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Abstract: The main objective of this work is to develop a methodology for analyzing the quality of
the voltage level in the distribution power grid to identify and reduce the violations of voltage limits
through the proposition of optimal points for the allocation of photovoltaic distributed generation.
The methodology uses the geographic location of the power grid and its consumers to perform the
grouping and classification in spatial grids of 100× 100 m using the average annual consumption
profile. The generated profiles, including the grid information, are sent to the photovoltaic distributed
generation allocation algorithm, which, using an optimization process, identifies the geographic
location, the required installed capacity, and the minimum number of photovoltaic generation units
that must be inserted to minimize the violations of voltage limits, respecting the necessary restrictions.
The entire proposal is applied in a real feeder with thousands of bars, whose model is validated with
measurements carried out in the field. Different violations of voltage limits scenarios are used to
validate the methodology, obtaining grids with better voltage quality after the optimized allocation
of photovoltaic distributed generation. The proposal presents itself as a new tool in the work of
adapting the voltage of the distribution power grid using photovoltaic distributed generation.

Keywords: photovoltaic distributed generation; optimization process; clustering; spatial database;
systems modeling; voltage adequacy; smart grids

1. Introduction

The world is facing an energy crisis aggravated by the growth in demand, and with
this, the electric power grids require more marked maintenance, overloading the energy
distribution companies [1–3]. Thus, ensuring the proper voltage levels for consumers
becomes increasingly challenging. If there is a bad quality in the distributed electricity,
losses are produced to the companies due to punitive administrative actions applied by
regulatory agencies [4–9]. Sustainable energy sources are necessary for this scenario, and
using them has become the best option [10–12].

The development of current electrical grids is directed towards smart grids, which
integrate information technology, communication, and automation, being applied in tran-
sient analysis, failures, among others [13–15]. In addition to the application in a centralized
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generation, smart grids are mainly applied in a sustainable distributed generation, such as
(i) photovoltaic, (ii) wind, and (iii) small hydroelectric plants, among others [14,16].

Distributed Generation (DG) refers to generation connected directly to the distribution
power grid or the consumer. In Distributed Generation Photovoltaic (DGPV), the allocation
location in the distribution power grid interferes with the adequacy of the voltage, even
when the installed capacity is the same for the different allocation geometries [17]. As
an example of this statement, Acharya et al. [18] proposes an analytical approach using
geographic location and optimized installed capacity based on losses for the allocation of a
unit DG, concluding that it is not always possible to find the best DG allocation site due to
restrictions of the problem.

Hung et al. [19] proposes a method that calculates the installed capacity and power
factor of four types of DG to reduce losses, taking into account the allocation of unit
DG. Subsequently, Hung et al. [20], use the same methodology to obtain maximum loss
reduction in large grids with multiple DG. The allocation of DG with optimized parameters
has the following advantages: (i) Reduction of losses, (ii) improvement in the voltage
profile, (iii) expansion of the load capacity, (iv) increased reliability, stability, and security
of the grid, and (v) higher quality in the energy produced among many others [21–25].

There are several DG allocation techniques in the literature, characterized in five
groups: (i) Analytical techniques, (ii) classical optimization techniques, (iii) artificial intelli-
gence techniques, (iv) diverse and empirical techniques, and (v) prediction techniques for
future applications [21,26,27]. Between 2010 and 2020, the different techniques gave rise to
different mathematical models for the allocation of distributed generation, such as (i) im-
provement of voltage stability, (ii) improvement of the voltage profile, and (iii) reduction of
electrical losses. Each model presents different constraints on the optimization problem:
(i) Bus voltage limit, (ii) maximum DG capacity, (iii) current limits, and (iv) reactive power
limits of DG. Different optimization parameters are used for each DG, such as (i) installed
capacity, (ii) geographical location, (iii) quantity, and (iv) DG types [28]. Regarding the best
methodology to be applied to problems related to electricity distribution planning, it is still
an open question among researchers in the field [28–34].

There are several effectual actions to improve the efficiency of the distribution power
grid. One of them is the optimal allocation of distributed generation, protecting the grid
against unforeseen events, and allowing work in a decentralized manner [28]. In several
countries, there are still high rates of transmission and distribution losses compared to
China, which is 5.81%, and Germany, which is 3.94% [35]. DG is advantageous over a
centralized generation, mainly regarding: (i) reduction of losses and environmental impact
and (ii) expansion of system loading maintaining adequate voltage levels, among other
advantages [36–40].

There are several surveys to present the gains from the application of DG. Hassan et
al. [41] developed a methodology for optimal DG location and sizing to minimize losses
in radial grids. For this, the Augmented Lagrangian Genetic Algorithm (ALGA) is used,
applied in three IEEE test feeders with 33 bars, 69 bars, and 119 bars. In this work, the
authors insert a maximum of four DG, and the results show the optimal locations and
installed capacity with improved voltage profiles and reduced losses. The authors argue
that the proper location and sizing of DG are essential for the efficiency of electrical power
systems. Moradi et al. [42] develop a methodology to minimize losses and improve voltage
regulation and stability in electrical grids. For this, the authors use the combination of
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to find optimal locations
and installed capacity of DG. The methods are applied separately and combined, and the
results are compared. The methodology is applied to test feeders with 33 and 69 bars. The
combined methods generated the best DG location and installed capacity results, providing
more stable and adequate voltage levels in the grid. However, the combination of methods
demonstrated the long simulation time as a disadvantage.

Ganguly et al. [43] propose a methodology for the allocation of DG to minimize
electrical losses in the grid and adjust voltage levels taking into account the uncertainties



Energies 2021, 14, 7506 3 of 37

of load and generation demand. For this, IEEE test feeder with 33 and 52 nodes are used
in heuristic and deterministic approaches. The generation and demand uncertainties are
modeled with fuzzy logic. The solution strategy used is the Adaptive GA, which generates
better results for location and installed capacity of DG than the basic GA. However, the
variability of results is high, and it is necessary to reduce this variability in the results.
AlHajri et al. [44] developed a methodology for the allocation and dimensioning of one
or multiple DG with specific and non-specific power factors. Location is assessed using
stability and sensitivity analysis. The optimization problem is modeled with non-linear
equality and inequalities constraints. For the DG dimensioning, the hybrid method entitled
Fast Sequential Quadratic Programming (FSQP) is compared to the conventional Sequential
Quadratic Programming (SQP) method, with favorable results for hybridization with a
reduction of execution time by up to 1/3. The simulations are carried out in a 69-bus test
feeder. The optimization of DG location and installed capacity demonstrated to significantly
interfere in the electrical losses of the grid and the voltage profile, reducing the required
power from the substation, allowing the planning of expansions in the electrical system.

In the literature, several methodologies/techniques are used to improve the electrical
parameters of the distribution power grid, maintaining the quality of the distributed elec-
trical energy. Several researchers are working to present the best methodology/technique
to relieve the actions to be implemented in the power grid financially. One of the tech-
niques used is clustering, which identifies and gathers the types of consumers, for example.
Angelos et al. [45] propose a two-step methodology to carry out the classification of electri-
cal consumption profiles. In the first step, the Fuzzy C-Means algorithm is used to find
consumers with similar consumption profiles. Subsequently, the fuzzy classification is
performed using the fuzzy membership matrix and the Euclidean distance from the cluster
centers. Measures of distance from potential fraudsters to cluster centers are normalized
and ordered, producing unit index scores, where consumers with irregular consumption
patterns obtain higher scores. The approach is tested and validated in a real database,
showing satisfactory performance in detecting fraud and measurement defects.

Zamora et al. [46] propose a method for long-term space load forecasting for ap-
plication in distribution system planning. The authors use aspects such as load curve
aggregation, small areas, land use, database integration, artificial intelligence techniques,
especially self-organizing neural networks (Kohonen), and multivariate statistical tech-
niques for cluster analysis. The future load forecast is initially carried out considering
predefined geographic spaces and a global load model based on time series. Cluster analy-
sis allows the recognition of patterns and loads allocation related to small areas. The global
load model allows following the evolution of land use in terms of load. The GIS platform
is suitable for visualizing the geographic space and its integration with the database.

Several methodologies are proposed in an attempt to improve the quality of dis-
tributed energy, such as those by Hassan et al. [41], Moradi et al. [42], Ganguly et al. [43],
and AlHajri et al. [44], which optimize the location and installed capacity of unitary or
multiple DG. However, there is a gap related to the number of optimized variables and
the feeders used for simulation. For example, they do not optimize the amount of DG to
correct the problems in the eletrical power distribution, they do not optimize the installed
capacity of each DG separately, and in most of the works, developed test feeders with a
reduced number of buses used, without applying the methods in real feeders that have
thousands of bars [47,48]. The main contribution of this work is to develop a computational
tool for optimally allocating DGPV in order to maximize the voltage adequacy in the
electric power distribution, model and simulate the electric distribution system using the
georeferenced registration information of the assets, currently present in the databases of
electricity concessionaires, generating georeferenced maps with separation of consumers
by consumption range, indication and qualification of the violations of voltage limits, and
obtaining the optimized geometry for the allocation of DGPV.

The methodology proposed in this work performs photovoltaic distributed generation
allocation optimizing: (i) The geographic allocation location, (ii) the installed capacity of
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each DG, (iii) the identification and location of the consumer per consumption range, and
(iv) the number of generation units required for the suitability of voltage in the distribution
power grid. For the mapping of consumers by consumption band, the georeferenced
cadastral information of the grid assets, currently present in the databases of the electric
power concessionaires, is used. Thus, in addition to the optimization process of the optimal
point of allocation of DGPV, considering all buses of the actual circuit, the proposed
methodology uses the geographical profile of consumers grouped in grids of 100×100 m,
which through clustering process are divided into consumption classes.

The application of clustering makes it possible to limit the optimization process to
the buses present in the geographic areas of a specific consumer class. In this way, it is
possible to carry out studies considering the allocation of DGPV in areas with greater
feasibility of installation through the use of existing roofs of larger homes, companies, or
industries, benefiting both the customer with the reduction of the invoice value, as well as
the concessionaire which will improve the quality of the supply voltage. The multiobjective
optimization of the four parameters (without limiting the amount of DGPV) together with
the clustering process is the originality of this work.

This work is divided: Section 2 presents the international regulations that regulate the
electrical system with emphasis on energy distribution, presents the model of the electrical
power system, and performs a brief description of the optimization and clustering process.
In Section 3 presents the proposed methodology and in Section 4 the results obtained from
the application of the proposed methodology are displayed. Sections 5 and 6 present the
discussions and conclusion of this work, respectively.

2. Theoretical Background

In this section, some international technical standards that deal with the distribution
of electric energy and distributed generation are discussed. A comparison is made between
norms from some countries, emphasizing the norms that regulate the violations of voltage
limits. The theoretical bases of some elements that are part of the electric power system are
discussed, with emphasis on the model of the electric energy distribution network and on
the photovoltaic generation model. Finally, some parameters that integrate the optimization
process are presented, in addition to the main characteristics of the deterministic, heuristic,
hybrid, and clustering optimization methods.

2.1. International Technical Standards for Operations in the Electricity Sector

The regulations of the international electricity sector are regulated by several regula-
tory agents, among which the following stand out: (i) The International Electrotechnical
Commission (IEC), (ii) the Institute of Electrical and Electronics Engineers (IEEE), (iii) the
American National Standards Institute (ANSI), and (iv) the International Organization
for Standardization (ISO). Among the main documents of the IEC, the IEC 61000 is pre-
sented, which makes recommendations related to power quality indicators in electric
distribution system [49–52]. The IEC also regulates distributed photovoltaic generation,
highlighting the following regulations: (i) IEC 60364-7-712, (ii) IEC 62446, (iii) IEC 61724,
and (iv) IEC 61727 [53–57]. The IEEE is one of the benchmarks in power quality standards,
for example: (i) IEEE 519, (ii) IEEE 1159, (iii) IEEE 141, and (iv) IEEE 1564 [5,6,58,59].
Regarding distributed generation, the IEEE standards are presented: (i) IEEE Std 1547,
(ii) IEEE Std 929, (iii) IEEE Std 2030, and (iv) others [60–62].

ANSI operates in several sectors, including the standardization of electricity dis-
tribution, highlighting the ANSI C84.1 standard [63,64]. Like ANSI, ISO also operates
in several technical segments, including the electrical area, although IEC standards are
more widespread in this area. Among the ISO standards, in the context of energy dis-
tribution, there are: (i) ISO ICS 29.020, (ii) ISO ICS 29.240.01, (iii) ISO ICS 29.240.20, and
(iv) ISO ICS 29.240.99 [7,65–69].

Several countries have their own regulatory agents, such as Brazil, which follows the
National Electric Energy Agency (ANEEL) regulations, with emphasis on the Normative
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Resolution ANEEL 482/2012 regarding distributed generation [70,71]. ANEEL operates
in the distribution of electricity through the Distribution Procedures (PRODIST), with
emphasis on Module 3 and Module 8 [4,72,73], in which Module 3 is the conditions of
access to the distribution system and Module 8 is about the quality of the product and
the service offered. In addition, in Brazil, the Brazilian Association of Technical Standards
(ABNT) acts as the national representative of the IEC [72,74].

Table 1 provides the comparison between power quality indicators between different
countries. For each country, the following regulations stand out: (i) Brazil: Module 8 of
Distribution Procedures (PRODIST), (ii) the United States: IEEE 519, IEEE 1453, IEEE 1159
and ANSI C84.1, (iii) Canada: CAN/CSA C61000 and IEEE 519, (iv) Europe: Cenelec
EN 50160 2010, (v) South Africa: NRS 048, and (vi) Japan: JIS C 61000. The standards cited
for the United States correspond to the various IEC 61000 standards, and the Canadian
CSA standards use the standards of the IEC 1000 series [4,5,8,9,58,64,75].

Table 1. Synthesis of the main energy quality indicators between different countries.

Indicators Brazil USA Canada Europe South Africa Japan

Steady-state voltage X X X X

Frequency variations X X X

Individual harmonic voltage distortion X X X X X X

Total harmonic voltage distortion X X X X X X

Current individual harmonic distortion X X

Current total harmonic distortion X

Voltage imbalances X X X X X

Voltage fluctuation X X X X X

Short term voltage variations X X X X

Penalties under violation X X

In Table 1, it is observed that indicators that are important in a given country are
disregarded in others. For example, Japan uses only harmonic distortion as a power quality
criterion, disregarding the voltage fluctuation analyzed in all other countries. It is also
observed that in the United States, the steady state voltage, which is verified in all countries
except Japan, is not evaluated.

2.2. Model and Parameters of the Electric Power System

The power flow study is used to determine the electrical voltage of the power bus
nodes and the active and reactive powers of the energy distribution lines, where nodes
are the connection points on Phase 1, Phase 2, or Phase 3 bars [76,77]. Through this study,
it is possible to plan the operation of the electric sector [78]. The electrical system buses
are associated with: (i) Nodal voltage magnitude, (ii) nodal voltage angle, (iii) net active
power, and (vi) net reactive power [79]. Furthermore, the electric bars can be categorized
as (i) charge bars, (ii) generation bars, and (iii) swing bar [76].

The distribution power grid can be modeled by the elements: (i) Power supply,
(ii) power overhead lines, (iii) distribution transformers, and (iv) loads. Regarding the
power supply, this is modeled using the Thevenin equivalent. The modeling can be
performed in four different ways: (i) By impedances, (ii) by three-phase and single-phase
short-circuit currents, (iii) by three-phase and single-phase short circuit powers, and (iv) by
infinite bus. The definition by impedances uses the symmetrical components method to
obtain the impedances, currents, and voltages in symmetrical components. In the definition
through the three-phase and single phase short-circuit currents, the three-phase short circuit
is first analyzed, and then the single-phase short circuit. The definition is carried out using
three-phase and single-phase short-circuit powers from the three-phase and single-phase
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short circuit currents. Finally, the power grid modeled using an infinite bus defines the
point in the electrical system where voltage and frequency are fixed, regardless of the
power supplied [76,78].

The other necessary element for modeling distribution power grids is overhead dis-
tribution lines with various line configurations. The representation by the model π of the
lines uses matrices of series impedance and nodal capacitance [76]. The study of currents
returning through the earth and their influence on the impedance parameters are carried
out by the modified Carson correction [80]. Through the image method, the nodal capaci-
tance matrix is obtained, calculated using the inverse of the matrix of Maxwell’s potential
coefficients [76,79]. For the modeling of power distribution transformers, the primitive
admittance matrix can be used in any type of transformer, regardless of the connection, the
number of windings, the number of phases, among other parameters [81]. Short circuit
impedances and open circuit impedances are used by the model, both for three-phase and
for single-phase transformers.

For the load model, active power and reactive power are functions of frequency
and voltage in magnitude. Depending on the applied voltage, the power absorption by
the load varies. This variation also depends on the nature of the load. Several models
characterize the behavior of the load as a function of voltage: (i) Constant power model,
(ii) constant current model, (iii) constant impedance model, and (iv) ZIP model, which is a
composition of previous models [76,78,79]. Photovoltaic generation is an external element
to the electricity grid and considers standard conditions such as (i) solar irradiation, (ii) cell
temperature, and (iii) air mass. The parameters of interest for modeling the photovoltaic
generator are: (i) Open circuit voltage, (ii) short-circuit current, (iii) maximum generation
power, (iv) maximum power voltage, and (v) maximum current potency [82].

2.3. System, Model, and Optimization Process

Systems are sets of distinct elements that, when joined together, generate results
unattainable by isolated elements [83]. Systems can contain and be contained in other
systems, a characteristic known as systemity [84]. The model is the representation of the
system and mimics the behavior of the real system [84]. For Eykhoff [85], models are
defined as representations of the essential aspects of the system through expressions and
are used to: (i) Carry out forecasts, (ii) analyze performance and costs, and (iii) direct
projects, among others [83].

The optimization process is the systematic search for optimal or optimized values
f (x∗) of system parameters. It consists of finding the best solution within the set of viable
values of the problem variables, respecting the constraints [86]. The basic elements of the
optimization process are illustrated in Figure 1.

f(x*)

Optimized 
Parameters 

Optimization
Method

No

Evaluation
Function
f(x)

Simulator

Yes

Figure 1. Synthetic flowchart of the optimization process.

The optimization methods can be divided into methods: (i) Deterministic, (ii) heuristic,
(iii) stochastic, and (iv) inferential [86]. When different optimization methods work together
in order to improve performance in finding solutions, hybridization occurs. Thus, the
strengths of each type of method are used to obtain better solutions than those obtained by
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the methods separately [86]. The advantages of using hybrid methods are: (i) Improving
the performance of known methods, and (ii) partitioning high computational cost problems,
among others [87]. With the model in hand, the simulator can be created, which checks the
model’s behavior and compares it with the behavior of the real system, making systematic
changes to the input parameters [84].

2.4. Clustering for Mapping Consumers by Consumption Range

The use of data mining techniques is essential for the analysis of large amounts of
information, intending to obtain additional relevant information, not yet observed [88].
The clustering technique is one of the most used in data mining in order to identify hidden
patterns in the database, forming similar groups [89]. Thus, the clustering technique aims
to partition the input dataset into similar clusters, considering specific pre-established
criteria. In the cluster, data have a high degree of similarity to each other compared to
other groups [90].

When there are no pre-established classes or examples to guide the types of desirable
relationships, the algorithm used is classified as unsupervised, which can generate different
groups based on established criteria [91]. Thus, the task of data pre-processing is necessary,
which depends on the steps: (i) Assertively select the characteristics that make up the
grouping process, including as much relevant information as possible, (ii) perform the
selection of the clustering algorithm to be used, which quantifies the similarities, and
(iii) build the objective function or rule type [92]. The validation of results verifies assertive-
ness through the use of appropriate criteria and techniques [92]. The interpretation of
the data, in several cases, uses experts to cross the information obtained in the grouping
process with other experimental evidence in order to obtain coherent results [92].

3. Methodology

In this section, the methodology proposed in this work is presented to adapt the
voltage of the distribution power grid by inserting photovoltaic distributed generation.
For the allocation of distributed generation, spatial model applications are used to analyze
and optimize the distribution system in an attempt to reduce the violations of voltage
limits, building a tool with layers of solutions, highlighting the role of each step in the
process and the correlation between them. For that, the allocation algorithm of distributed
generation photovoltaic, optimization method, and the modeling of the elements of the
energy distribution grid to be used are presented.

3.1. Adequacy of Voltage in the Distribution Power Grid

There is the possibility of inserting Distributed Generation Photovoltaic (DGPV) to
adjust the voltages of the electricity grid, as the injection of active power carried out by
the distributed generation units changes the voltage levels of the feeder. However, for the
violations of voltage limits to be remedied, it is necessary to know some variables, such
as: (i) Geographical location where violations of voltage limits occur for the allocation of
DGPV, (ii) minimum installed capacity of DGPV at points of voltage violations of shape to
remedy the problem, and (iii) the amount of DGPV needed to adjust the voltage levels in
the distribution grid. For this, a method is developed to classify the electrical voltages of
the feeder in: (i) Adequate, (ii) precarious, and (iii) critical, according to the regulations of
each country.

Thus, a method of inserting DGPV is proposed, carried out by dividing into monthly
consumption groups and using the real data from the public utilities. The proposed
methodology uses the flow: (i) Geographical information system, which is the environment
for accessing and presenting information from the distribution power grid database and
spatial analysis of the average consumption of customers in grids, (ii) system simulator
of distribution, which is responsible for the electrical calculations of the grid in order to
identify the voltage violations points, (iii) grouping and classification, which is the appli-
cation of the Fuzzy C-Means algorithm for clustering the grids in the number of clusters
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predefined, (iv) DGPV allocation algorithm, which is the indication of the parameters
installed capacity, quantity, locations, among others, and (v) optimization process, which
is the use of the genetic algorithm in order to minimize the level of violations of voltage
limits in the distribution power grid.

3.2. Spatialization of Information, Grouping, and Classification in the Distribution Power Grid

The first step to enable the implementation of the methodology is to perform the
spatialization of information on the grid. This process is initiated by selecting the circuit
that makes up the region to be studied. In the process of spatialization of information, the
circuit under study is divided into squares of 100 m × 100 m, in which, through spatial
layer crossings, the consumers geographically present in each grid are identified. A search
is carried out in the database for each identified consumer to obtain their classification
(residential, commercial, industrial, rural, and others) and the average consumption in the
last 12 months.

Subsequently, consumers are subclassified by the average consumption range for the
residential, commercial, and industrial classes using the division criteria: (i) Residential
from 0 to 50 kWh, (ii) residential from 50 kWh to 200 kWh, (iii) residential from 200 kWh to
400 kWh, (iv) residential above 400 kWh, (v) commercial from 0 to 200 kWh, (vi) commercial
above 200 kWh, (vii) industrial below 1000 kWh, (viii) industrial above 1000 kWh, (ix) rural,
and (x) others. The result of this process is the creation of the consumption curve by grid,
containing information on 10 consumption classes. To avoid possible magnitude variability
in the consumption curves, a normalization process is performed using the interval [−1,1].

There are no pre-established classes or even examples that guide the types of desirable
relationships for the grouping problem. In this way, the algorithm used in this process is
classified as unsupervised, generating different groups based on the established criteria.
After creating the consumption curves of the grids of the feeder selected for study, the grid
grouping and classification process are carried out using the Fuzzy C-Means technique.
Therefore, it is necessary to inform the number of groups to be generated, the value of
the stop criterion (ε), which measures the difference between the membership degree of
the current iteration with the membership degree of the previous iteration, and the index
fuzzification, which defines the allowable distance between the curve and center of the
group in which the curve is inserted.

In addition to considering the 10 consumption ranges for each curve, the classification
can be carried out considering specific consumption ranges. Once the grouping process
is finished, each square is classified in the same group where its consumption curve was
closer to the centroid curve. Each group formed is assigned a color, which is replicated to
all the squares of the same group. Thus, after the grouping process, squares that receive
the same color belong to the same class and have a similar average consumption profile. In
this way, it is possible to choose the region and type of consumer to install the DGPV.

3.3. Loading, Data Export, and Simulation of the Distribution Power Grid

To start the analysis process in a given circuit it is necessary to load the data from
this circuit from the Distributor’s Databases (DB) to the Database (DaB) to be used in
the proposed tool. The load action provides a specific location for selecting one or more
circuits for study. Once the circuit data has been loaded, it is possible to carry out the
simulation. The simulator used is the Open Distribution System Simulator (OpenDSS),
software under open source license, which uses command lines to build the model of the
electrical grid [93].

In the simulation, power flow calculations are performed in order to identify the
existence of grid segments with voltage level violations and present the results in the form
of a vectorized circuit drawing on the map, highlighting the segments with violations of
voltage limits and generating files with *.dss format instructions for the grid elements,
following specific models, such as: (i) Feeder, (ii) Medium Voltage segment (MV) and
Low Voltage segment (LV), (iii) description of conductors, (iv) branch, (v) transformer,
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(vi) load curve, (vii) LV and MV consumers, (viii) voltage regulator, (ix) capacitor, and
(x) coordinates of the busbars. All elements of the distribution power grid are grouped in a
single file for simultaneous execution.

The feeder output bus uses the parameters: (i) Base voltage [kV] line nominal, (ii) ele-
ment connection electric bar, (iii) busbar [pu] voltage, (iv) number of phases, and (v) resis-
tance and positive sequence reactance of the source. The conductor description contains
the cable impedances, and the parameters that must be configured in the simulator are:
(i) Number of wires of the line segments, (ii) feeder base frequency, (iii) resistance and
positive sequence reactance of the source, (iv) unit of measurement of cable length, and
(vi) rated electrical current of each type of cable. The segments of lines and branches use
the parameters: (i) Number of phases, (ii) connection bars of the line, and (iii) description
of the conductor that characterizes the line.

In the distribution transformer element, the parameters used are: (i) Number of
phases, (ii) number of windings, (iii) percentage reactance from primary to secondary,
(iv) percentage of total loss based on nominal load, (v) no load loss percentage based on
nominal load, (vi) identification of the bus to which the winding terminal is connected,
(vii) winding connection (star or triangle), (viii) winding rated voltage [kV], (ix) rated
power [kVA] of the winding, and (x) voltage in [pu] of the potential adjustment terminal
(TAP). To characterize the load curves, multipliers in the range [0, 1] are used, applied to
the active power of the load. To model the load curves in the simulator, the following
parameters are used: (i) Number of points that the load curve has, and (ii) interval [h]
between these points.

Loads or Consumer Units (CU) are defined in three ways: (i) By the nominal active
power [kW] and by the power factor (PF), (ii) by the nominal active power [kW] and by
the nominal reactive power [kVAr], and (iii) by the apparent nominal power [kVA] and by
PF. The necessary parameters for the identification and simulation of the CU are: (i) Iden-
tification of the connection bar, (ii) number of phases, (iii) base voltage [kV], (iv) rated
active power [kW], (v) PF, (vi) charge model, and (vii) charge connection shape (star or
triangle). Finally, the geographic coordinates of the posts are defined using Universal Trans-
verse Mercator (UTM) coordinates. The validation of the distribution power grid model is
performed by comparing the data measured in the field with the simulation results.

To simulate the allocation of the DGPV, the following are used: (i) Rated voltage [kV]
of the line, (ii) identification of the DGPV connection bar, (iii) rated power [kVA] of the
frequency inverter, (iv) PF, (v) base irradiance [kW/m2], (vi) rated power [kVA] at the
maximum power point Pmpp, (vii) rated temperature [◦C], (viii) efficiency curve per power
(H × P), (ix) curve in [pu] of daily solar irradiation, (x) temperature curve T [◦C] daily
plate, and (xi) curve Pmpp × T.

3.4. Optimization Process

The optimization process aims to minimize electrical violations of voltage limits in
the Consumer Units (CU) connected to the distribution optimization process grid buses
by allocation of the DGPV in geographic locations pos, with installed capacity pot and
minimum quantity qtd of DGPV. Two optimization processes are carried out for the allo-
cation of DGPV and the comparison between them. The first considers all buses in the
feeder as candidates for the allocation of DGPV, and the second considers only the buses
contained in the grids of a specific group of consumers. The evaluation function used in
the optimization process is given by:

f (trgA(~x), trgB(~x), trgC(~x)) =
na

∑
i=1

(trgA(~x)) +
nb

∑
i=1

(trgB(~x)) +
nc

∑
i=1

(trgC(~x)). (1)

In (1), the sums are the total violations of voltage limits values by phase, in which
trgA(~x) are the violations of voltage limits in phase A, trgB(~x) are the violations of voltage
limits in phase B, and trgC(~x) are the violations of voltage limits in phase C, ~x is the vector
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with the parameters to be optimized, na is the number of nodes in phase A, nb is the number
of nodes in phase B, and nc is the number of nodes in phase C. In this way, the evaluation
function in (1) can be rewritten as [94]:

f (trgA(~x), trgB(~x), trgC(~x)) = f (~x). (2)

The identification of the bar where the DGPV will be connected is represented by
its geographic location pos. The optimization problem has constraints of: (i) Voltage, (ii)
current, (iii) geographic location of DGPV, (iv) installed capacity of DGPV, and (v) quantity
of DGPV. These constraints are given by:

Vmin ≤ V ≤ Vmax
I ≤ Imaxcond

1 ≤ pos ≤ qtdbars
pos ∈ Z∗+
posi 6= posi+1 6= posi+2 6= . . . 6= posi+n
1 ≤ pot ≤ potmax
1 ≤ qtd ≤ qtdmax

(3)

where Vmin is the minimum voltage limit and Vmax is the maximum voltage limit [4], Imaxcond

is the maximum current supported by the conductor, potmax is the maximum allowable
installed capacity for the DGPV, and qtdmax is the maximum amount of DGPV that can
be inserted. For the DGPV installed capacity, the maximum value is defined in order to
avoid the allocation of distributed generation units with large physical dimensions. The
proposed optimization process is illustrated in Figure 2.

Distribution

Simulator

Insertion 

of DGPV

Optimization
Method

COM Interface

x�

)(xf �Systems Algorithm

Figure 2. Proposed optimization process.

3.5. Algorithms for Inserting Distributed Photovoltaic Generation in Distribution Power Grid

The DGPV allocation algorithm is used to optimize the variables location for allocation
pos, installed capacity pot, and quantities of DGPV qtd. The maximum amount qtdmax of
DGPV that can be inserted into the grid is equal to the total amount of bars in the system
qtdbars. Thus, to define the ~x vector it is necessary to define the pos and pot, given by:

pos =
∣∣∣pos1, . . . , pos n

2

∣∣∣
1≤pos≤qtdbars

(4)

pot =
∣∣∣pot1, . . . , pot n

2

∣∣∣
1≤pot≤potmax

(5)

where n = 2× qtd. Since for each inserted DG unit, there is a location and installed capacity,
the vector ~x is given by:

~x = [qtd, pos, pot]. (6)

In the proposed methodology, different technologies and stages of analysis, treatment,
and integration of data are involved in order to enable the obtaining of optimized scenarios
according to the proposed objectives, using the georeferenced database of the distribution
power grid. Figure 3 illustrates the steps involved in this process, which are divided into
groups based on the arrangement of roles within the methodology flow: (i) geographic
information system: access environment and presentation of information on the distri-
bution grid and spatial analysis of the average consumption of customers in grids and
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(ii) distribution power grid simulator: Responsible for the electrical calculations of the grid
aimed at the identification of violations of voltage limits.

Select the electrical 

power distribution 

feeder to start the study

Calculate the average 

annual consumption of 

each consumer (kWh)

Segregate the average 

consumptions per space 

grid of 100x100m

Generate an average 

consumption curve for 

each grid

Export files with 

information on 

distribution power grid

Import files and perform 

calculations to identify 

violations of voltage limits

Sort the grids based on the 

number of selected 

classes 

Export the files with the bus 

information of each group

Color the grids of the 

same class with the 

same color for analysis
Define the quantity, installed 

capacity, and possible 

locations of the DGPV to be 

optimized

Calculate the objective function 

based on the result of the 

calculation of violations of 

voltage limits received from the 

distribution power grid simulator

Inform the suggestion points for 

the allocation of DGPV based on 

the result of the objective function

Communicate the analysis 

parameters to the distribution 

power grid simulator

Geographic Information System

Grouping and Classification

DGPV Insertion Algorithm

Optimization Method

Distribution

power grid 

Simulator

Goal

achieve?

No

Yes

The end

Start

Figure 3. Flowchart of the proposed methodology.

With the roles defined within the steps of the methodology, we have: (i) grouping
and classification: application of the Fuzzy C-Means algorithm for clustering the grids in a
number of predefined clusters, (ii) photovoltaic distributed generation allocation algorithm
(DGPV): definition of the DGPV allocation parameters (installed capacity, quantity, location,
and others) for the optimization process and (iii) optimization method: genetic algorithm
with the intention to minimize violations of voltage limits.

4. Results

This section presents the results obtained from the application of the proposed method-
ology. The application is performed through a case study that includes: (i) Simulation of the
feeders, (ii) voltage classification, (iii) clustering of the consumption profiles, (iv) analysis
of the geographic location of the Distributed Generation Photovoltaic (DGPV), (v) vali-
dation of the proposed methodology, and (vi) comparison between the results obtained
considering the allocation of DGPV freely in the entire feeder or only in clusters of a certain
consumption profile.

4.1. Data for the Case Study

The data of the distribution power grid used in this work are real, coming from the
Enel Distribuição Goias/Brazil (EDG) concessionaire’s databases. EDG is part of the Enel
Group, which is currently the largest electricity distribution company in Brazil, operating
in the states of Sao Paulo, Ceara, Rio de Janeiro, and Goias, totaling more than 17 million
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consumers served. Brazilian standards define steady-state voltage limits as: (i) adequate,
(ii) precarious, and (iii) critical. The values of these limits consider the relationship between
the reading voltage Vr and the reference voltage VR or nominal voltage VN . Tables 2 and 3
show how each service voltage profile VS is defined, according to the voltage range of the
feeder [4].

Table 2. Nominal voltage limits greater than 1 kV and less than 69 kV.

VS Vr × VR

Adequate 0.93 VR ≤ Vr ≤ 1.05 VR

Precarious 0.90 VR ≤ Vr < 0.93 VR

Critical Vr < 0.90 VR or Vr > 1.05 VR

Table 3. Nominal voltage limits less than 1 kV.

VS Vr × VN

Adequate 0.92 VN ≤ Vr ≤ 1.05 VN

Precarious 0.87 VN ≤ Vr < 0.92 VN or
1.05 VN < Vr ≤ 1.06 VN

Critical Vr < 0.87 VN or Vr > 1.06 VN

For precarious and critical voltages, several actions can be taken to improve the per-
formance of the feeder, such as (i) adjusting the transformer winding derivation (TAP),
(ii) closing the LV loop circuit, (iii) complementing the phases, (iv) replacing transform-
ers with others of a higher power, (v) dismembering the circuit, (vi) installing voltage
regulators, (vii) installing a capacitor bank, (viii) installing a distributed generation, and
(ix) various others [95,96]. These and other actions are analyzed by EDG, which serves
237 municipalities in Goias, totaling approximately 3.1 million consumers, through more
than 32,000 km of LV distribution power grid and more than 178,000 km of MV distribution
systems in the State of Goias [96]. The EDG contains several Databases (DB) and to carry
out the simulations, different DB are used, both conventional DB and Spatial DB (SDB).

To make the simulation process feasible, it is necessary to obtain specific information
from the source databases (conventional and spatial) and load this information into the
Database (DaB) of the proposed computational tool. Such a load is performed through
the Extract, Transform, Load (ETL) interface. For spatial data, it is necessary to use the
Geographic Information System (GIS) to manipulate the information, given the type of
non-conventional data (point, line, and polygon). The database of spatial assets is mainly
used to model the distribution power grid, as well as the database of the commercial
system and equipment management. Figure 4 shows the BD of the electricity distributor
and the flow of these data to the DaB, which occurs using the proposed computational tool.
In this way, the DaB stores updated information on the distribution power grid at each
new simulation of a given circuit, thus considering the real dynamics of changes in the
distribution system. In this case, if the database is up to date, the simulation will be the
representation of the real updated system.
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Figure 4. Database construction flow.

The load curve of each type of consumer and the circuit impedances are considered as
system operating conditions. The system operates with a constant load, constant generation,
and invariant topology. The reference voltage for the MV circuit is 13.8 kV and for the
LV circuit, it is 380 V phase-phase. The power flow calculation used Newton Raphson’s
iterative method [97]. Feeders from the Goiania Leste substation were simulated, which
has a voltage level of 230/13.8 kV and installed capacity of 136 MVA.

A total of 17 feeders from the Goiania Leste substation are simulated, in which Table 4
displays the characteristics of each feeder. The maximum and minimum values for each
characteristic are highlighted. In Table 4 it is possible to observe that Feeder 14 has the
smallest number of branches and Consumer Units (CU) in LV and Feeder 20 has the largest
number of branches and CU in LV. Figure 5a,b show the distribution lines of Feeder 14 and
Feeder 20, respectively, in the coordinates x, y, in which the thicker the lines, the greater
the power flow.

Table 4. Characteristics of the Goiania Leste substation feeders.

Feeder MV
Lines

LV
Lines Branches Transformers MV CU LV CU

01 893 2980 10,181 140 17 12,305
02 893 1051 5257 154 36 11,338
03 408 652 2285 108 25 3596
04 726 1136 3485 155 35 5184
05 432 704 2113 107 35 2662
06 1245 3651 8874 178 11 11,338
07 351 411 2119 96 35 3068
08 542 830 2621 79 14 3617
09 578 733 3621 165 39 5899
10 873 1937 9804 183 22 12,165
13 1893 2541 4469 269 32 5306
14 188 205 962 33 12 1359
15 388 512 1570 98 31 2201
16 493 530 1761 119 44 2233
17 524 413 5339 144 42 6540
19 1141 2819 4074 153 12 4533
20 1233 3986 13,253 175 18 15,590
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Figure 5. Mapping of distribution lines in feeders at Goiania Leste substation: (a) Feeder 14 and (b) Feeder 20.

4.2. Model Validation and Simulation

Quarterly, ANEEL requests information from Brazilian energy concessionaires on the
voltage levels of the CU. For this, the concessionaires carry out measurements at trans-
formation stations that serve the indicated CU, a process known as Sampling Campaign.
Voltage is measured at each post for seven days, totaling 168 h with 1008 valid readings.
As EDG has more than three million CU, information is collected from 330 posts, with
the right to purge 10% of these records. After that, the 300 samples/quarter are sent to
ANEEL. In this work, to validate the model of the distribution power grid, data collected
by the concessionaire EDG in a sampling campaign were used. The validation compared
the simulated data with data measured in the real feeder, in a given transformation station,
for 24 h [95,96]. Figure 6 shows the measured current and voltage data in one phase and
Figure 7 illustrates the simulated current and voltage data for the three phases.

(a) (b)

Figure 6. Data measured in the Sampling Campaign: (a) current behavior and (b) voltage behavior.
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Figure 7. Simulated data: (a) current behavior and (b) voltage behavior.
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Tables 5 and 6 provide the comparison between measured and simulated current
and voltage data, respectively. Despite the high deviation between the measured and
simulated current values, both for the maximum and minimum value, it is noteworthy
that the measured data were obtained only for one phase and the simulated data for the
three phases. However, it is observed that the maximum value of the simulated current
does not exceed the maximum value of the measured current, implying a model that does
not generate false overcurrent alarms [95]. Deviations between measured and simulated
voltage data were less than 1%, validating the grid model for the object of study of this
work, the voltage adequacy.

Table 5. Measured and simulated current values.

# Measure
Current [A]

Simulated
Current [A]

Deviation
[%]

Maximum 44 35 20.45

Minimum 27 17 37.03

Table 6. Measured and simulated voltage values.

# Measure
Voltage [kV]

Simulated
Voltage [kV]

Deviation
[%]

Maximum 14.4 14.38 0.14

Minimum 14 14.07 −0.50

Among all the simulated feeders, the Feeder 14 was chosen for the voltage analysis and
presentation of results, as it has the lowest number of CU in the LV. In the simulation, the
instantaneous snapshot solution model was used, which provides the boundary conditions
of the system at a specific point in time. Figure 8a presents the voltage classification
performed under the boundary conditions, in which each point corresponds to a pole with
several nodes. When a post is classified as violations of voltage limits, it means that it has
at least one node with inadequate voltage, precarious or critical (see Tables 2 and 3). In this
way, even a pole with several nodes that contains only one node with violations of voltage
limits will be classified as a pole with inadequate voltage. Therefore, Figure 8 indicates the
geographic location of the violations of voltage limits.

Briefly, Table 7 provides the voltage classification at each node of the Feeder 14,
in which: (i) CV is the number of nodes with critical voltage, (ii) PV is the number of
nodes with precarious voltage, and (iii) AV is the number of nodes with adequate voltage.
Figure 8b shows the voltage profile of the feeder, in which: (i) The phases are in red, black,
and blue colors, (ii) the continuous lines show the MV, (iii) the dotted lines show the LV,
and (iv) the green horizontal lines show the lower limit (0.92 pu) and the upper limit
(1.05 pu) of voltage, as required by [4]. The electrical losses in the feeder are 13.08%, and
the adequate voltage level is 56.79%.

Table 7. Node voltage rating at Feeder 14.

Phase Nodes Nodes [%] CV CV [%] PV PV [%] AV AV [%]

Phase A 1386 46.94 445 32.11 144 10.39 797 57.50

Phase B 840 28.44 235 27.98 115 13.69 490 58.33

Phase C 727 24.62 240 33.01 97 13.34 390 53.64

Total 2953 100.00 920 31.15 356 12.05 1677 56.79
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Figure 8. Feeder 14: (a) voltage rating and (b) voltage profile.

4.3. Clustering for Mapping Consumers by Consumption Range

In the clustering process, consumption curves are generated for the squares with
dimensions of 100× 100 [m]. To overlay all of Feeder 14, 73 geographically-distributed grid
cells were needed. In this way, for each grid, the average consumption curve for the last
12 months is created and divided by consumption profiles. The Fuzzy C-Means algorithm
was used with a fuzzification index of 1.25, a stopping criterion less than or equal to 0.01,
and a number of groups to be generated equal to 3. Figure 9 presents the curve of average
consumption in kWh for the centroids of the three groups formed.
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Figure 9. Representation of the groups formed by clustering: (a) Group 1, (b) Group 2, and
(c) Group 3.

Due to the urban characteristic of Feeder 14, groups with predominantly residential
and commercial consumption were generated. Group 1 has squares with a predominance
of commercial consumption above 200 kWh and industrial consumption below 1000 kWh
with low representation. Group 2 has squares with predominantly residential consumption
(approximately 90%), with greater representation in the profile above 400 kWh and from
50 kWh to 200 kWh and commercial (approximately 10%), with greater representation for
the profile above 200 kWh. Finally, Group 3 has squares with predominantly residential
consumption (approximately 65%), with similar distribution for profiles from 50 kWh to
200 kWh, 200 kWh to 400 kWh, and above 400 kWh, but with a greater share of commercial
consumption (35%), when compared to Group 2.

Once the clustering process is completed, a given color is applied to the squares of each
group, in which squares of the same color belong to the same group, and the squares are
assigned to the group in which its average consumption curve has the smallest Euclidean
distance when compared to the centroid curve of a given group. Figure 10 presents the
result of the clustering of Feeder 14 of the Goiania Leste Substation, with the three groups,
in which the squares are geographically overlapping the segments of Feeder 14. The groups
are defined in colors: (i) Group 1 with magenta grids, (ii) Group 2 with green grids, and
(iii) Group 3 with blue grids.
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Figure 10. Result of clustering Feeder 14 to output three distinct groups.

4.4. Validation of the Allocation of Distributed Generation Photovoltaic and Use of the
Optimization Process

The validation of the proposed Distributed Generation Photovoltaic (DGPV) allocation
algorithm is divided into two parts: (i) Optimization of the location of the generation pos
and the installed capacity pot, in which the user informs the number of DGPV to be allo-
cated into the feeder and limit of installed capacity per connection point and the algorithm
determines the allocation locations and supply power of the DGPV and (ii) optimization of
the amount of DGPV qtd, pos, and pot, in which the user only informs the limit installed ca-
pacity per connection point and the algorithm determines the quantity, allocation locations,
and installed capacity of the DGPV. To validate the DGPV allocation algorithm, Feeder 14
was used, connecting and disconnecting loads and changing the power of some Consumer
Units (CU).

In the process of optimizing the variables pos and pot, four scenarios are used with
the presence of violations of voltage limits in different regions of the distribution power
grid, selected as: (i) Scenario 1—violations of voltage limits in only one region and DGPV
allocation algorithm used for the allocation of one generation source, (ii) Scenario 2—
violations of voltage limits in two regions and DGPV allocation algorithm used for the
allocation of two generation sources, (iii) Scenario 3—violations of voltage limits in three
regions and DGPV allocation algorithm used for the allocation of three generation sources,
and (iv) Scenario 4—violations of voltage limits in three regions and the DGPV allocation
algorithm used for the allocation of a generation source.

The optimization method used was the genetic algorithm with the configuration:
(i) Tournament selection method, (ii) adaptive mutation operator, (iii) heuristic crossing
operator, (iv) stop criterion with maximum number of generations gmax = 50 or evalu-
ation function f (~x) = 0, (v) number of individuals in the population of 50, except for
Scenario 3 which uses a population of 200 individuals because it needs to optimize more
variables than the other scenarios, and (vi) evaluation function f (~x) based on the viola-
tions of voltage limits. In these evaluations, the maximum installed capacity of the DGPV
potmax ≤ 1000 kVA.

Figure 11a shows the voltage classification of Scenario 1 before the DGPV allocation,
indicating violations of voltage limits in a single region, and Figure 11b shows the location
of the DGPV allocation in the distribution power grid after applying the optimization
process. Figure 12a shows the voltage profile of the distribution power grid before the
allocation of the DGPV and the optimization process, indicating the violations of voltage
limits at the end of the grid. Figure 12b presents the voltage profile after the optimization
process, indicating the adequacy of the grid regarding the voltage level. The initial evalua-
tion function was f (~x) = 10.9508 and the final evaluation function was f (~x∗) = 0, obtained
after three generations. After optimization, the electrical losses of the feeder reduced from
5.57% to 4.70%, a reduction of 0.87%.
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Figure 11. Scenario 1: (a) voltage rating before Distributed Generation Photovoltaic (DGPV) allocation and (b) voltage
rating after DGPV allocation.
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Figure 12. Scenario 1: (a) voltage profile before DGPV allocation and (b) voltage profile after
DGPV allocation.

For Scenario 1, the optimization resulted in the geographic location of the bar (the
posts/bars do not follow the numbering sequence) pos = 35 (of the total of 1385 bars) and
the installed capacity of the DGPV pot = 254.42 kVA. After optimization, Figure 12b, it
is observed the adequacy of voltage across the grid, due to the presence of DGPV with
geographic location and optimized power, in addition, it is observed that all lines of the
voltage profile are within the proper voltage limits.

Scenario 2 contains two regions of the violations of voltage limits before the allocation
of the DGPV, as shown in Figure 13a. The voltage profile of the distribution power grid
in this scenario is shown in Figure 14a, in which it is observed that before the allocation
of the DGPV, there is a violation of voltage limits. The purpose of analyzing Scenario 2
is to optimize the allocation of two DGPV in an attempt to adjust the voltage. Thus, the
optimization starts with f (~x) = 42.7708 and ends with f (~x∗) = 0, indicating no violation
of voltage limits in six generations. Figure 13b presents the voltage classification in the
distribution power grid with the locations of the DGPV after optimization and Figure 14b
presents the voltage profile after optimization.
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Figure 13. Scenario 2: (a) voltage rating before DGPV allocation and (b) voltage rating after DGPV allocation.
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Figure 14. Scenario 2: (a) voltage profile before DGPV allocation and (b) voltage profile after
DGPV allocation.

For Scenario 2, the optimization resulted in the geographic locations of the bar pos1 = 163,
bar pos2 = 366, and the installed capacity pot1 = 423.84 kVA, pot2 = 302.77 kVA for DGPV1
and DGPV2, respectively. The active power injected into the feeder was pottotal = 726.61 kVA,
the electrical loss before DGPV allocation was 6.49% and after allocation it was 7.20%,
obtaining an increase of 0.71%, caused by the high power injected into the grid.

In Scenario 3, before the DGPV allocations, violations of voltage limits occur in
three regions, as shown in Figure 15a and the distribution power grid voltage profile as
shown in Figure 16a. In this scenario, the intention is to optimize the allocation of three
DGPV and obtain the distribution system without violations of voltage limits. In the
optimization process, the initial evaluation function was f (~x) = 50.9316 and the final one
was f (~x∗) = 0, performing the entire process in seven generations. Figure 15b presents the
voltage classification and the place of allocation of the DGPV in the feeder, and Figure 16b
presents the voltage profile, both after the allocation of the DGPV.
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Figure 15. Scenario 3: (a) voltage rating before DGPV allocation and (b) voltage rating after DGPV allocation.
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Figure 16. Scenario 3: (a) voltage profile before DGPV allocation and (b) voltage profile after
DGPV allocation.

For Scenario 3, the heuristic optimization process, genetic algorithm, resulted in:
(i) Locations in bars pos1 = 119, pos2 = 114 and pos3 = 174 and (ii) installed capacity
pot1 = 221.2 kVA, pot2 = 221.5 kVA, and pot3 = 100.7 kVA, respectively for DGPV1,
DGPV2, and DGPV3. The active power injected into the grid was pottotal = 543.40 kVA and
the electrical losses before the allocation of the DGPV was 6.59% and the electrical losses
after optimization was 4.18%, a reduction of 2.41%.

Scenario 4 uses the same distribution power grid configuration as Scenario 3, shown
in Figure 15a and the same electricity system voltage profile shown in Figure 16a. The
purpose of Scenario 4 analysis is to optimize the allocation of only one DGPV, observing
the location and the necessary installed capacity so that the distribution power grid has
no violations of voltage limits. In the optimization, initially f (~x) = 50.9316 and at the end
f (~x∗) = 0 with five generations. The geographic location of the bar pos = 183 and installed
capacity pot = 821.60 kVA were obtained.

The installed capacity value is relatively high since a single DGPV must adapt
the voltages of the entire grid, while in Scenario 3, three DGPV were inserted with
pottotal = 543.40 kVA. In Scenario 3, the DGPV locations produced a reduction of
pottotal = 278.20 kVA when compared to Scenario 4. The voltage classification with the
location of the DGPV allocation is shown in Figure 17a, and the voltage profile is shown
in Figure 17b, both after optimization. The electrical losses of the distribution power grid
before the allocation of the DGPV were 6.59%, and after the allocation of the DGPV, it was
6.82%, with an increase of 0.23%.



Energies 2021, 14, 7506 21 of 37

DGPV

Y
 C

oo
rd

in
at

es

106

8.1546

8.1548

8.155

8.1552

8.1554

8.1556

8.1558

X Coordinates x 105
9.73 9.735 9.74 9.745 9.75

x

Power Substation

Adequate Voltage

(a)

V 
[p

u]

Distance [km]

1.04

1.00

0.92

0 20 40 60 80

MV Line (R)
MV Line (S)
MV Line (T)
LV Line (R)
LV Line (S)
LV Line (T)
Adequate
Voltage
Limit

0.94

0.96

0.98

1.02

(b)

Figure 17. Scenario 4: (a) voltage rating after allocation of DGPV and (b) voltage profile after
allocation of DGPV.

Scenario 1, Scenario 2, Scenario 3, and Scenario 4 were simulated/optimized using
the parameters pos and pot, taking the parameter fixed amount of DGPV qtd. In order
to analyze the optimization process, the variable qtd will be part of the variables to be
optimized. Therefore, in the new case study, the following variables are optimized: (i) pos,
(ii) pot, and (iii) qtd. The new case study is composed of two new scenarios: (i) Scenario 5,
which uses the Scenario 1 distribution power grid and (ii) Scenario 6, which uses the
Scenario 3 distribution system.

In Scenario 5, the same distribution system as Scenario 1 was used, presented in
Figures 11a and 12a. In this feeder, even optimizing the qdt variable, only one DGPV
(it is possible to configure the maximum admissible voltage level for the DGPV in the
algorithm) was needed to adjust the voltage across the entire distribution power grid.
The inserted DGPV has a geographic location in the bar pos = 26 and installed capac-
ity pot = 245.93 kVA. The optimization process ended with three generations, and the
electrical losses before the optimization were 5.57%, and after the allocation of the DGPV,
it reduced to 4.82%, a reduction of 0.75%. Comparing Scenario 1 with Scenario 5, the
location of the DGPV has changed, however, it remains in close proximity to each other:
pos = 35 and pos = 26, respectively. Regarding the generated power, Scenario 1 got
pot = 254.42 kVA and Scenario 5 got pot = 245.93 kVA. The results are similar, and the
small difference between the values of the variables pos and pot is related to the heuristic
optimization method.

In Scenario 6, the same distribution system as Scenario 3 was used, presented in
Figures 15a and 16a. It took 27 generations to obtain f (~x∗) = 0 and the optimization
process obtained a result of qtd = 1 with geographic location in the bar pos = 159 and
installed capacity pot = 675 kVA. The entire distribution power grid had adequate voltage,
and the electrical losses of the grid before allocation was 6.59%, and after allocation of
the DGPV, it reduced to 5.06%, a reduction of 1.53%. Figure 18a presents the new voltage
classification after optimization, indicating the allocation location of the DGPV at the end
of the distribution power grid, and Figure 18b presents the new voltage profile without
violations of voltage limits.
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Figure 18. Scenario 6: (a) new voltage rating after allocation of DGPV and (b) new voltage profile
after allocation of DGPV.

Table 8 displays the results obtained in the processes of inserting DGPV and opti-
mizing the parameters pos, pot, and qtd for all analyzed scenarios. In Table 8, the items
are defined as: (1) number of regions with violations of voltage limits, (2) quantity of
DGPV inserted, (3) electrical losses before allocation/optimization [%], (4) electrical losses
after allocation/optimization [%], (5) difference between electrical losses before and after
allocation/optimization [%], (6) initial evaluation function, (7) final evaluation function,
(8) total generations until optimization process stops, (9) geographical locations obtained,
(10) installed capacity obtained [kVA], and (11) voltage was adequate in the entire electrical
system after applying the methodology (yes/no). Analyzing the data in Table 8, it is
observed that in all scenarios, the voltages of the electrical grid were adequate after the
allocation of the DGPV with optimized parameters.

Table 8. Values obtained from the allocation and optimization processes for all scenarios.

# Optimization: pos and pot Optimization: qtd, pos, pot

Item Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

(1) 1 2 3 3 1 3

(2) 1 2 3 1 1 1

(3) 5.57 6.49 6.59 6.59 5.57 6.59

(4) 4.70 7.20 4.18 6.82 4.82 5.06

(5) −0.87 +0.71 −2.41 +0.23 −0.75 −1.53

(6) 10.95 42.77 50.93 50.93 10.95 50.93

(7) 0 0 0 0 0 0

(8) 3 6 7 5 3 27

(9)

pos1 35 163 119 183 26 159

pos2 - 366 114 - - -

pos3 - - 174 - - -

(10)

pot1 254.42 423.84 221.2 821.60 245.93 675.84

pot2 - 302.77 221.5 - - -

pot3 - - 100.7 - - -

pottotal 254.42 726.61 543.4 821.60 245.93 675.84

(11) yes yes yes yes yes yes
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4.5. Allocation and Analysis of Distributed Generation Photovoltaic in Different
Geographic Locations

Smith, Dugan, and Sunderman [19] state that the different allocation placements of the
DGPV impact the grid voltage adequacy in different ways, even for identical total installed
capacities. To analyze this statement, tests were carried out to change the geographic loca-
tion of the DGPV allocation of the Feeder 14, shown in Figure 8a,b, with the characteristics:
(i) Analysis 1—the impact of allocation of a single DGPV at the beginning of the grid, close
to the substation and with 1000 kVA of installed capacity, (ii) Analysis 2—the impact of
allocation of a single DGPV at the end of the distribution power grid, with 1000 kVA of
installed capacity, and (iii) Analysis 3—the impact of inserting ten DGPV with 100 kVA
of installed capacity each, at random points in the grid, totaling 1000 kVA of installed
capacity. Figures 19–21 present the voltage classification and voltage profile for the three
analyses, respectively.
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Figure 19. Analysis 1: (a) voltage rating and (b) voltage profile.
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Figure 20. Analysis 2: (a) voltage rating and (b) voltage profile.
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Figure 21. Analysis 3: (a) voltage rating and (b) voltage profile.

Table 9 provides the voltage classification for all nodes of Feeder 14 for the three
analyses performed, in which the percentages of critical, precarious, and adequate voltage
are highlighted in bold. Each analysis resulted in different voltage ratings and different
voltage profiles for the same installed capacity into the grid. The electrical losses were
13.57% for Analysis 1, 14.30% for Analysis 2, and 38.14% for Analysis 3. The highest
percentage of nodes with an adequate voltage was 67.01%, obtained from Analysis 2. In
this way, the same total installed capacity and different geographic locations of allocation
of DGPV cause different impacts on the grid.

Table 9. Impact of geographic location of distributed generation photovoltaic on Feeder 14.

Analysis Phase Nodes Nodes [%] CV CV [%] PV PV [%] AV AV [%]

Analysis 1

Phase A 1387 46.92 446 32.15 138 9.95 803 57.90

Phase B 841 28.45 234 27.83 115 13.67 492 58.50

Phase C 728 24.63 241 33.10 95 13.05 392 53.85

Total 2956 100.00 921 31.15 348 11.77 1687 57.07

Analysis 2

Phase A 1387 46.92 367 26.46 93 6.71 927 66.83

Phase B 841 28.45 181 21.52 75 8.92 585 69.56

Phase C 728 24.63 181 24.86 78 10.72 469 64.42

Total 2956 100.00 729 24.66 246 8.32 1981 67.01

Analysis 3

Phase A 1396 46.80 430 30.81 108 7.73 858 61.46

Phase B 850 28.50 230 27.05 87 10.24 533 62.71

Phase C 737 24.70 236 32.02 74 10.04 427 57.94

Total 2983 100.00 896 30.04 269 9.02 1818 60.94

4.6. Optimization Process Applied in the Allocation of DGPV in the Real Feeder

The analyses carried out previously used the adapted real electrical distribution power
grid. The next analyses are carried out using the allocation and optimization algorithm in
the complete real distribution system, as it is in the utility’s databases. To carry out this
methodology, the DGPV allocation algorithm will be used in two ways: (i) Applied freely,
using all feeder bars as possible DGPV allocation points and (ii) applied in a restricted way
using the result of clustering, inserting the DGPV only in the bars contained in a predefined
group between Group 1, Group 2, and Group 3. In this methodology, Feeder 14 presented
in Figure 8a,b was used.



Energies 2021, 14, 7506 25 of 37

Several simulation runs were carried out with gmax = 1000, however, due to the high
number of feeder bars, there were problems stopping the process before the desired end.
Due to limitations of the machine used, the optimizations returned out of memory errors
from g ≥ 500, which occurred randomly. The machine used in this work contains a 64-bit
Windows 10 Enterprise operating system, a 1.9-GHz Intel Core i5-8365U processor, and
16 GB of DDR4 2400 MHz RAM, of which the average optimization time was ≈35 h for
gmax = 500. Testing was carried out with Virtual Machine which has a 64-bit operating
system Windows Server 2021 R2, 8 Intel Xeon E5-2650 processors of 2 GHz, and 32 GB of
DDR3 1600 MHz RAM, on which it was possible to analyze that the optimization process
considering gmax = 1000, would result in an improvement of only 1.27% in f (~x), with a
duration of ≈96 h. Thus, the limit of gmax = 500 is defined for all case studies in this work.

To apply the DGPV allocation and optimization algorithms in the real grid, there are
variables to be optimized: pos, pot, and qtd = 10 with potmax = 100 kVA per allocation
point. The optimization method used was the genetic algorithm with some differences from
the one used in Section 4.4, they are: (i) Stochastic and uniform selection methods, (ii) fitness
measure by ranking, (iii) criteria of stop maximum number of generation gmax = 500 or
evaluation function f (~x∗) = 0, and (iv) number of individuals in the population of 200.
The evaluation function used to measure fitness of each possible solution is given by (2).

Figure 22 shows the average processing aptitude of the 500 generations. It is observed
that in the generation g = 170, a change was made from the stochastic selection method
to the uniform selection method. This was necessary to increase genetic diversity, since
from g = 150, there is stagnation and loss of diversity, leaving the optimization process in
a possible optimal location.
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Figure 22. Suitability average in the optimization of the variables pos and pot without bars restriction.

The initial evaluation function is f (~x) = 1046.20 and the final evaluation function
is f (~x∗) = 483.58, obtained after 500 generations. There was an improvement in the
voltage level of ≈53.77%, obtained by analyzing the value of the evaluation function. This
improvement, when compared to the data shown in Table 7, reflects an increase of 43.65% of
nodes with adequate voltage, a reduction of 29.21% of nodes with precarious voltage, and a
reduction of 65% of nodes with critical voltage. The 10 DGPV inserted in the optimization
process add up to pottotal = 298.55 kVA of power injected into the grid and the electrical
losses reduced from 13.08% to 11.77%.

Figure 23 shows the voltage rating of Feeder 14 before and after the allocation of
DGPV, with an optimization process, without bars restriction, and with the presence of the
ten DGPV inserted. It is observed in Figure 23b, the reduction of points with critical and
precarious voltage when compared to the situation of the real grid in Figure 23a. Figure 24
shows the voltage profile before (Figure 24a) and after (Figure 24b) of the allocation of
DGPV in optimized locations and without the restriction of bars, confirming the reduction
in the number of nodes with precarious and critical voltage and the increase of nodes with
adequate voltage.
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Figure 23. Optimization without restriction of buses: (a) voltage rating before DGPV allocations and
(b) voltage rating after DGPV allocations.
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Figure 24. Optimization without bus restriction: (a) voltage profile before DGPV allocations and
(b) voltage profile after DGPV allocations.

Still as a test without bar restriction, the optimization process was used for the three
variables: qtd, pos, and pot with the only restriction that potmax = 100 kVA. Figure 25 shows
the average of the proficiency in the optimization processing that reached the stopping
criterion gmax = 500. It is observed in Figure 25 that from g = 80, there is stagnation in
the value of the objective function and at g = 205, the change from the stochastic selection
method to the uniform selection method is performed.

The optimization obtained the value of the variable qdt = 14. If the stopping criterion
gmax = 500 had not been met, the optimization process would have continued and would
only stop with f (~x) less. However, optimization in conjunction with simulation slows
down the entire process, which is time-consuming. In this new analysis with the allocation
of 14 DGPV, the value of the initial evaluation function is f (~x) = 1046.20 which decreases
to f (~x∗) = 324.47, producing a reduction of ≈70% in mains violations of voltage limits.
This result causes an increase of 55.99% of the nodes with adequate voltage, a reduction of
44.66% of the nodes with precarious voltage, and a reduction of 80.22% of the nodes with
critical voltage. The value of pottotal = 374.48 kVA of power injected into the grid produces
a reduction in electrical losses from 13.08% to 12.22%.

Figure 26 shows the voltage rating of Feeder 14 before (Figure 26a) and after (Figure 26b)
the allocation of the DGPV with the optimized variables qtd, pos, and pot, in which there is
a reduction in points with critical and precarious voltage in the grid. Figure 27a,b show
the voltage profile before and after allocation of the DGPV, respectively, showing the im-
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provement in the electrical distribution power grid in relation to the original (Figure 8 and
Table 7).
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Figure 25. Suitability average in the optimization of variables pos, pot, and qtd without bars restriction.
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Figure 26. Result of the optimization of the variables qtd, pos, and pot without bars restriction:
(a) voltage rating before the allocations and (b) voltage rating after the allocations.
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Figure 27. Result of the optimization of the variables qtd, pos, and pot without bars restriction:
(a) voltage profile before the allocations and (b) voltage profile after the allocations.
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With the results obtained with the optimization process in the real distribution system,
the objective is to use the same optimization process together with the clustering process.
In this new process, for each formed group, the list of buses present inside the group
squares is sent to the optimization algorithm. In this way, it is possible to carry out a
comparison between the optimization without bus restriction and the optimization by
group of average consumption profile per grid. Three groups are obtained in Feeder 14, as
shown in Figure 10.

In the application of this optimization process that considers the allocation of DGPV
in a given consumption profile group, two steps will be performed: (i) The first considering
two variables to be optimized pot and pos and (ii) the second considering three variables
to be optimized pot, pos, and qtd. The DGPV allocation algorithm has the additional
restriction that it is only to insert the eligible bars from a given group. In this application,
Group 2 (Figure 9) is selected because it has a predominantly residential profile, with
several consumption ranges (green squares in Figure 10).

The same parameters used previously in the optimization without bus restrictions are
considered in the optimization process, with the fixed quantity in qtd = 10 DGPV with
potmax = 100 kVA per DGPV. The initial configuration of the genetic algorithm remains the
same. Figure 28 presents the average of the suitability in the optimization process for the
first step of this analysis, optimizing only the variables pos and pot with bar constraints. In
this analysis, gmax = 500 was considered and in g = 162, the stochastic selection method
was changed to the uniform selection method, since from g = 105 there was stagnation in
the optimization process.
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Figure 28. Suitability average in the optimization of the variables pos and pot with bar constraints.

Initially f (~x) = 1046.20 and at the end f (~x∗) = 532.57 obtained with gmax = 500,
providing an improvement of ≈50% in f (~x). This produces an increase of ≈40% of the
nodes with adequate voltage, a reduction of ≈30% of the nodes with precarious voltage,
and a reduction of ≈60% of the nodes with critical voltage, when compared to the actual
data, arranged in Table 7. The 10 DGPV included in the optimization process totaled
380.75 kVA of installed capacity into the grid, with a reduction in electrical losses from
13.08% to 10.72%. Figure 29 shows the voltage rating of the feeder before and after allocation
of the DGPV. Figure 29b shows the reduction of points with critical and precarious voltage
in the distribution power grid and Figure 30 shows the voltage profile before and after the
allocation of the DGPV.
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Figure 29. Result of the optimization of the variables pos and pot with bars constraint: (a) voltage
rating before the allocations and (b) voltage rating after the allocations.
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Figure 30. Result of the optimization of variables pos and pot with bar constraint: (a) voltage profile
before allocations and (b) voltage profile after allocations.

When comparing the results of the optimization process of the variables pot and pos
without and with bus restrictions, a significant difference is observed, with the exception
of the installed capacity, which increased by ≈5% in the procedure with bar restriction.
Regardless of the increase in the installed capacity, this result demonstrates the feasibility
of applying the proposed methodology to the real feeder, since the injection of 380.75 kVA
of installed capacity in a residential region is present inside 29 squares of 100× 100 [m],
using the roofs of the houses, is shown to be possible. For the process of optimizing the
variables pos, pot, and qtd with bar restriction using the real grid, the same values of potmax
and gmax are kept with the same settings for the genetic algorithm.

Figure 31 presents the average of the suitability in the optimization process for the
second stage of this analysis, optimizing the variables pos, pot, and qtd with bars constraint.
It is observed that at g = 175, the stochastic selection method was changed to the uniform
selection method in an attempt to increase the genetic diversity in the population since
from g = 145 there was stagnation in the value of f (~x). In this process, coincidentally, the
value found for qtd = 14.
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Figure 31. Suitability average in the optimization of variables pos, pot, and qtd with bar constraints.

The initial evaluation function is f (~x) = 1046.20 and the value of the final evaluation
function was f (~x∗) = 526.63, promoting an improvement of ≈50% in the evaluation
function, which increased the nodes with adequate tension by ≈40%, reduced by 18.54%
for the nodes with precarious voltage and 64.24% the nodes with critical voltage. Of
the 14 DGPV inserted in the optimization process, they totaled 549.40 kVA of installed
capacity, reducing the electrical losses in the distribution power grid from 13.08% to 11.06%.
Figure 32 shows the voltage rating of the feeder before and after allocation of the DGPV,
indicating the location of the 14 DGPV in the grid, in which it is possible to observe the
reduction of points with critical and precarious voltage. Figure 33 shows the voltage profile
before and after allocation of DGPV.
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Figure 32. Result of the optimization of the variables pos, pot, and qtd with bars constraint: (a) voltage
rating before the allocations and (b) voltage rating after the allocations.

Comparing the results of the optimization process of the variables pos, pot, and qtd
with and without bus restrictions, it is observed that there was an increase of 44.29% in
the installed capacity with a small reduction in violations of voltage limits. This situation
occurs due to the restriction of the DGPV allocation area, which hampered the algorithm
by not allowing the DGPV to be inserted at strategic points in the grid. In this case, the
scenario with the allocation of the 10 DGPV becomes more viable, however, this is not a rule,
varying according to the feeder, the chosen consumer group, and the optimization method.



Energies 2021, 14, 7506 31 of 37

V 
[p

u]

Distance [km]

1.00

0.90

0.80

0.70

0 20 40 60 80

MV Line (R)
MV Line (S)
MV Line (T)
LV Line (R)
LV Line (S)
LV Line (T)
Adequate
Voltage
Limit

(a)

0 20 40 60 80

0.70

0.80

0.90

1.00

Distance [km]

V 
[p

u]

MV Line (R)
MV Line (S)
MV Line (T)
LV Line (R)
LV Line (S)
LV Line (T)
Adequate
Voltage
Limit

(b)

Figure 33. Result of optimization of variables pos, pot, and qtd with bars constraint: (a) voltage
profile before allocations and (b) voltage profile after allocations.

5. Discussion

Some difficulties were found in the development of this research. The first concerns
the collection of data for the simulation of distribution power grid, a task that burdened
the research, as the data needed for the simulation of the grid were found in different
databases of the electricity concessionaire. In addition, some data were not available in the
databases, requiring political strategies to access them, which made the development of
the work difficult. Regarding optimization, finding which penalty level would be the most
appropriate for the problem so that the various constraints were met without compromising
the optimization process was a challenging activity.

Regarding clustering, determining the most adequate fuzzification index, as well as
the minimum number of groups that would provide a more homogeneous division of the
consumption curves of the squares, demanded a study of the utility’s consumer dynamics.
As a heuristic method was used, both for clustering and optimization, several simulations
were performed for verification and validation. Each simulation spent ≈17 h. For the
concessionaire, the proposed methodology serves both to help adjust the voltage level
in the distribution power grid and to indicate the locations that need quick maintenance
action (corrective and/or preventive). In the real system, maintenance and improvements
in the distribution power grid are carried out little by little and the optimization process
indicates where to make the first adjustments assertively.

Still, in the optimization process, several simulations were carried out seeking to avoid
stagnation due to local minimums. Several parameters were changed and after several
attempts, it was necessary to implement two mutation methods, putting energy into the
optimization process during its iterations. The initial objective of this work also included
the optimization of the allocation of DGPV, taking into account its penetration in the grid.
However, this analysis would demand more time and computational effort than the one
spent in this work, considering that this analysis is carried out over several hours of the
day and for each hour a new simulation would be necessary. That said, we chose to use
the OpenDSS snapshot solution mode, which works at the specific point in time when the
distribution power grid is in extreme conditions when compared to other hours of the day.
In this way, it was possible to significantly reduce the violations of voltage limits in the
most harmful conditions to the electrical system.

In addition to the main objective of the methodology, the clustering results made
it possible to analyze the horizontal and vertical growth of the distribution power grid
when compared to simulations at specific time intervals (monthly, yearly, among others).
The horizontal growth analysis is performed by comparing existing grid cells at different
times (in different years, for example), thus detecting the new grid cells from the last
simulation. In this way, it is possible to verify not only the growth areas of the grid but
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also the consumption profile of this growth. For the analysis of vertical growth, the grids
common to the two simulation scenarios are observed. Thus, it is possible to identify where
there was an increase or decrease in demand and, consequently, if this shift generated a
change in the grid’s consumption profile. Such analyses provide important additional
information for the area of grid planning of energy distributors.

This methodology can be used by any utility that has databases with data capable
of reliably modeling distribution power grid. The cost of applying this methodology is
related to the maintenance and updating of the concessionaire’s databases. Outdated or
inaccurate distribution system data impair the application of this methodology. With the
proposed methodology, it is possible to improve the quality of the distributed electric
energy, decreasing service discontinuity and violations of voltage limits. This reduces the
financial losses caused by disciplinary penalties for energy distribution concessionaires,
improving their image towards consumers.

There are still implementations in the methodology to be improved, such as: (i) Op-
timize the allocation of DGPV taking into account its penetration into the distribution
power grid, (ii) include new variables to be optimized to improve the quality of distributed
energy, for example, electrical losses, (iii) apply other heuristic techniques to try to obtain
better results, (iv) apply a prediction technique to determine the growth profile of the
distribution power grid by the consumption profile, considering the history of simulations,
and (v) include additional variables in the clustering process, such as: Area of residence,
estimated household income, territorial classification, among others. The future scope
of this work is based on the construction of new computational blocks that consider the
inclusion of additional variables in the optimization and clustering processes and on the
inclusion of a predictive methodology using artificial intelligence to improve the quality of
distributed electricity.

6. Conclusions

The objective of this work was to develop a methodology capable of optimizing the
allocation of DGPV in a real feeder, considering the restriction or not of the bars for the
allocation of DGPV, in an attempt to adapt the electrical voltage. The heuristic genetic
algorithm method was used to provide: (i) The geographic locations of the DGPV (pos),
(ii) the installed capacity of the DGPV (pot), and (iii) the amount of DGPV (qtd). For
the restriction of the feeder bars, the heuristic method Fuzzy C-Means algorithm was
used to cluster the average consumption curves of the squares of 100× 100 [m], which
geographically overlap the feeder, thus forming groups with grids of similar consumption
profiles.

The methodology was used as a tool for analyzing the voltage in the electrical grid,
before and after the process of allocation and optimization of DGPV. The proposed method-
ology was verified and validated using several scenarios with real data from the utility.
Studies have shown that the best DGPV allocation location is not always close to the trans-
gressed region, especially in cases where the number of regions with violations of voltage
limits is greater than the amount of DGPV available to be inserted. The validation also
demonstrated that it is possible to optimize the allocation of DGPV by restricting specific
areas of the feeder, without substantially affecting the results obtained. Thus, through
clustering, it is possible to define the optimization of the allocation of DGPV for a specific
consumption group, in necessarily inhabited areas of the feeder. This action enables the
creation of incentive projects for the allocation of DGPV and benefits both the consumer, by
reducing the amount paid for electricity, and the concessionaire by improving the quality
of distributed electricity, avoiding possible sanctions from the regulatory agency.

Regarding the optimization and allocation of DGPV, if the minimum optimized
amount of DGPV necessary to minimize the grid violations of voltage limits is incom-
patible with the concessionaire’s budget plan, the methodology allows lower quantities
to be tested until reaching the number that is compatible with the budget. For the grid
analysis process carried out in the methodology, the additional gain obtained is the mea-
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surement and location of points with violations of voltage limits in the feeder, enabling
the maintenance team to carry out analysis of the grid parameters, verifying the need
to (i) adjust the TAP of transformers, (ii) update conductors, (iii) update the consumer
database, and (iv) change the feeder topology, among other important information for
maintaining the quality of electricity in the grid.

Thus, it is concluded that the proposed methodology is a practical and functional tool
for the optimized allocation of DGPV for any concessionaire that has technical and financial
data on its electrical grids and its customers. The results obtained for the allocation of
DGPV are considered satisfactory for voltage adequacy and the results obtained from
the optimization process provided information that partially relieves the utility, as it
minimizes the minimum amount of DGPV necessary for maximum voltage adequacy in
the distribution power grid.
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