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Abstract: This paper presents a novel approach for improving the safety of vehicles equipped with
Adaptive Cruise Control (ACC) by making use of Machine Learning (ML) and physical knowledge.
More exactly, we train a Soft Actor-Critic (SAC) Reinforcement Learning (RL) algorithm that makes
use of physical knowledge such as the jam-avoiding distance in order to automatically adjust the
ideal longitudinal distance between the ego- and leading-vehicle, resulting in a safer solution. In our
use case, the experimental results indicate that the physics-guided (PG) RL approach is better at
avoiding collisions at any selected deceleration level and any fleet size when compared to a pure RL
approach, proving that a physics-informed ML approach is more reliable when developing safe and
efficient Artificial Intelligence (AI) components in autonomous vehicles (AVs).

Keywords: adaptive cruise control; informed machine learning; physics-guided reinforcement
learning; safety; autonomous vehicles

1. Introduction

According to a recent study, [1], around 94% of road accidents are happening due
to human errors. For this reason, considerable efforts are made by the scientific research
institutions and the automotive industries in order to reach autonomous cars that are safer
than human drivers [2]. These efforts are driven also by the fact that AVs are becoming
influential on the social and economic development of our society [3]. Nevertheless, because
usually, the AI models used in AVs are dependent on huge amounts of data and labeling
efforts, which are mostly expensive and hard to obtain, this can result in so-called “black
box” AI models which are limited not only due to the size of the dataset they were trained
on but also due to imperfect labeling. This is a very crucial problem regarding safety
because the resulting AI models which are agnostic to real physical relations and principles
found in the real world, being unable to generalize well to unseen scenarios [4]. This is
especially the case for accidents as the frequency of critical situations is very low, and, thus,
the number of such situations in datasets collected from real-world recordings tends to be
low as well.

Thus, there is a need for a new kind of AI models that are more efficient regarding
safety, interpretability, and explainability, with a promising viable solution in this direction
being represented by the use of so-called Informed ML [5] approaches where AI models
can be improved by using additional prior knowledge into their learning process. Recently,
this approach is proving to be successful in many fields and applications such as lake
temperature modeling [4], MRI reconstruction [6], real-time irrigation management [7],
structural health monitoring [8], fusion plasmas [9], fluid dynamics [10] and machining
tool wear prediction [11]. However, regarding autonomous driving, this approach was not
fully explored, with recent research projects such as KI Wissen [12] funded by the German
Federal Ministry for Economic Affairs and Energy being one of of the first, if not, the
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first one that tries to bring knowledge integration into Automotive AI in order to increase
their safety.

With regard to autonomous driving, one of many safety-critical components is con-
sidered to be the ACC, mainly due to its ability to increase safety and driving comfort
by automatically adjusting the speed of the ego-vehicle according to the position and
speed of a leading vehicle while following it. ACCs are also known for having several
advantages over human driving such as reducing the energy consumption [13] in a vehicle
or improving the traffic dynamics [14], to name only a few. Despite being available in many
modern vehicles, ACCs are still heavily dependent on the available sensors equipped on
them. These sensors differ for each manufacturer and model, such as radar and LIDAR,
which can either have a malfunction or their sensor data readings are affected by noisy and
low accuracy data [15] which can lead to instability, severe conditions regarding speed,
discomfort, and even risks of collisions [16]. More than that, because ACCs are typically
approached as a model-based controller design based on an Intelligent Driver Model (IDM),
despite performing decently on highways, they lack the ability to adapt to environments
or driving preferences, and thus, an RL-based ACC approach is seen as more favorable
towards fully autonomous cars which can be fully trusted by humans. Some of the main
reasons for this are the advantages of an RL-based ACC approach such as that it does not
require a dataset and that training can be realized irrespective of the environment [17].

Considering these aspects, in this paper, we show, to the best of our knowledge, for
the first time in literature, a PG RL approach, which is able to increase the safety of vehicles
equipped with ACC by a large margin for any deceleration level and at any fleet size when
compared to a pure RL approach, also in the case when the input data is perturbed. Despite
the fact that platooning scenarios, even the ones using RL, have already been considered in
the literature, many works focus on the yet unrealistic scenario of communicating vehicles
so that each vehicle in the queue immediately receives non-perturbed information about
the intended actions of all other vehicles, as seen in the work presented by the authors
in [18], or which perform joint optimization as seen in the work by the authors in [19]).
Similarly, the work in [20] restricts the communication between the individual vehicles but
they consider platooning scenarios that differ from ours by using other control schemes
(e.g., averages of four controllers) as well as by the goal of focussing on the lead vehicle of
a platoon. The novelty of our approach presented in this paper is the combination of RL
with deep state abstractions, reward shaping w.r.t. a safety requirement (i.e., jam-avoiding
distance), perturbed inputs as well as individual behavior in an AVs platoon regarding car-
following scenarios. By using the proposed PG RL approach for ACC, we demonstrate that
it is possible to improve an AI model’s performance (less collisions and more equidistant
travel) only by using physical knowledge as part of a pre-processed input, without the
need of extra information.

The paper is organized as follows. In Section 2, we present the related work regarding
different implementations of ACCs using physics or using RL. Section 3 details the pro-
posed PG RL solution for increasing the safety of ACCs. Section 4 presents the simulation
details of the car-following scenario implementation. In Section 5, we present the experi-
mental setup and results. Finally, in Section 6, we present the conclusions and future work
of this paper.

2. Related Work

Recently, the advancement of AVs technology has resulted in unique concepts and
methods that allow the successful deployment of vehicles capable to drive in different
levels of autonomy. However, different authors used different approaches to target safe
self-driving control speed and learning navigation. In addition, there are several works
that propose solutions regarding safer ACCs either using only physical knowledge or by
using ML methods such as RL [21,22].

In the field of transportation engineering, the work in [23] serves as an introduction
and analysis of the theoretically successful AI frameworks and techniques for AVs control
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in the age of mixed automation. They conclude that multi-agent RL algorithms are being
preferred for long-term success in multi-AVs. The authors in [24] introduce a cooperative
ACC method that makes use of an ACC controller created using the concept of RL in order
to manage traffic efficiency and safety, showing impressive results in their experiments
with a low-level controller. The work in [25] successfully implemented a method for Society
of Automotive Engineers (SAE) low-cost modular AV by designing a vehicle unique in the
industry, and which proves to be able to transport persons successfully. The approach in
this work leads to the realistic application of behavioral replication and imitation learning
algorithms in a stable context. The authors in [14] proposed a physics-based jam-avoiding
ACC solution based on an IDM and proved that by using physical knowledge, the traffic
congestion can be drastically improved by employing even a small number of vehicles
equipped with ACCs. The authors in [13] propose an end-to-end vision-based ACC solution
based on deep RL using the double deep Q-networks method, and which is able to generate
a better gap regulated as well as a smoother speed trajectory when compared to a traditional
radar-based ACC or human-in-the-loop simulation. Also, the authors in [17] proposed
an RL-based ACC solution that is capable of mimicking human-like behavior and is able
to accommodate uncertainties, requiring minimal domain knowledge when compared to
traditional non-RL-based ACCs in congested traffic scenarios in a crowded highway as
well as countryside roads. The work in [26] evaluates the safety impact of ACCs in traffic
oscillations on freeways also by using a modified version of IDM in order to simulate the
car-following movements using Matlab2014b software, concluding that an ACC system
can significantly improve safety only when parameter settings such as larger time gaps,
smaller time delays, and larger maximum deceleration rates are maintained. Physical
and world knowledge was used also in other deep learning models such as regarding
the off-road loss in [27] and models that respect dynamic constraints [28], both of these
approaches being combined in the work presented in [29]. In addition, the authors in [30]
add a kinematic layer to the model which produces kinematically conform trajectory
points that serve as additional training points for prediction. World knowledge, in terms
of social rules, has been integrated into deep learning models in [31] where residuals are
added to knowledge-driven trajectories in order to realistically reflect pedestrian behavior,
and in [32] where social interaction is invoked in order to make collision-free trajectory
predictions for pedestrians. A similar work is presented also in [33], where interaction-
aware trajectory predictions for vehicles are computed. Concerning the violation of traffic
rules, the work in [34] uses a penalty term for adversarial agents, with the work in [35] also
adding a collision reward term as well as a penalty for unrealistic scenarios. Regarding
safety distance, this has been considered by the authors in [36] who added a safety distance
violation penalty and a collision penalty, among others, to a hierarchical RL model, by the
authors in [37], who consider a fixed safety distance in overtaking maneuvers, and also by
the authors in [38], where a distance reward is invoked in car-following maneuvers.

The works mentioned in this chapter highlight the importance of safety in ACCs in
the literature, indicating that by using either physics or ML-based solutions such as RL,
considerably better results can be obtained. However, to the best of our knowledge, there
is no work in literature that combines both physics and deep RL in order to increase the
safety of ACCs. For this reason, in this paper, we combine the two approaches of physics
knowledge as well that of RL into a stand-alone PG RL solution, providing a basis for
future researchers to build upon.

3. Physics-Guided Reinforcement Learning for Adaptive Cruise Control

In this section, we describe the proposed approach that combines the physical knowl-
edge in the form of jam-avoiding distance together with the SAC RL algorithm [39] in order
to increase the safety of ACCs. First, we briefly introduce the SAC algorithm, followed by
the physical model used, and finally, we also show their merging approach and how the
integration of prior knowledge is realized in this work.
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3.1. Soft Actor-Critic Algorithm

In this paper, we make use of the RL framework for training our ACC model, more
exactly, of the SAC RL algorithm [39]. RL refers to a collection of learning techniques that
train an agent through experience. Here, the experience is collected as a simulation in
the forms of states, actions, and rewards in order to find the policy that maximizes the
expected cumulative reward it obtains. One of the main advantages of RL is that it does
not require a specific dataset for training, the data used for its training being generated as
experience in the simulation. However, many of the existent RL algorithms found in the
literature have limitations during on-policy learning such as sample inefficiency as well as
during off-policy learning such as hyperparameter sensitivity and increased time required
for tuning them in order to achieve convergence.

SAC [39] is an off-policy state-of-the-art RL algorithm that does not have the limitations
mentioned above. This is the reason we choose to use SAC in our work. Furthermore,
we deal with continuous action spaces where SAC is not efficient in maximizing the
reward but still in maximizing the entropy of the policy. This is important as a higher
entropy encourages a higher exploration of the state space by the agent and improves the
convergence [39]. In order to achieve such improvements using a random strategy over
other RL algorithms that use deterministic strategy, SAC according to [39] makes use of
soft Q-learning, relying on two different function approximators such as a soft Q-value
function as well as a stochastic policy which are optimized alternately. The soft Q-function
Qθ(st, at) with st describing the state at time t and at the action at time t, is parametrized by
θ. The tractable policy πφ(st|at), containing the state-action pair, is parametrized with φ.

3.2. Prior Knowledge

From traffic experiences as well as from governmental traffic rules, it is known that
traffic participants have to ensure a sufficient safety distance to each other, to avoid possible
collisions. Besides this prior world knowledge, there is also conjunctive physical knowledge
on how the distance between an agent and a leading vehicle can be controlled. An example
regarding this aspect is given by the authors in [14] who extend an existing IDM-Model
in order to realize an ACC lane following controller with model parameters in Table 1.
Based on that desired parameters such as velocity, acceleration constraints, and minimum
distance for jam-avoiding, the authors present the desired acceleration for a jam-free lane
as seen in Equation (1) [14].

acceleration = am

[
1−

(
v
v0

)4
−
(

s∗(v, ∆v)
s

)2
]

(1)

Here, s is the distance to the leading vehicle and s∗(v, ∆v) describes the minimum
jam-avoiding distance depending on the current agent velocity v and the velocity difference
∆v to the leading vehicle.

Table 1. Static model parameters used in the proposed approach for increasing the safety of ACC [14].

Static Model Parameter Symbol Value

Desired velocity v0 120 km/h
Save time headway T 1.5 s
Maximum acceleration am 1.0 m/s2

Desired deceleration b 2.0 m/s2

Jam distance s0 2 m
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Together with a static minimum distance s0 for low velocities, the save time headway
T and desired deceleration and maximum acceleration b and am respectively, s∗(v, ∆v)
results to the Equation (2) [14]:

s∗(v, ∆v) = s0 + max(0, vT +
v∆v

2
√

amb
). (2)

Considering the goal of this paper, we make use of Equation (2) when integrating
prior knowledge into the SAC RL algorithm.

3.3. Integration of Prior Knowledge

The main goal of the integration is to help the autonomous agent learn the correct
control actions that result in reasonable trajectories. Regarding this aspect, one can distin-
guish essentially between supervised and non-supervised algorithms for such problems.
Supervised approaches like constrained control algorithms [40] optimize a particular objec-
tive function constrained to some hard constraints which formalize safety requirements.
By solving the respective constrained optimization problem, the ego-trajectory is guaran-
teed to satisfy the safety constraints. A major drawback of these supervised strategies
is that they require target/reference trajectory points and velocities, to name only a few,
which are usually difficult to obtain [41]. In contrast, RL cannot cope with hard constraints
but poses them as soft constraints (where their severity depends on the regularization
parameter λ) onto the objective function. The main advantage is, however, that RL does not
require any data but generates the data during training where it learns which trajectories
and therefore, which control actions are reasonable in which situation by receiving reward
feedback, so actions that severely violate the constraints lead to very low rewards. In our
work, we design the regularization term of the reward function, i.e., the soft constraint, so
that it represents the safety constraint in order to keep the optimal jam-avoiding distance,
encouraging the agent to respect this safety constraint.

Following, we present our merging approach between the SAC architecture and the
physical knowledge. As can be seen in Figure 1, a typical regular RL approach for ACC
(black arrows) considers information about relative velocity and front vehicle distance
based on radar systems. In addition, the current velocity is taken into account by the actor
networks. According to this raw data by the sensors, the normal RL approach is deciding
about the next acceleration steps. However, regarding the overall ACC goal of driving
in perfect target separation as often as possible, the proposed PG RL approach is taking
an important relation, namely the jam-avoiding distance (red arrows), between the raw
data into account. By considering the jam-avoiding distance with the sensor data and the
model parameters seen in Table 1, the actor-network is better prepared than the normal RL
approach on finding an optimal policy for the ACC.

A more detailed explanation for the choice of this physical knowledge is explained
later in the States subsection of this paper. In addition, a comparison and evaluation
between both approaches are detailed in Section 5.
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Figure 1. Proposed PG RL approach for increasing the safety of ACC by integrating prior knowledge
in the form of the Jam-Avoiding Distance.

4. Simulation

Regarding the ACC system, we implemented a car-following scenario. For the sce-
nario, we consider an urban road and normal weather conditions without influencing
any fraction coefficients. In the main simulation, we assume perfect perception without
perturbations s.t. all required data and information are available at any time; however,
afterwards, we also performed the same procedures but introducing perturbations. The
basic setup consists of two vehicles, a leading vehicle and one following vehicle, which
contains the acting agent calculating the acceleration of the agent vehicle. Initially, the
distance between the vehicles is 20 m. Based on the adapted physical IDM [14], the static
model parameters applied are the ones presented earlier in Table 1. Following the RL ap-
proach and the physical model, for each simulation step, the acceleration to be executed is
determined by the actor-network by extrapolating the current state to the next partial state
based on the current position and velocity. Here, the resulting velocity and position, which
are the relation values for the used physical model and the environment, are determined
by the Eulers method seen in Equation (3):

f (t + h) = f (t) + h
d f
dt

(t) (3)

with the step size h = 0.1.
The resulting velocity of an agent is thus determined in each simulation step with

Equation (4):

vt+1 = vt + h · at+1 (4)

where vt is the velocity at time t and at+1 is the acceleration determined by the artificial
neural network at time t + 1.



Energies 2021, 14, 7572 7 of 19

The same procedure is also used to determine the new position of an agent with
Equation (5):

xt+1 = xt + h · vt+1 (5)

where xt is the position at time t.

4.1. Leading Agent Acceleration

The only parameter that is not directly handled by the physical model and the virtual
environment is the acceleration of the leading vehicle. In order to enable a simulation also
for the leading vehicle, we need an acceleration replacement, such as one of the following
heuristics presented in Table A1:

• Random acceleration at each time step (randomAcc),
• Constant acceleration with random full stops (setting lead velocity with v = 0) (ran-

domStops9 accelerates by 90% of its capacity and randomStops10 accelerates full throttle)
• Predetermined acceleration for each time step (predAcc).

Based on the simulation performance with the test results presented in Section 4.6, the
predetermined acceleration heuristic was chosen in the following manner: first, the vehicle
will accelerate at 0.8 of its maximum acceleration until reaching half of its maximum speed.
In this part, the agent will have to learn to accelerate but will not be able to accelerate
at maximum capacity, being forced to also learn some control. Secondly, the vehicle will
decelerate constantly until it stops. This will force the agent to learn to brake. Finally, it will
repeat the first two steps, but accelerating at 0.9 of its maximum capacity, thus forcing the
agent to accelerate at a greater capacity and then brake from a higher velocity as well.

4.2. States

The overall MDP is given by the tuple (S ,A, T, r) with the state space S , the action
space A, a deterministic transition model T : S × A → S and rewards r. A discount
factor is not considered in this work. The goal is to learn a deterministic parametric policy
πφ : S → A.

Regarding the state space, the simulation is fundamentally driven by three different
parameters. One parameter to consider is the separation between agents. The second pa-
rameter is the speed difference between the agent and the lead vehicle (approaching
velocity). Lastly, the speed of the acting agent is observed. Here, because the Q-function is
modeled as an expressive neural network in the SAC algorithm [39], for faster processing,
the value domains of the parameters were normalized to the interval [0, 1].

Based on the integration of the physical model from [14] and the consequently relevant
target separation s∗, two further indicators are introduced for the simulation. First, the
target separation itself is observed as a parameter. This was also normalized to the interval
[0, 1]. Secondly, a Boolean was introduced, which indicates whether the current separation
is smaller (0) or larger (1) than the target separation. The reason for introducing this value
was to provide the agent with an additional indicator for improving the determination
of the acceleration that needs to be executed. In Section 5, we will evaluate the impact of
adding this physical knowledge as inputs to the agent in the learning process.

Regarding the action space, we translated the asymmetric interval ranging from the
maximum negative deceleration to the maximum acceleration into the symmetric interval
A = [−1, 1].

4.3. Penalization

Based on the present scenario with an ACC system, in case of a collision with the agent
in front an agent is penalized with a negative reward. In this work, different magnitudes
from 0 to 106 for the execution of the penalization were tested. We discovered that if the
penalization for the collision of an agent is too large, in order to avoid collisions, the agent
may learn not to move at all. On the other hand, if the penalization is too small, the agent
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may ignore this misbehavior. In order to handle the adjustment of the correct penalization
magnitude, a test attempt was made to introduce another penalization for not moving.
Finally, after experimenting with different magnitudes we discovered that a relatively small
collision penalization of 3000 has been working the best, this penalization value being
applied when the agent collides (meaning that the resulting reward will be reduced by
3000). We observed that a good but riskier policy achieves a better learning result due to
the chosen reward function than the search for a possibly fundamentally new strategy due
to a high collision penalization. Thus, in the case of a good but risky policy, the selected
reward function is taking a collision risk more into account. More detailed information
about the test results can be seen in Section 4.6.

4.4. Reward

In the course of several simulations, several different reward functions were consid-
ered. First, a target distance reward that evaluates the absolute difference between the
current separation of the vehicle and the target separation was tested (named as absoluteDiff
in Table A1). This metric was not useful due to the bias introduced into being closer to the
lead vehicle rather than farther behind. A second reward function tested was related to
velocity (named as velocity in Table A1): the faster the vehicles follow each other without
collision, the better the strategy was. We observed that, when considering possible speed
limits, this reward function can only slightly lead to an improvement of an already good
but not optimal strategy in the search space. The last reward function examined does not
contain an evaluation of a strategy but only the penalization if a collision occurs or if the
agent does not move (named as None in Table A1). It is important to mention that a liveness
reward that encourages the agent to move must however be designed with caution since
the maximal liveness reward should be very small regarding absolute value in comparison
to penalties for violating the speed limit.

Across our simulations, the following target distance reward function (named as
symmetric in Table A1) performed the best. More exactly, the reward of a performed action
was then determined by Equation (6):

r = −|s− ts|
ts

− |s− ts|
2s

(6)

with ts = s0 + max(0, vT) being the target separation at the given speed. This reward has
only one optimal point at s = ts. The reward is also symmetrical to its variables, so for
example if s = 2 · ts or ts = 2 · s are considered, the reward value is the same in both cases,
as can be also observed in Figure 2 with ts = 10 (for different values of ts the function
has the same properties). More detailed information about the test results can be seen in
Section 4.6.

4.5. Termination Conditions

As termination conditions for a simulation run, we consider the goal of the system to
be that of traveling as fast as possible while producing no collisions. This requires a suitable
termination criterion for the simulation to be found. In our tests, we observed that the sole
inclusion of collision in the termination criterion leads to the fact that the simulation does
not end when the agents have found an optimal policy. We also found that, if a fixed period
of time is included in the termination criterion, an acting agent can find a good policy by
merely driving slowly within this fixed period. Finally, we observed that a termination
after a certain number of simulation steps was more reasonable. Therefore, the chosen
termination criterion for the simulation is a combination of a collision consideration and
a certain number of simulation steps.
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Figure 2. Graph of the reward function for different values of s at ts = 10 m. The y-axis is representing
the reward value, while the x-axis is representing the number of simulation steps.

4.6. Parameter Search Test

Considering the high number of choices there are to make in the realms of reward, pe-
nalization and lead vehicle behavior, we performed trainings for each possible combination
of a set of parameters. More exactly, for the lead vehicle behavior, the possibilities consid-
ered are the ones described earlier in Section 4.1 (randomAcc, randomStops9, randomStops10,
and predAcc). Regarding the reward, the possibilities considered are the ones described
earlier in Section 4.4 (symmetric, velocity, absoluteDiff and None). Regarding the penalization,
the values considered were 0, 100, 3000 and 100,000. This gives us a total of 64 different
combinations of parameters. In order to find the best set of parameters, for each of the
64 different combinations, we train the model for 1,000,000 iterations and then perform
an evaluation in order to find the Headway (HW) and Time Headway (THW) criticality
metrics [42] of a single agent following a lead vehicle accelerating and suddenly stopping
at two different points (this is done 10 times in order to average the results) and also
an evaluation involving 12 agents and a lead vehicle (behaving similarly to the previous
test) in order to evaluate the final positions of the vehicles (this is also performed 10 times
and averaged). At any of the 20 tests, if there is a collision, the test ends and a collision is
counted before continuing to the following test. From the results of these tests, we not only
want to see a low collision count but also a reasonable THW (preferably between 1 and
3 s). Here, higher THW indicates that the agent is very slow, while low THW is risky. As
we can see in Table A1, row 33, the model 3000/predAcc/symmetric (meaning penalization
is 3000, the lead agent performs predetermined accelerations and reward is the symmetric
one) is the only model with 0 collisions while having a good THW (2.25).

We can also see that penalizations of 0 and 100 are too low and because of that the
models tend to have more collisions, while a penalization of 100,000 produces little to
no collisions but barely accelerates (as seen in the case of high THW values presented
in Table A1). We can observe that the random accelerations for the lead vehicle produce
extremely cautious agents (as seen in the high THW values presented in Table A1). The
same thing can be said about random stops, even though the impact is not as drastic.
Finally we can see that velocity and absoluteDiff rewards lead to a lot of collision, while no
reward as expected produces really slow agents. Considering these results, we will use
a penalization of 3000, a predetermined acceleration lead agent behavior, and the custom
reward symmetric.
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4.7. Perturbed Inputs

The main focus of our work is on the perfect scenario where the velocity, the distance
to the leading vehicle, and its velocity are accurately known at every step. However, we
also run all the experiments in a secondary simulation in which a perturbation is introduced
in the form of a random multiplier of uniform value between 0.9 and 1.1 which is applied
to each of the three mentioned variables.

4.8. Training Setup

Regarding training setup, we made use of the Ubuntu distribution of Linux, version
20.04, together with Tensorflow 2.4.1; here, we also made use of Reverb 0.2.0 framework [43]
as the experience replay system for RL. Regarding training, we trained each model for
1 million iterations of the simulation, using the same architectures (except for the fact that
one has more input and in turn more connections) for both neural networks composed of
a single hidden layer with 500 neurons. The reason for choosing these architectures was
their low-dimensional feature space.

5. Evaluation

The objective of this section is to show the advantages of adding physical knowledge
to the RL model found in ACC and to prove that vehicles equipped with a PG RL-based
ACC are safer. With that in mind, we will compare results in different tasks between
a traditional RL model and our proposed PG RL model, in which we introduce prior
knowledge, as explained in the previous section. The tasks will consist of a lead agent
with a predetermined acceleration being followed by one or more agent vehicles controlled
by one of our models, at a predetermined initial separation distance. For this, we will
evaluate how likely each of the models is to collide, and how well the agents controlled by
the models spread out.

5.1. Task 1

For the first task, it is important to mention that the first agent has no obstacles at all,
nor a front vehicle to follow, this being a task to be learned by the other agents. Here, the
acceleration of the lead vehicle will be 0.5 m/s2 for 1100 steps, however, between steps 400
and 500 it will be at −0.6 m/s2. The lead vehicle will be followed by 11 agent-controlled
vehicles initially separated by 20 m and with the initial velocities and accelerations being 0.
In order to observe the difference between the two models we are evaluating, for simplicity,
after 1100 steps we will capture the positions of the agent vehicles. Here, the chosen reward
function is the constant collision penalization plus the reward r, leading to Equation (7):

3000− |s− ts|
2ts

− |s− ts|
2s

. (7)

The results of this task are presented in Figure 3.
Here, the y-axis represents the position relative to the first agent and the x-axis represents

the order of vehicles from the last one to the first one. For instance, if there is a point in the
graph at x = 1 and y = 1000, that means that vehicle 1 ended 1000 m behind the first agent.

As can be observed in Figure 3, in the traditional RL model (blue color line), the final
positions form a convex curve. In contrast, the proposed PG RL model (red color line) finds
the agents spread more evenly than the traditional RL model. In order to put a magnitude
to this appreciation of curvature/linearity in Figure 3, we calculated the distance of every
point in the graphs to the corresponding points in a straight line connecting the first and
the last point, this measure is also known as the Gini index. Then, we added the absolute
values of these differences for each of the models and, as can be observed, our appreciation
is correct, the sum of the distances being 1128 for the proposed PG RL model as compared
to 1584 for the traditional RL model. While this doesn’t necessarily prove that one model is
better than the other, it shows that the addition of physical knowledge in the model does
have an effect on the behavior of the agents.
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Figure 3. Graph of the finals positions after the first task using the traditional RL (blue color) and the
proposed PG RL (red color) models. The y-axis is representing the position behind the lead vehicle in
meters while one point on the x-axis is referring to exactly one vehicle. These are the average final
positions at the end of the scenarios, with the numbers referring to the vehicles (from back to front).

Next, we decided to study what would happen if there was some imprecision with the
readings from the radar. To do this we introduce to each input a random uniform multiplier
from 0.9 to 1.1. For example, if the real value of the reading were 10.0, the observed value
would be a random value between 9.0 and 11.0 uniformly distributed. This randomness is
applied to each input or simulated reading individually.

As we see in Figure 4 in comparison to Figure 3, we can observe that the perturbation
of the inputs doesn’t change the innate behavior of the result for this task, but just smooths
out each curve.

Figure 4. Graph of the finals positions after the first task with randomized inputs using the traditional
RL (blue color) and the proposed PG RL (red color) models. The y-axis is representing the position
behind the lead vehicle in meters while one point on the x-axis is referring to exactly one vehicle.
These are the average final positions at the end of the scenarios, with the numbers referring to the
vehicles (from back to front).

In Figure 5, we observe that the behavior of both models trained with perturbed
inputs differs from its original counterparts. The average THW following a lead agent is
of 21 s for the traditional model and 17 s for the PG RL model. This indicates a very slow
behavior of the perturbed trained models, which is expected considering their experienced
uncertainty. Lastly, we will reduce the number of agents to one in order to measure some
of the criticality metrics introduced in [42] that apply to ACC such as HW, THW, and
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Deceleration to Safety Time (DST). The HW criticality metric (referenced as s in our work)
is the distance between a vehicle and its leading vehicle.

Figure 5. Graph of the finals positions after the first task with randomized inputs using the traditional
RL (blue color) and the proposed PG RL (red color) models trained with perturbations. The y-axis is
representing the position behind the lead vehicle in meters while one point on the x-axis is referring
to exactly one vehicle. These are the average final positions at the end of the scenarios, with the
numbers referring to the vehicles (from back to front).

As we see in Figure 6, the HW in our proposed PG RL model (red color line) is at most
steps higher than in the traditional RL model (blue color line), with its lowest points being
also higher.

Figure 6. HW values at each step for both models (traditional RL in blue color line; our proposed PG
RL model in red color line). The y-axis is representing the HW values while the x-axis represents the
number of simulation steps.

The THW criticality metric is the time a vehicle would take at a given step to reach its
leading vehicle if its own velocity was constantly the same as the velocity at the given step
and the leading vehicle remained still at its current position.

As we see in Figure 7, the THW in our PG RL model (red color line) is also at most
steps higher than in the traditional RL model, with even its lowest points being higher.
These results combined with the HW results suggest a more safe driving by our PG RL
model than the traditional RL one.
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Figure 7. THW values at each step for both models (traditional RL in blue color line; our proposed
PG RL model in red color line). The y-axis is representing the THW values while the x-axis represents
the number of simulation steps.

Finally, the DST metric calculates the deceleration required by the agent vehicle in
order to maintain a safety time of ts seconds under the assumption of constant lead vehicle
velocity. At a given step, the DST criticality metric is calculated as seen in Equation (8):

DST(v1, v2, s, ts) =
3(v1 − v2)

2

2(s− v2.ts)
(8)

where v1 is the agent’s velocity, v2 is the lead vehicle’s velocity, and s is the distance between
the vehicles, everything measured at a given step.

In Figure 8, we observe a strange behavior for both agents. The DST function spikes
around steps 250, 550, and 1050. The values it reaches suggests impossible values for
accelerations and decelerations, for instance requesting going from 400 m/s to 0 (at step 250)
or from 0 to 300 m/s (at step 1050) in 0.1 s. The reason for these spikes is that the function
for DST is linearly proportional to 1

s−v2.ts , which would suggest that the deceleration should
be greater the closer the distance s is to v2.ts, and more than that, that it should be infinite
(with indeterminate sign) if s = v2.ts, which, at the very least doesn’t coincide with the
supposed objective of this function.

5.2. Task 2

In the next tasks, the scenario will be the same as in Section 5.1, except that, here, we
will introduce increasingly more dramatic brakes for the predetermined lead agent. More
exactly, in the first of these tasks the deceleration rate will be −0.7 m/s2, in the second one,
−0.71 m/s2, then −0.75 m/s2 and finally −1.0 m/s2.

These considerations are very important for our evaluation because, for each of these
tasks, we are able to observe which is the first agent vehicle that collides against the vehicle
right in front of it, thus giving us a sense of how safe the platoon of vehicles is for both RL
and PG RL models considered in this work. Thus, if the nth vehicle is the first vehicle that
collides, we can say that the platoon is safe for n− 1 vehicles in the given scenario.
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Figure 8. DST values at each step for both models (traditional RL in blue color line; our proposed
PG RL model in red color line). The y-axis is representing the DST while the x-axis represents the
number of simulation steps.

As can be seen in Table 2, the proposed PG RL model is proving to be safer in every
single scenario when compared to the traditional RL model.

Table 2. Collision safety comparison between the traditional RL and the proposed PG RL models.

Lead Deceleration Collision Vehicle PG RL Collision Vehicle RL

1.0 10th 1st
0.75 No collisions 1st
0.71 No collisions 6th
0.7 No collisions No collisions

Here, the first column shows the deceleration of the lead agent in each scenario, with
the second and third columns showing at each scenario which car was the first to c for each
of the models respectively. The presented values in Table 2 come from testing the same
scenario 20 times and obtaining the worst result.

We run the same experiment introducing perturbations to the inputs as in Section 5.1;
however, since the agents were trained with perfect inputs, both of the models performed
considerably worse. We did 20 attempts for each of the models and each of the lead
deceleration values in Table 2, but no matter the number of vehicles, the first agent always
collide against the lead vehicle in at least one of the 20 attempts.

Performing this experiment with the perturbed inputs, the trained models yield safer
results due to the cautious nature of these models, however, this shouldn’t be taken as
a virtue of these models because, upon qualitative analysis, we observe that they barely
accelerate due to the uncertain nature of their training when compared to the regular
trained ones.

6. Conclusions

Despite AI paving the way towards fully automated driving, its development is mostly
driven by data without taking into consideration prior knowledge. This paper presents
a novel approach in increasing the safety of ACCs by merging these two approaches, more
exactly, by making use of physical knowledge in the form of jam-avoiding distance as
part of a more processed input for a SAC RL algorithm. The advantage over constrained-
based optimal control algorithms is that RL approaches do not require any data while
the advantage over common rule-based driving is the greater flexibility of an RL-based
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agent thanks to the state abstractions learned by the underlying deep neural network.
In our evaluation, we show that a PG RL agent is able to learn how to behave in its
scenario better than a traditional RL approach, showing less collisions and more equidistant
travel, providing a basis for future work to build upon. Another important result is the
encouragingly good performance of our RL-based agents in the platooning scenario as
well as in the scenario with perturbed input data. We want to emphasize that the agents do
not have the opportunity to communicate but once one of the vehicles brakes, the vehicles
behind it learn to brake as well by only observing the (perturbed) distance to the respective
vehicle in front and their (perturbed) velocity. In addition, the proposed PG RL approach
achieves considerable better results also when evaluated with criticality metrics such as TW
and THW, proving that safety in AVs can be increased by making use of prior knowledge
into AI components. As future work for improving the performance of an ACC, we plan
to identify and integrate additional knowledge into the PG RL model by increasing the
complexity of scenarios. We want to realize this by using additional traffic participants such
as pedestrians crossing the road in front of the lead vehicle. Promising future directions are
to consider adjacent domains such as Car2Car and Car2X communications which are able
to provide information about better traffic predictions, as well as to integrate additional
and diverse knowledge by other approaches such as extending the reward function.
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Abbreviations and Nomenclature
The following abbreviations and symbols are used in this manuscript:

ACC Adaptive Cruise Control
ML Machine Learning
SAC Soft Actor-Critic Algorithm
RL Reinforcement Learning
PG Physics-guided
AI Artificial Intelligence
AV Autonomous vehicle
MRI Magnetic Resonance Imaging
LIDAR Light detection and ranging
IDM Intelligent Driver Model
MDP Markov decision process
HW Headway
THW Time Headway
DST Deceleration to Safety Time
Qθ(st, at) Soft Q-function
st State at time point t
at Action at time point t
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θ Soft Q-function parameter
πφ(st|at) Policy with state-action pair
φ Policy parameter
v0 Desired velocity
T Save time headway
am Maximum acceleration
b Desired deceleration
s0 Jam distance
s Distance to the leading vehicle
s∗ Minimum jam-avoiding distance
v Current agent velocity
∆v Velocity difference to the leading vehicle
t Time point t
vt Velocity at time point t
at Acceleration at time point t
xt Position at time point t
h Step size
S State Space in MDP
A Action Space in MDP
T Deterministic transition model in MDP
r Reward
πφ : S → A Deterministic parametric policy
ts Target seperation
DST(v1, v2, s, ts) Deceleration to Safety Time
v1 Vehicle 1
v2 Vehicle 2

Appendix A

Table A1. Test results for the different combinations of parameters regarding the RL simulation.

Model Collisions HW (m) THW (s) Separation (m)

0 0/predAcc/symmetric 2 21.986616 4.746649 17.932934
1 0/predAcc/symmetric 20 21.523313 4.598207 17.974341
2 0/predAcc/velocity 20 12.238809 6.684551 17.714547
3 0/predAcc/absoluteDiff 20 13.512952 7.932466 18.123747
4 0/predAcc/None 10 552.604185 22.768953 21.750825
5 0/randomAcc/symmetric 0 120.883542 5.407901 147.354975
6 0/randomAcc/velocity 20 12.467875 7.977922 17.749884
7 0/randomAcc/absoluteDiff 0 185.853298 8.008320 171.210850
8 0/randomAcc/None 20 30.555453 4.365431 49.872451
9 0/randomStops9/symmetric 10 111.509197 5.244257 17.899641
10 0/randomStops9/velocity 20 17.324510 3.036292 13.902887
11 0/randomStops9/absoluteDiff 20 13.116112 7.374774 17.958673
12 0/randomStops9/None 0 818.533661 32.071159 229.345633
13 0/randomStops10/symmetric 20 11.578542 2.877303 19.522080
14 0/randomStops10/velocity 0 96.373722 4.650809 103.114341
15 0/randomStops10/absoluteDiff 20 13.114346 7.399617 17.963344
16 0/randomStops10/None 0 818.434954 32.064495 229.345483
17 100/predAcc/symmetric 20 64.280247 7.214039 73.357278
18 100/predAcc/velocity 20 12.276690 4.083880 13.097846
19 100/predAcc/absoluteDiff 20 13.453637 7.653036 18.272531
20 100/predAcc/None 10 795.550077 30.799090 22.119458
21 100/randomAcc/symmetric 9 38.420217 2.480810 54.983419
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Table A1. Cont.

Model Collisions HW (m) THW (s) Separation (m)

22 100/randomAcc/velocity 4 201.610520 7.274791 91.056809
23 100/randomAcc/absoluteDiff 10 85.191944 4.217098 62.292352
24 100/randomAcc/None 0 229.362628 10.193637 213.209962
25 100/randomStops9/symmetric 0 88.737306 3.578192 89.672347
26 100/randomStops9/velocity 20 9.988424 2.657730 13.041972
27 100/randomStops9/absoluteDiff 20 12.637536 7.668094 17.778202
28 100/randomStops9/None 0 794.717912 31.126503 229.345636
29 100/randomStops10/symmetric 2 119.310468 5.001601 95.460083
30 100/randomStops10/velocity 20 26.619944 4.218386 53.601016
31 100/randomStops10/absoluteDiff 20 40.782619 4.782894 21.429448
32 100/randomStops10/None 0 815.799968 31.938171 229.311862
33 3,000/predAcc/symmetric 0 30.806897 2.256980 104.479287
34 3,000/predAcc/velocity 18 16.539250 2.489905 10.804999
35 3,000/predAcc/absoluteDiff 20 13.571941 4.840553 18.439911
36 3,000/predAcc/None 0 800.393554 31.542861 229.345636
37 3,000/randomAcc/symmetric 0 557.436259 21.370929 189.098820
38 3,000/randomAcc/velocity 1 314.244283 11.907776 174.433635
39 3,000/randomAcc/absoluteDiff 0 519.028676 19.635769 198.585035
40 3,000/randomAcc/None 0 487.673884 18.984621 227.800876
41 3,000/randomStops9/symmetric 0 121.610496 5.503739 145.529442
42 3,000/randomStops9/velocity 0 71.099924 3.601645 96.712122
43 3,000/randomStops9/absoluteDiff 20 12.240173 2.740492 16.209725
44 3,000/randomStops9/None 0 736.721510 29.327481 229.345636
45 3,000/randomStops10/symmetric 0 95.886739 4.443669 103.119817
46 3,000/randomStops10/velocity 14 9.988159 4.999919 33.352000
47 3,000/randomStops10/absoluteDiff 20 13.616155 6.805060 18.093497
48 3,000/randomStops10/None 0 160.721774 7.162411 154.905059
49 100,000/predAcc/symmetric 16 76.071190 3.418030 16.016787
50 100,000/predAcc/velocity 1 134.614581 6.869882 149.200815
51 100,000/predAcc/absoluteDiff 0 818.685845 32.077105 229.344549
52 100,000/predAcc/None 0 761.794150 29.485078 229.345636
53 100,000/randomAcc/symmetric 0 160.713442 8.460585 225.571123
54 100,000/randomAcc/velocity 0 817.021321 31.972462 229.345213
55 100,000/randomAcc/absoluteDiff 0 576.845622 23.913704 229.345636
56 100,000/randomAcc/None 0 509.216830 21.192002 229.345242
57 100,000/randomStops9/symmetric 0 90.975791 4.659583 135.021949
58 100,000/randomStops9/velocity 0 76.346305 4.586848 130.914674
59 100,000/randomStops9/absoluteDiff 0 292.012632 14.117718 229.345634
60 100,000/randomStops9/None 0 816.244478 31.961323 229.345221
61 100,000/randomStops10/symmetric 0 174.359445 7.620220 144.156391
62 100,000/randomStops10/velocity 0 430.033252 18.551971 229.345570
63 100,000/randomStops10/absoluteDiff 0 379.953210 16.932130 229.340859
64 100,000/randomStops10/None 10 688.564158 26.086424 54.548802
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6. Yaman, B.; Hosseini, S.A.H.; Moeller, S.; Ellermann, J.; Uğurbil, K.; Akçakaya, M. Self-supervised learning of physics-guided
reconstruction neural networks without fully sampled reference data. Magn. Reson. Med. 2020, 84, 3172–3191. [CrossRef]

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
http://doi.org/10.3390/app10082749
http://dx.doi.org/10.3141/2606-14
http://dx.doi.org/10.1109/TKDE.2021.3079836
http://dx.doi.org/10.1002/mrm.28378


Energies 2021, 14, 7572 18 of 19

7. Gumiere, S.J.; Camporese, M.; Botto, A.; Lafond, J.A.; Paniconi, C.; Gallichand, J.; Rousseau, A.N. Machine Learning vs.
Physics-Based Modeling for Real-Time Irrigation Management. Front. Water 2020, 2, 8. [CrossRef]

8. Zhang, Z.; Sun, C. Structural damage identification via physics-guided machine learning: A methodology integrating pattern
recognition with finite element model updating. Struct. Health Monit. 2020, 20, 1675–1688. [CrossRef]

9. Piccione, A.; Berkery, J.; Sabbagh, S.; Andreopoulos, Y. Physics-guided machine learning approaches to predict the ideal stability
properties of fusion plasmas. Nucl. Fusion 2020, 60, 046033. [CrossRef]

10. Muralidhar, N.; Bu, J.; Cao, Z.; He, L.; Ramakrishnan, N.; Tafti, D.; Karpatne, A. Physics-Guided Deep Learning for Drag Force
Prediction in Dense Fluid-Particulate Systems. Big Data 2020, 8, 431–449. [CrossRef] [PubMed]

11. Wang, J.; Li, Y.; Zhao, R.; Gao, R.X. Physics guided neural network for machining tool wear prediction. J. Manuf. Syst. 2020,
57, 298–310. [CrossRef]

12. AI Knowledge Consortium. AI Knowledge Project, 2021. Available online: https://www.kiwissen.de/ (accessed on 24 October 2021).
13. Wei, Z.; Jiang, Y.; Liao, X.; Qi, X.; Wang, Z.; Wu, G.; Hao, P.; Barth, M. End-to-End Vision-Based Adaptive Cruise Control (ACC)

Using Deep Reinforcement Learning. arXiv 2020, arXiv:2001.09181.
14. Kesting, A.; Treiber, M.; Schönhof, M.; Kranke, F.; Helbing, D. Jam-Avoiding Adaptive Cruise Control (ACC) and its Impact on

Traffic Dynamics. In Traffic and Granular Flow’05; Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 633–643.

15. Kral, W.; Dalpez, S. Modular Sensor Cleaning System for Autonomous Driving. ATZ Worldw. 2018, 120, 56–59. [CrossRef]
16. Knoop, V.L.; Wang, M.; Wilmink, I.; Hoedemaeker, D.M.; Maaskant, M.; der Meer, E.J.V. Platoon of SAE Level-2 Automated

Vehicles on Public Roads: Setup, Traffic Interactions, and Stability. Transp. Res. Rec. 2019, 2673, 311–322. [CrossRef]
17. Pathak, S.; Bag, S.; Nadkarni, V. A Generalised Method for Adaptive Longitudinal Control Using Reinforcement Learning. In

International Conference on Intelligent Autonomous Systems; Springer: Cham, Switzerland, 2019; pp. 464–479.
18. Farag, A.; AbdelAziz, O.M.; Hussein, A.; Shehata, O.M. Reinforcement Learning Based Approach for Multi-Vehicle Platooning

Problem with Nonlinear Dynamic Behavior 2020. Available online: https://www.researchgate.net/publication/349313418_
Reinforcement_Learning_Based_Approach_for_Multi-Vehicle_Platooning_Problem_with_Nonlinear_Dynamic_Behavior (ac-
cessed on 24 October 2021)

19. Chen, C.; Jiang, J.; Lv, N.; Li, S. An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement
learning on network edge. IEEE Access 2020, 8, 99059–99069. [CrossRef]

20. Forbes, J.R.N. Reinforcement Learning for Autonomous Vehicles; University of California: Berkeley, CA, USA, 2002.
21. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning framework for Autonomous Driving. arXiv 2017,

arXiv:1704.02532.
22. Kiran, B.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.; Yogamani, S.; Perez, P. Deep Reinforcement Learning for Autonomous

Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2021, 1–18. [CrossRef]
23. Di, X.; Shi, R. A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving

policy learning. Transp. Res. Part Emerg. Technol. 2021, 125, 103008. [CrossRef]
24. Desjardins, C.; Chaib-draa, B. Cooperative Adaptive Cruise Control: A Reinforcement Learning Approach. IEEE Trans. Intell.

Transp. Syst. 2011, 12, 1248–1260. [CrossRef]
25. Curiel-Ramirez, L.; Ramirez-Mendoza, R.A.; Bautista, R.; Bustamante-Bello, R.; Gonzalez-Hernandez, H.; Reyes-Avendaño, J.;

Gallardo-Medina, E. End-to-End Automated Guided Modular Vehicle. Appl. Sci. 2020, 10, 4400. [CrossRef]
26. Li, Y.; Li, Z.; Wang, H.; Wang, W.; Xing, L. Evaluating the safety impact of adaptive cruise control in traffic oscillations on

freeways. Accid. Anal. Prev. 2017, 104, 137–145. [CrossRef]
27. Niedoba, M.; Cui, H.; Luo, K.; Hegde, D.; Chou, F.C.; Djuric, N. Improving movement prediction of traffic actors using off-road

loss and bias mitigation. In Workshop on ‘Machine Learning for Autonomous Driving’ at Conference on Neural Information Processing
Systems; 2019. Available online: https://djurikom.github.io/pdfs/niedoba2019ml4ad.pdf (accessed on 24 October 2021).

28. Phan-Minh, T.; Grigore, E.C.; Boulton, F.A.; Beijbom, O.; Wolff, E.M. Covernet: Multimodal behavior prediction using trajectory
sets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June
2020; pp. 14074–14083.

29. Boulton, F.A.; Grigore, E.C.; Wolff, E.M. Motion Prediction using Trajectory Sets and Self-Driving Domain Knowledge. arXiv
2020, arXiv:2006.04767.

30. Cui, H.; Nguyen, T.; Chou, F.C.; Lin, T.H.; Schneider, J.; Bradley, D.; Djuric, N. Deep kinematic models for physically realistic
prediction of vehicle trajectories. arXiv 2019, arXiv:1908.0021.

31. Bahari, M.; Nejjar, I.; Alahi, A. Injecting Knowledge in Data-driven Vehicle Trajectory Predictors. arXiv 2021, arXiv:2103.04854.
32. Mohamed, A.; Qian, K.; Elhoseiny, M.; Claudel, C. Social-stgcnn: A social spatio-temporal graph convolutional neural network

for human trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 14424–14432.

33. Ju, C.; Wang, Z.; Long, C.; Zhang, X.; Chang, D.E. Interaction-aware kalman neural networks for trajectory prediction. In
Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; IEEE:
Piscataway, NJ, USA, 2019; pp. 1793–1800.

34. Chen, B.; Li, L. Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios. arXiv 2020, arXiv:2004.06531.
35. Ding, W.; Xu, M.; Zhao, D. Learning to Collide: An Adaptive Safety-Critical Scenarios Generating Method. arXiv 2020, arXiv:2003.01197.

http://dx.doi.org/10.3389/frwa.2020.00008
http://dx.doi.org/10.1177/1475921720927488
http://dx.doi.org/10.1088/1741-4326/ab7597
http://dx.doi.org/10.1089/big.2020.0071
http://www.ncbi.nlm.nih.gov/pubmed/33090021
http://dx.doi.org/10.1016/j.jmsy.2020.09.005
https://www.kiwissen.de/
http://dx.doi.org/10.1007/s38311-018-0153-1
http://dx.doi.org/10.1177/0361198119845885
https://www.researchgate.net/publication/349313418_Reinforcement_Learning_Based_Approach_for_Multi-Vehicle_Platooning_Problem_with_Nonlinear_Dynamic_Behavior
https://www.researchgate.net/publication/349313418_Reinforcement_Learning_Based_Approach_for_Multi-Vehicle_Platooning_Problem_with_Nonlinear_Dynamic_Behavior
http://dx.doi.org/10.1109/ACCESS.2020.2998015
http://dx.doi.org/10.1109/TITS.2021.3054625
http://dx.doi.org/10.1016/j.trc.2021.103008
http://dx.doi.org/10.1109/TITS.2011.2157145
http://dx.doi.org/10.3390/app10124400
http://dx.doi.org/10.1016/j.aap.2017.04.025
https://djurikom.github.io/pdfs/niedoba2019ml4ad.pdf


Energies 2021, 14, 7572 19 of 19

36. Qiao, Z.; Tyree, Z.; Mudalige, P.; Schneider, J.; Dolan, J.M. Hierarchical reinforcement learning method for autonomous vehicle
behavior planning. arXiv 2019, arXiv:1911.03799.

37. Li, X.; Qiu, X.; Wang, J.; Shen, Y. A Deep Reinforcement Learning Based Approach for Autonomous Overtaking. In Proceedings
of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 1–5.

38. Wu, Y.; Tan, H.; Peng, J.; Ran, B. A Deep Reinforcement Learning Based Car Following Model for Electric Vehicle. Smart City
Appl. 2019, 2, 1–8. [CrossRef]

39. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft Actor-Critic
Algorithms and Applications. arXiv 2019, arXiv:1812.05905.

40. Hermand, E.; Nguyen, T.W.; Hosseinzadeh, M.; Garone, E. Constrained control of UAVs in geofencing applications. In Proceedings
of the 2018 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 217–222.

41. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle avoidance path planning design for autonomous driving vehicles based on an
improved artificial potential field algorithm. Energies 2019, 12, 2342. [CrossRef]

42. Westhofen, L.; Neurohr, C.; Koopmann, T.; Butz, M.; Schütt, B.; Utesch, F.; Kramer, B.; Gutenkunst, C.; Böde, E. Criticality Metrics
for Automated Driving: A Review and Suitability Analysis of the State of the Art. arXiv 2021, arXiv:2108.02403.

43. Cassirer, A.; Barth-Maron, G.; Brevdo, E.; Ramos, S.; Boyd, T.; Sottiaux, T.; Kroiss, M. Reverb: A Framework For Experience
Replay. arXiv 2021, arXiv:2102.04736.

http://dx.doi.org/10.33142/sca.v2i5.813
http://dx.doi.org/10.3390/en12122342

	Introduction
	Related Work
	Physics-Guided Reinforcement Learning for Adaptive Cruise Control
	Soft Actor-Critic Algorithm
	Prior Knowledge
	Integration of Prior Knowledge

	Simulation
	Leading Agent Acceleration
	States
	Penalization
	Reward
	Termination Conditions
	Parameter Search Test
	Perturbed Inputs
	Training Setup

	Evaluation
	Task 1
	Task 2

	Conclusions
	
	References

