

i,PQ| ∆|VBN
i,PQ| ∆|VCN

i,PQ|
]
;

∆δABC−N
i,PQ =

[
∆δAN

i,PQ ∆δBN
i,PQ ∆δCN

i,PQ

]
;

J, E, F, and K are Jacobian matrix.
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3.4. Voltage and Currents Assessment at Neutral and Ground Conductors

Phase-to-neutral voltage magnitudes are obtained from solving the LF equations, and
the modified branch model in Equation (25) does not reveal the existence of the voltages
and currents of neutral and ground conductors. Then, these values are assessed in this
section through the following four steps.
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STEP 1: After solving the improved LF equations with the NR method and receiving
the results of phase-to-neutral voltage (VrN

i ), the current sum (IW
ij ) of each branch is

calculated in Equation (34). IA
ij

IB
ij

IC
ij

 =

 yAA′′
ij yAB′′

ij yAC′′
ij

yBA′′
ij yBB′′

ij yBC′′
ij

yCA′′
ij yCB′′

ij yCC′′
ij

·
 VAN

i −VAN
j

VBN
i −VBN

j
VCN

i −VCN
j

 (33)

IW
ij = −

(
IA
ij + IB

ij + IC
ij

)
= IN

ij + IG
ij (34)

STEP 2: After calculating IW
ij , the currents of neutral and ground conductors (IN

ij and

IG
ij ) need to be calculated. Following Equation (18), both sides of the equation have IN

ij sub-

tracted from them. After that, the term IN
ij + IG

ij is reformulated into IW
ij , then Equation (35)

is used to calculate IN
ij , where r ∈ {A, B, C}. When IN

ij is known, Equation (36) can be used

to calculate IG
ij .

IN
ij =

[
RG

i,rod + RG
j,rod + zNG

ij − zGG
ij

]
IW
ij −∑r

[
zGr

ij − zNr
ij

]
Ir
ij

RG
i,rod + RG

j,rod + 2zNG
ij − zNN

ij − zGG
ij

(35)

IG
ij = IW

ij − IN
ij (36)

STEP 3: When all phase currents of each branch are known, the neutral and ground
voltages (VN

1 and VG
1 ) at the slack or first node must be found. However, VN

1 is generally
defined as zero [3,16]. Following this, VG

1 can be found in Equation (37), which is derived
from the ground current following Figure 1, assuming that i is the node adjacent to the
slack node.

VG
1 = IG

1i ·R
G
1,rod (37)

STEP 4: When the voltages at the first node are known, the voltages at node i, or the
node adjacent to the slack node, can be calculated from Equation (38).

VA
i

VB
i

VC
i

VN
i

VG
i

 =


VA

1
VB

1
VC

1
VN

1
VG

1

−


zAA
1i zAB

1i zAC
1i zAN

1i zAG
1i

zBA
1i zBB

1i zBC
1i zBN

1i zBG
1i

zCA
1i zCB

1i zCC
1i zCN

1i zCG
1i

zNA
1i zNB

1i zNC
1i zNN

1i zNG
1i

zGA
1i zGB

1i zGC
1i zGN

1i zGG
1i




IA
1i

IB
1i

IC
1i

IN
1i

IG
1i

 (38)

STEP 5: The voltages at node j can be calculated from Equation (39) assuming that j
is the node adjacent to node i. The voltages at node i are known from the calculation in
STEP 4. All members of j or {2, 3, . . . , n, n + 1, . . . , n + m} will be selected to accomplish
the voltage and current assessments of overall neutral and ground conductors. The result
of voltage assessments is shown in the form of phase separation in Equation (40), where
VN

1,slack = 0 V. The subscript of res means the result value from the assessment.
VA

j
VB

j
VC

j
VN

j
VG

j

 =


VA

i
VB

i
VC

i
VN

i
VG

i

−


zAA
ij zAB

ij zAC
ij zAN

ij zAG
ij

zBA
ij zBB

ij zBC
ij zBN

ij zBG
ij

zCA
ij zCB

ij zCC
ij zCN

ij zCG
ij

zNA
ij zNB

ij zNC
ij zNN

ij zNG
ij

zGA
ij zGB

ij zGC
ij zGN

ij zGG
ij




IA
ij

IB
ij

IC
ij

IN
ij

IG
ij

 (39)

3.5. The Error Assessment from LF Results

This section formulates the Ybus matrix from the original branch model in Equation (1),
which results in a 5(n + m)× 5(n + m) matrix. As determined at any node i shown in
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Figure 7, the error (erri) can be calculated from the current summation in Equation (41). If
there is no error from LF results, the current summation must be zero.



V1,slack,res
V2,PQ,res

...
Vn,PQ,res

Vn+1,PV,res
...

Vn+m,PV,res


=



VA
1,slack,res VB

1,slack,res VC
1,slack,res VN

1,slack,res VG
1,slack,res

VA
2,PQ,res VB

2,PQ,res VC
2,PQ,res VN

2,PQ,res VG
2,PQ,res

...
VA

n,PQ,res VB
n,PQ,res VC

n,PQ,res VN
n,PQ,res VG

n,PQ,res
VA

n+1,PV,res VB
n+1,PV,res VC

n+1,PV,res VN
n+1,PV,res VG

n+1,PV,res
...

VA
n+m,PV,res VB

n+m,PV,res VC
n+m,PV,res VN

n+m,PV,res VG
n+m,PV,res


(40)

erri =

∣∣∣∣∣∑p
Ip
i

∣∣∣∣∣ =
∣∣∣∣∣n+m

∑
j=1

∑
p

∑
q

Ypq
ij ·V

q
j,res

∣∣∣∣∣ (41)

where p, q ∈ {A, B, C, N, G}; Ypq
ij ∈ Ybus5(n+m)×5(n+m) and is in pu.; Vj,res is the voltage

result (pu.) in the complex form at node j obtained from the voltage and current assessments
in Section 3.4, or expressed in Equation (40).
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𝑝

𝑝
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𝑝𝑞
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𝑞

𝑞𝑝

𝑛+𝑚

𝑗=1

| (41) 
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4. Simulation Results and Discussion

In this paper, MATLAB is used on a computer with AMD Ryzen5 2500U, 2.00 GHz,
and 8 GB of RAM. To show the effectiveness of the modified branch model and improved
LF equations, the two following methods are used for comparison.

1. Benchmark Method: This traditional method is widely used for power flow compar-
ison [7,8,11,15,16]. This method is the NR method based on the polar-form power
injection approach. However, a branch model is simplified by defining the neutral
and ground voltages as zero and then using Kron’s reduction to transform into a
3 × 3 branch matrix. Following this, the voltage result from this method is included
in Equation (42), which will be used for the error assessment, as stated in Section 3.5,
such that the values of VN

i and VG
i equal zero.

2. Proposed method: The NR method is used for solving the improved LF equations,
and the modified branch model is also applied. This method is proposed as stated in
Section 3.

In this paper, the physical and configuration parameters of the conductors applied
for the 4- and 19-node LVDSs are clarified in Appendix A. The connection node and load
details of the 4- and 19-node LVDSs are demonstrated as detailed in Appendices B and C,
respectively. To show the effectiveness of the proposed method, the simulation results



Energies 2021, 14, 7600 13 of 19

are divided into four parts for performing the LF calculations between the proposed and
benchmark methods on (i) 4-node LVDS with only PQ nodes, (ii) 19-node LVDS with only
PQ nodes, (iii) 4-node LVDS with both PQ and PV nodes, and (iv) 19-node LVDS with both
PQ and PV nodes. For both the 4- and 19-node LVDSs, the base voltage and base power
are 230 V and 1 MVA, respectively.



V1,slack,res
V2,PQ,res

...
Vn,PQ,res

Vn+1,PV,res
...

Vn+m,PV,res


=



VA
1,slack,res VB

1,slack,res VC
1,slack,res 0 0

VA
2,PQ,res VB

2,PQ,res VC
2,PQ,res 0 0

...
VA

n,PQ,res VB
n,PQ,res VC

n,PQ,res 0 0
VA

n+1,PV,res VB
n+1,PV,res VC

n+1,PV,res 0 0
...

VA
n+m,PV,res VB

n+m,PV,res VC
n+m,PV,res 0 0


(42)

4.1. Performing LF Calculation on 4-Nodes LVDS with Only PQ Nodes

In this section, both the benchmark and proposed methods converge in four iterations
and at around 0.11 s. The phase voltage results of the proposed methods, from the voltage
and current assessments as stated in Section 3.5, are shown in Figure 8. The comparisons
of the phase-to-neutral voltages together with the errors in the LF results between the
benchmark and proposed methods are shown in Figure 9. Note that the neutral voltages in
the benchmark methods are equal to zero.
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Figure 9. Comparison between benchmark and proposed methods at (a) Phase-AN, (b) Phase-BN, (c) Phase-CN, and
(d) errors in LF results.

From Figure 9, the phase-to-neutral voltages of the benchmark and proposed methods
differ by around 0–0.04 pu., and the proposed method has around ten times less error than
the benchmark method.

4.2. Performing LF Calculation on 19-Nodes LVDS with Only PQ Nodes

Both the benchmark and proposed methods converge in four iterations and at around
0.40 s. The phase voltage results of the proposed method, from the voltage and current
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assessments as stated in Section 3.5, are shown in Figure 10. The comparisons of the
phase-to-neutral voltages together with the errors in the LF results between the benchmark
and proposed methods are shown in Figure 11.
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4.3. Performing LF Calculation on 4-Nodes LVDS with Both PQ and PV Nodes 

In this section, node 4 is defined as a PV node and detailed in Table 4, where 𝑟 ∈
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Table 4. The details of PV node. 

Node  𝑷𝒊,𝑷𝑽 (W) 𝑽𝒊
𝒓𝑵 (pu.) 

4 10,000 1 

Performing the LF calculation in this section, both the benchmark and proposed 

methods converge in three iterations at around 0.10 s. The phase voltage results of the 

proposed method, from the voltage and current assessments as stated in Section 3.5, are 

shown in Figure 12. The power generation at the PV node of the benchmark and proposed 

methods is shown in Table 5. The comparisons of the phase-to-neutral voltages together 

with the errors in the LF results between the benchmark and proposed methods are shown 

in Figure 13. 

As shown in Table 5, the results of the power generation at the PV node from the 

benchmark and proposed methods are close. From Figure 13, the phase-to-neutral volt-

ages of the benchmark and proposed methods differ by around 0–0.01 pu., and the pro-

posed method has around ten times less error than the benchmark method. 

Figure 10. Phase voltage results of (a) Phase-A, -B, and -C and (b) Phase-N and -G.
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From Figure 11, the phase-to-neutral voltages of the benchmark and proposed methods
differ by around 0–0.04 pu., and the proposed method has around ten times less error than
the benchmark method.

4.3. Performing LF Calculation on 4-Nodes LVDS with Both PQ and PV Nodes

In this section, node 4 is defined as a PV node and detailed in Table 4, where r ∈
{A, B, C}. Note that, at the PV node in this paper, the voltage magnitude and phase
angle of each phase are balanced and the sum of real power generation of each phase
(Pi,PV) is constant. The meaning of the balanced phase angle is δBN

i,PV = δAN
i,PV + µBN

i,PV and
δCN

i,PV = δAN
i,PV + µCN

i,PV , as already written in Equations (32)–(34).

Table 4. The details of PV node.

Node Pi,PV (W) VrN
i (pu.)

4 10,000 1

Performing the LF calculation in this section, both the benchmark and proposed
methods converge in three iterations at around 0.10 s. The phase voltage results of the
proposed method, from the voltage and current assessments as stated in Section 3.5, are
shown in Figure 12. The power generation at the PV node of the benchmark and proposed
methods is shown in Table 5. The comparisons of the phase-to-neutral voltages together
with the errors in the LF results between the benchmark and proposed methods are shown
in Figure 13.

As shown in Table 5, the results of the power generation at the PV node from the
benchmark and proposed methods are close. From Figure 13, the phase-to-neutral voltages
of the benchmark and proposed methods differ by around 0–0.01 pu., and the proposed
method has around ten times less error than the benchmark method.
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Table 5. Power generation at the PV node of benchmark and proposed methods.

Method Node
Power Generation (VA)

Phase AN Phase BN Phase CN

Benchmark 4 6725 + j16,109 3592 + j16,168 −316 + j13,076
Proposed 4 6614 + j15,976 3540 + j16,364 −153 + j13,016
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4.4. Performing LF Calculation on 19-Nodes LVDS with Both PQ and PV Nodes

In this section, nodes 7, 15, and 19 are defined as PV nodes and detailed in Table 6. In
the LF calculations, both the benchmark and proposed methods converge in four iterations
at around 0.40 s. The phase voltage results of the proposed methods, from the voltage
and current assessments as stated in Section 3.5, are shown in Figure 14. The power
generation at the PV nodes of the benchmark and proposed methods is shown in Table 7.
The comparisons of the phase-to-neutral voltages together with the errors in the LF results
between the benchmark and proposed methods are shown in Figure 15.

As shown in Table 7, the results of the power generation at the PV nodes from the
benchmark and proposed methods are close. From Figure 15, the phase-to-neutral voltages
of the benchmark and proposed methods differ by around 0–0.01 pu., and the proposed
method has around ten times less error than the benchmark method.

The simulation results shown in Sections 4.1–4.4 prove that the modified branch model
proposed by this paper is around ten times more accurate than the branch model simplified
using Kron’s reduction. In addition, the NR method can solve the improved LF equations
with both PQ and PV nodes properly so that, following the LF result of each PV node, the
voltage magnitude and phase angle of each phase are balanced and the sum of real power
generation of each phase is constant.
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Table 6. The details of PV nodes.

Node Pi,PV (W) VrN
i (pu.)

7 70,000 1.05
15 150,000 1.05
19 50,000 1.05

Table 7. Power generation at PV nodes of benchmark and proposed methods.

Method Node
Power Generation (VA)

Phase AN Phase BN Phase CN

Benchmark
7 27,230 + j41,658 22,205 + j42,826 20,565 + j41,005
15 49,042 + j30,012 47,961 + j30,013 52,997 + j32,580
19 14,632 − j1157 16,845 − j1071 18,523 + j529

Proposed
7 26,853 + j41,599 22,158 + j43,083 20,990 + j40,792
15 48,821 + j30,262 47,824 + j29,889 53,355 + j32,572
19 14,713 − j1078 16,874 − j1170 18,413 + j570
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5. Conclusions

In this paper, the NR method was used for solving the LFs because of its quadratic
convergence property and no unrestricted applicability to both radial or meshed LVDSs.
Polar-form LF equations based on the power injection approach were applied due to the
intuitive and convenient nature of their direct specification of node power injections. Two
modifications were proposed in this paper:

• A modified branch model that is derived from the impedances of the phase-A, -B,
-C, neutral, and ground conductors together with the grounding resistances that is
more accurate than the branch model simplified using Kron’s reduction to assume
zero voltage at the neutral and ground conductors;
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• Improved LF equations for the LVDSs with both PQ and PV nodes where, at the PV
nodes, the voltage magnitude and phase angle of each phase are balanced and the
sum of real power generation of each phase is constant.

In this paper, 4- and 19-node LVDSs were tested, and the simulation results show that
the modified branch model is ten times more accurate than the simplified branch model. In
addition, the NR method can solve the improved LF equations properly so that the voltage
magnitude and phase angle of each phase of each PV node are balanced and the sum of
real power generation of each phase of each PV node is constant.
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Appendix A. Physical and Configuration Parameters of Applied Conductors

In this paper, the physical parameters of the applied conductors, as shown in Table A1
consist of 185 mm2 and 35 mm2 Weatherproof Aluminum Conductors (WACs). Accordingly,
185 mm2 WACs are used for the phase-A, -B, and -C conductors, and 35 mm2 WACs are
used for the phase-N conductor [18].

Table A1. Physical parameters of the applied conductors.

Conductors GMR * (mm) Resistance (Ω/km)

185 mm2 WAC 5.9764 0.2008
35 mm2 WAC 2.5995 1.0606

* From calculation in Equation (8).

The wiring configuration for phase-A, -B, -C, and -N together with the grounding
resistance is shown in Figure A1 [17], where ρG, lrod, and rarod are 20 Ω-m, 3 m, and 0.01 m,
respectively. Then, the calculated RG

rod is 6.05 Ω.
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Figure A1. The wiring configuration for phase-A, -B, -C, and -N together with grounding resistance.

Following Table A1 and Figure A1, the calculated results, in Ω/km, of the original
branch model, the branch model simplified by using Kron’s reduction, and the modified
branch model are shown in Tables A2–A4, respectively. These branch models will be used
for two test systems, which are 4- and 19-node LVDSs.
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Table A2. The calculated results of the original branch model (Ω/km).

A B C N G

A 0.20 + j0.47 j0.2277 j0.1830 j0.2300 j0.0674
B j0.2277 0.20 + j0.47 j0.2253 j0.1854 j0.0662
C j0.1830 j0.2253 0.20 + j0.47 j0.1588 j0.0650
N j0.2300 j0.1854 j0.1588 1.06 + j0.53 j0.0685
G j0.0674 j0.0662 j0.0650 j0.0685 0.05 + j0.36

Table A3. The calculated results of the simplified branch model (Ω/km).

A B C

A 0.2383 + j0.4410 0.0301 + j0.2013 0.0257 + j0.1590
B 0.0301 + j0.2013 0.2251 + j0.4455 0.0208 + j0.2039
C 0.0257 + j0.1590 0.0208 + j0.2039 0.2186 + j0.4467

Table A4. The calculated results of the modified branch model (Ω/km).

AN BN CN

AN 1.3650 + j0.5212 1.1631 + j0.3266 1.1624 + j0.3109
BN 1.1660 + j0.3262 1.3655 + j0.6161 1.1639 + j0.4016
CN 1.1671 + j0.3102 1.1656 + j0.4014 1.3656 + j0.6715

Appendix B. 4-Node LVDS

The configuration of the 4-node LVDS with 150-m line sections is shown in Figure A2,
where the base voltage and base power are 230 V and 1 MVA, respectively. The load of
each node is shown in Table A5.
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1 0 0 0 

2 5340 + j2580 5340 + j2580 11,010 + j5340 

3 11,010 + j5340 9720 + j4710     5190 + j2520 

4 6480 + j3150   5760 + j2760 4050 + j1950 

Appendix C. 19-Node LVDS 
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Figure A2. Configuration of the 4-node LVDS.

Table A5. Load of each node.

Node
Load (VA)

Phase AN Phase BN Phase CN

1 0 0 0
2 5340 + j2580 5340 + j2580 11,010 + j5340
3 11,010 + j5340 9720 + j4710 5190 + j2520
4 6480 + j3150 5760 + j2760 4050 + j1950

Appendix C. 19-Node LVDS

The configuration of the 19-node DS with 30-m line sections is shown in Figure A3,
where the base voltage and base power are 230 V and 1 MVA, respectively. The load of
each node is shown in Table A6.
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each node is shown in Table C1. 
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Figure A3. Configuration of the 19-node LVDS.
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Table A6. Load of each node.

Node
Load (VA)

Phase AN Phase BN Phase CN

1 0 0 0
2 5340 + j2580 5340 + j2580 11,010 + j5340
3 11,010 + j5340 9720 + j4710 5190 + j2520
4 6480 + j3150 5760 + j2760 4050 + j1950
5 6480 + j3150 5190 + j2520 4530 + j2190
6 4200 + j2040 3090 + j1500 2910 + j1410
7 9720 + j4710 8100 + j3930 8100 + j3930
8 3390 + j1650 5430 + j2580 7440 + j3600
9 12,300 + j5970 14,910 + j7230 13,290 + j6420

10 3390 + j1650 4200 + j2040 2580 + j1260
11 7440 + j3600 7440 + j3600 11,010 + j5340
12 9720 + j4710 8100 + j3930 8100 + j3930
13 4380 + j2130 5340 + j2580 6480 + j3150
14 3090 + j1500 3090 + j1500 4050 + j1950
15 4380 + j2130 4860 + j2340 6960 + j3360
16 7770 + j3780 10,380 + j5010 7770 + j3780
17 6480 + j3150 4860 + j2340 4860 + j2340
18 10,380 + j5010 5190 + j2520 10,380 + j5010
19 8760 + j4230 10,050 + j4860 11,010 + j5340
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