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Abstract: This research aimed to assess the process conditions, temperature and pressure, on the
gasification of alternative refuse-derived fuel (RDF) in the atmosphere of steam and carbon dioxide on
a laboratory scale using a fixed bed reactor. For this reason, the selected RDF were analysed, including
proximate and ultimate analysis, mercury content and ash composition. After that, isothermal
gasification measurements using the thermovolumetric method were performed under various
temperatures (700, 750, 800, 900 ◦C) and pressures (0.5, 1, 1.5 MPa), using steam and carbon dioxide
as gasifying agents. The obtained results showed that in the entire analysed range, the increase in
temperature positively affect both the steam and CO2 gasification of RDF. The formation rates of
main components (H2 and/or CO) of the resulting gas, as well as yields of gas components and
maximum carbon conversion degrees increase. However, this positive effect was the greater, the
lower the process pressure was. In turn, the effect of pressure was more complex. In the case of RDF
steam gasification, an increase in pressure had a negative effect on the process, while when using
carbon dioxide as a gasifying agent, an improvement of most analysed parameters was observed;
however, only at low temperatures, 700–750 ◦C.

Keywords: refuse-derived fuel; steam gasification; CO2 gasification; thermovolumetry

1. Introduction

The growing amount of municipal solid waste (MSW), i.e., everyday garbage gener-
ated in households and commercial buildings, makes their effective management a great
challenge [1]. Currently, the world generates 2.01 billion tonnes of municipal solid waste
annually. Due to exponential growth of population and urbanization, and the development
of social economy coupled with the improvement of living standards, global waste is ex-
pected to grow to 3.40 billion tonnes by 2050 [2,3]. Some of the generated MSW are recycled,
but the vast majority (~69%) is dumped in landfills or incinerated (~11%) [4,5]. Both of
these management pathways have a negative impact on the environment. Landiffled waste
contributes to air, water, and soil contaminants and relates to space consumption, odours,
and esthetic prejudice [4]. In turn, waste incineration is related to pollutants generation [4].
The necessity to diminish landfill volume and pollutants emission urge the development
of more sustainable waste management practices. Since MSW contains organic fraction
(usually above 50% [6]), MSW gasification seems very promising. Gasification is a thermal-
induced chemical reaction in which the organic fraction of the material is oxidized at high
temperatures in the presence of finite oxygen, air, CO2, or H2O/steam [7]. The process
yields synthesis gas, the composition of which depends on the gasifying agent; however, it
generally comprises CO, H2 and minor fractions of CH4 and CO2 [8]. Such gas can be used
to produce energy, fuels, and chemicals [9]. The use of MSW in the gasification process
enables recovery of energy from this year-round available, abundant material efficiently
and ecologically.

However, municipal solid waste is a highly heterogeneous material, affected by
many factors (such as weather, geographic location, food habit, income level, economy)
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reflecting varied patterns of consumption [10,11]. One may, however, accept that the major
components of MSW state food waste (~21%), plastics (~18%) and paper waste (~15%), as
well as some amounts of metal scraps and glass [12]. Diversity of MSW negatively affects
gasifiers performance and results in poor reproducibility. Consequently, RDF gasification
is very complex and challenging to optimise [13]. Therefore, some processing steps are
necessary to prepare MSW for gasification, such as size reduction, drying, screening,
sorting, separation of metal and glass and, in some cases, pelletisation [14,15]. As a result of
these activities, the so-called refuse-derived fuel (RDF) is formed, which can be successfully
used in the gasification process [16,17]. The interest in gasification of RDF increases since
1975, when the first plant producing RDF for energy generation was established in the
USA, Iowa [2].

Currently, research focuses on selecting optimal process conditions (e.g., RDF type,
process temperature), since they determine the distribution of the products obtained [18–20].
Galvagno et al. [18] analysed the effect of temperature (850–1050 ◦C) on steam gasification
of RDF and found out that higher temperatures resulted in a higher conversion of organic
matter and greater production of syngas enriched in hydrogen. Van Kasteren [19] observed
that maximum CO and H2 yields were obtained at the highest analysed temperature, equal
to 950 ◦C. In turn, Dalai et al. [20] examined steam gasification of the RDF process at a
temperature range of 675 to 775 ◦C. The authors proved that the quality of the result-
ing gas was influenced significantly by the steam/RDF ratio and temperature, and the
optimal process temperature was 725 ◦C. An interesting solution may be supercritical
water gasification, i.e., in water media with temperatures and pressures above 374 ◦C and
22.1 MPa, respectively [21]. Water in its supercritical condition plays the role of reaction
medium and reactant and is miscible with organic compounds, which enable solving the
major part of fuel and reforming it through a homogeneous mixture. Safari et al. [22], who
examined supercritical water gasification of agricultural wastes, proved that waste with
high cellulose amount and low lignin amount had the greatest potential to result in high
total gas and hydrogen yields in a short time. Based on the results of these researchers,
it can be concluded that wet MSW that contains a large proportion of paper/cardboard
will be a suitable feedstock for the gasification process aimed at obtaining hydrogen-rich
syngas. However, research is necessary to confirm this thesis.

As can be seen, despite many studies, it is challenging to select the optimal process
conditions, including the temperature of the RDF gasification. Moreover, to the best of the
authors’ knowledge, there are no studies on the impact of pressure neither CO2 atmosphere
on RDF gasification. Therefore, the assessment of the influence of conditions on the RDF
gasification process is an important topic that requires further research, the results of
which may contribute to their utilisation. Such a solution will provide economic and
environmental benefits as it reduces the amount of wastes sent to landfills and allows
the energy recovery from a renewable source. The thermovolumetric method used by
the authors, which consists in analysing the composition of resulting gas, allows for a
comprehensive assessment of the gasification process also at elevated pressures. This
method enables assessment of the impact of RDF gasification conditions on the process
and the kinetics of main products formation, the carbon conversion degree, and quality
and quantity of gas obtained [23].

It is also worth emphasising that most research on the gasification process is carried
out on chars obtained from parent material; therefore, they do not include the pyrolysis
process. On the other hand, pyrolysis plays a crucial role—it affects the composition
and quantity of gaseous products and determines the properties of the resulting char [24].
Therefore, when examining the gasification process, in addition to the gasification reactions,
the pyrolysis stage should be taken into account. Moreover, pyrolysis and gasification
processes occur simultaneously in most gasification reactors currently used (fluidised and
entrained bed reactors). Hence, the RDF samples were gasified in the presented work, and
not samples of char formed in the pyrolysis.
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This study aimed to assess the impact of temperature and pressure conditions on
the gasification process of the alternative RDF fuel in an atmosphere of steam and carbon
dioxide. Isothermal gasification measurements were carried out at 700, 750, 800 and 900 ◦C
and 0.5, 1, and 1.5 MPa. During the gasification measurements, the concentrations of
gaseous products were measured, i.e., CO, H2, CH4, CO2 (CO2 concentration was measured
in case of steam gasification). The effect of conditions on the process was analysed based
on changes in the formation rates of (i) CO and H2 in case of steam gasification (C + H2O
→ CO + H2); and (ii) CO in case of CO2 gasification (C + CO2 → 2 CO). Moreover, the
yields of the individual gaseous components and the quality of the resulting gas were
assessed, and the maximum carbon conversion degree achieved during measurements
were analysed. The performed measurements made it possible to evaluate the influence of
temperature and pressure on the gasification process in various atmospheres and select the
optimal process conditions.

2. Material and Methods

Samples of RFD processed from municipal solid wastes were grounded and charac-
terised, including: (i) proximate analysis (TGA Thermostep analyser by Eltra, Warsaw,
Poland, AC calorimeter by Leco, Tychy, Poland); (ii) ultimate analysis (CHS-580 analyser by
Eltra); (iii) mercury content (DMA-80 analyser); and (iv) ash composition (Z-2000 Atomic
Absorption Spectrometer by Hitachi, Krakow, Poland).

The gasification measurements were performed using thermovolumetric laboratory
equipment presented in Figure 1, the detailed description of which is shown in [25].
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Figure 1. Laboratory equipment for examinations of gasification process: (1) fixed-bed reactor,
(2) water pump, (3) steam generator, (4) mass flow meter, (5) fuel feeder, (6) manometer, (7) cooler,
(8) condensate tank, (9) filter, (10) pressure regulator, and (11) rotameter.

The equipment consists of three main systems, namely: (1) a high-pressure fixed-bed
reactor with a heating system; (2) a system supplying gasifying medium (steam or CO2),
carrier gas (argon or CO2), RDF sample to the reactor; and (3) a system for analysing the
obtained gas. A quartz retort, diameter 20 mm, with a grate is placed inside the reactor.
The retort is cased with steel, heat-resistant jacket, diameter 169 mm. The ends of the jacket
are closed with lids fitted with pipes providing steam and argon* or carbon dioxide and
pipes discharging the formed gas. The retort is heated using an electric oven, the insulation
of which states mineral wool placed inside the casing. A thermocouple type K sensor
measures the temperature of the RDF sample with an accuracy of 2 ◦C. Additionally, the
sensor sends impulses to the controller-programmer, whose task is to maintain the required
sample temperature. The sample of RDF fuel is introduced onto the retort grate with the
use of a piston feeder. The movement of the piston is triggered by compression of gas inside
the feeder chamber. The gas formed during the measurements flows into the condenser to



Energies 2021, 14, 7502 4 of 15

separate tar and water, then is dried and cleaned on the filter and decompressed. After
that, the concentrations of carbon monoxide, methane and carbon dioxide* are measured
in a continuous way with the use of the Fuji Electric System gas analyser, based on the
absorption of infrared radiation. Moreover, samples of gas are collected into syringes at
specified time intervals in order to analyse the concentration of hydrogen with the use of
the Clarus 580 gas chromatograph with a thermal conductivity detector (TCD) by Perkin
Elmer.

The conditions under which the isothermal measurements were carried out are as
follows: temperature: 700, 750, 800, 900 ◦C; pressure: 0.5, 1, 1.5 MPa; carrier gas flow:
2 dm3/min, steam flow: 0.3 g/min; RDF sample mass: 0.5 g. The temperature conditions
were selected based on the authors’ previous experiences and a literature review [19,20,26].
When selecting the temperature, the critical guideline was to be in the kinetic region of
the reaction, i.e., below 1000 ◦C, and due to the high reactivity of the selected fuel, the
minimum temperature could be relatively low, i.e., 700 ◦C. In the case of pressures, there
are no literature reports on analysing its impact on RDF gasification. However, research on
gasification of other fuels indicates that total pressure increase may improve the gasification
process, but at high pressures (>1 MPa), this positive effect diminishes. Each measurement
was carried out at least twice to ensure repeatability of the results. In the above description,
symbol (*) applies to gasification with steam.

The measurements of concentrations of the resulting gas components allowed to
determine: (i) curves of changes in their formation rates over time; (ii) yields of gas
components and quality of the resulting gas (H2/CO ratio and lower calorific value); as
well as maximum carbon conversion degree achieved.

The curves of the formation rates of gaseous products over time were determined
using Equation (1).

dVi
dt

=
.

V·ci(t) (1)

where: t—time (min); V—volumetric flow of the resulting gas (cm3/min); ci(t)—concentration
of the individual product in the resulting gas at time t (vol.%).

The determined curves were used to calculate the yields of gasification products. The
yields of products corresponded to the area under their kinetic curves and were calcu-
lated based on Equation (2) (Equation (2) is an adaptation of the algorithm of numerical
integration using the trapezoidal method):

Vi =
.

V
∫ t

0
ci(t)·dt ≈ V ∑n

j=0

(
ci(j+1) + ci(j)

)
·
(

t(j+1) + t(j)

)
2

(2)

where: Vi—volume of a given product (cm3); ci(j+1)—concentration of a given product in
time t(j+1); ci(j)—concentration of a given product in time t(j).

Finally, maximum carbon conversion degree was calculated using Equations (3) and
(4) for gasification with steam and carbon dioxide, respectively:

α(t) =
[
VCO(t) + VCO2(t) + VCH4(t)

]
·MC

Vmol ·m·Cda f ·100% (3)

α(t) =
[
VCO(t) + VCH4(t)

]
·MC

2·Vmol ·m·Cda f ·100% (4)

where: α(t)—carbon conversion in time t(%), VCO(t), VCH4(t), VCO2(t)—a volume of a
given product formed from the beginning of the process to time t (cm3); MC—a molar mass
of C element

( g
mol

)
; m—a mass of the analysed coal sample (g); Cda f —dry and ash-free

carbon content (-); Vmol—a molar volume of gas
(

cm3

mol

)
.
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3. Results and Discussion
3.1. Characteristic of RDF

The characteristic of alternative fuel used for the research, supplemented with refer-
ence values for this type of fuel, are summarised in Table 1. The analysed RDF has high
carbon content, high HHV, and low moisture content compared to this type of fuel, proving
a high degree of MSW processing. Moreover, volatile matter and ash contents are also high
(within the upper limits of reference values), suggesting that the amount of char formed
during gasification measurements (in the pyrolysis stage) will be low, and its quality may
be inadequate. Interestingly, the analysed RDF has a very high hydrogen content, much
higher than typical refuse-derived fuels. It may be related to a significant share of plastics
in the analysed RDF sample [27]. Finally, the mercury content was determined since it is an
essential environmental indicator as it is toxic and can accumulate in living organisms [28].
The Hg content in the analysed fuel is relatively low, equal to 899 µg/kg. Therefore, it can
be concluded that the use of selected RDF as a fuel will be safe, especially that mercury
from RDF gasification is emitted into the atmosphere mainly in the removable form of
Hg(g)

2+ (~60%) [29].

Table 1. Characteristic of RDF.

Parameter RDF Refs. [27,28,30,31]

Proximate analysis (wt.%)
Moisture—Mad 2.13 <20

Ash—Aad 15.4 8–12
Volatile Matter—VMdaf 92.91 50–80
Fixed carbon—FCad * 5.85 9.20

Higher heating valuead (MJ/kg) 25.8 15–22.7
Ultimate analysis (wt.%)

Carbon—Cdaf 62.7 47–62
Hydrogen—Hdaf 24.5 6.25–8.97

Sulfur—Sdaf
t 0.75 0–0.5

Oxygen + Nitrogen—(O + N)daf * 12.1 -
Mercury—Hg (µg/kg) 899 156–4908

ad —air-dried state, daf—dry and ash-free state, t—total, *—calculated by difference.

The composition of ash from the analysed RDF is presented in Table 2. One can
be observed that the share of calcium oxide, considered compounds that catalyse the
gasification process [32], is the highest (above 40%). The ash also contains other catalytically
active components (e.g., oxides of iron, potassium, magnesium and sodium [33,34]), but
their shares are low. On the other hand, over 1/3 of the ash consists of compounds that
have an adverse effect on gasification reaction, such as Al2O3, SiO2 or P2O5 [35,36]. Thus,
the effect of ash on the RDF gasification process is difficult to predict.
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Table 2. Composition of RDF ash.

Parameter RDF

Ash composition (wt.%)
CaO 42.1
SiO2 19.8

Al2O3 12.1
TiO2 4.8
SO3 4.7

Fe2O3 4.0
MgO 2.7
P2O5 2.3

Cl 2.1
Na2O 1.9
K2O 1.5
ZnO 0.9
BaO 0.5

Cr2O3 0.4
Ag2O 0.2

3.2. Gasification of RDF in Steam Atmosphere
3.2.1. Changes in the Formation Rates of Gaseous Components

Figure 2 shows the changes in the formation rates of analysed gas components, i.e.,
carbon monoxide, hydrogen, carbon dioxide and methane, during steam gasification of
RDF (on the example of measurement at 800 ◦C and 1 MPa).
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Figure 2. Changes in the formation rates of gas components during steam gasification of RDF at
800 ◦C and 1 MPa.

At the initial stage of the RDF gasification, a dynamic increase in the formation
rates of all gas components may be observed. This increase was related to the thermal
decomposition of fuel, i.e., the pyrolysis process. During the pyrolysis stage, methane
was characterised by the highest formation rate, followed by hydrogen and finally carbon
monoxide and dioxide (formation rates of CO and CO2 were comparable). Then, a much
slower and longer RDF-char gasification took place. At this stage, H2, CO and CO2 were
formed, whereas methane was not observed. Moreover, the hydrogen formation rate was
the highest, and this gas, along with carbon dioxide, was formed during the whole char
gasification stage.

In contrast, the CO formation rate was the lowest, and the formation of this gas ends
earlier than other components formed during the gasification stage. The character of
the presented curves indicates that carbon-steam reaction (resulting in CO and H2) was
accompanied by secondary reactions, e.g., the water-gas shift reaction (WGSR), in which
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carbon monoxide is converted into carbon dioxide and hydrogen. The curves obtained
during gasification under different temperature-pressure conditions were similar to those in
Figure 1. The evident domination of the pyrolysis stage during gasification measurements
is related to the high volatile matter content in the analysed fuel.

3.2.2. Effect of Process Conditions on H2 and CO Formation Rates

As the main components of the synthesis gas from the steam gasification are hydrogen
and carbon monoxide, the effect of conditions on the process was assessed based on the
formation rates of these gases. Figure 3 presents changes in the formation rates of H2 and
CO during steam gasification of RDF at analysed temperatures and pressures.
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In each case analysed, as the process temperature increased, the intensity of the
pyrolysis stage increased significantly, resulting in higher H2 and CO formation rates.
However, this positive effect of temperature decreased with increasing pressure. The
effect of temperature on the char gasification stage was similar. At lower pressures (0.5
and 1 MPa), the increase in temperature generally increase formation rates of H2 and
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CO. Moreover, higher temperatures resulted in a prolonged time of carbon monoxide
formation (at the lowest temperature of 700 ◦C, CO was formed only in the pyrolysis stage).
This phenomenon may result from the low efficiency of the carbon-steam reaction at low
temperatures (such as 700 ◦C) and the conversion of CO formed in this reaction into CO2
and H2 during exothermic WGSR. However, as in the case of the pyrolysis stage, also
during the gasification stage, the positive effect of temperature on the formation rates
of main gas components decreased with increasing pressure. As a result, it was almost
invisible at the highest pressure of 1.5 MPa.

When analysing the effect of pressure, it can be seen that its increase negatively affects
the steam gasification process. In most cases, higher pressures resulted in a decrease in
rates of CO and H2 formation, both in the pyrolysis stage (especially in the case of H2 at
high temperatures) and gasification stage (especially in the case of CO, which at the highest
pressure of 1.5 MPa was practically not formed, even at high temperatures). The negative
effect of pressure on the release of gaseous products during pyrolysis is confirmed in the
literature [37,38]. It is also proved that high pressures favour higher char yields since they
inhibit evaporation and thermal ejection of compounds from the liquid intermediate phase
(compared to lower pressures) [39]. However, chars formed at high-pressure conditions
are generally characterised by low reactivity due to increased uniformity of carbonaceous
structure [40]. This phenomenon may explain a decrease in the formation rates of gas
components with increasing process pressure during char gasification. Moreover, an
increase in pressure changed the formation rate of CO and H2 in line with the predictions
of Le Chatelier’s principle.

3.2.3. Effect of Process Conditions on the Resulting Gas

The yields of the gas components obtained during steam gasification of the analysed
RDF under various conditions are shown in Figure 4.
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Based on Figure 4, general conclusions can be drawn that hydrogen is the dominant
product of the steam gasification of RDF, followed by carbon dioxide. The highest yields of
these gases indicate the importance of secondary reactions. Methane, being a product of
the pyrolysis stage, was in most cases the third most yielded gas component (although at
high temperatures and 1.5 MPa, its yields were greater than CO2), while carbon monoxide
was usually characterised by the lowest yields.
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As the temperature rises, the yield of carbon monoxide increases, which results from
the endothermic nature of the carbon-steam reaction; however, this increase diminishes
at higher pressures. In the case of hydrogen, the dependencies are analogous as for CO,
although, at the highest pressure, even a drop in H2 yield was observed above 750 ◦C.
This discrepancy may be because hydrogen was formed in various reactions, including the
exothermic WGSR, the efficiency of which may be adversely affected by high pressure [41].
In most cases, also methane yield increase with temperature, which results from increased
pyrolysis intensity at high temperatures. In turn, no unequivocal effect of temperature on
CO2 yield was observed.

When analysing the effect of pressure, it can be seen that it negatively impacts the
yields of most gas components, i.e., CO and H2 (especially at high temperatures) and
CO2. The only gas component that was positively influenced by an increase in pressure
was methane (the highest yields of CH4 were observed at the highest pressure). It is
probably due to the changes in secondary pyrolysis reactions, namely by favouring auto-
hydrogenation reactions at high pressures [42].

To assess the quality of the gas obtained under various conditions, the H2/CO ratio
and lower heating values were presented in Table 3.

Table 3. The H2/CO ratio and LHV of gas from steam gasification of RDF.

T/p
0.5 MPa 1 MPa 1.5 MPa

H2/CO LHV H2/CO LHV H2/CO LHV

700 ◦C 3.9 8.2 3.6 10.7 2.1 11.4
750 ◦C 4.5 11.1 4.0 11.1 2.8 12.0
800 ◦C 4.6 14.1 3.2 12.4 3.3 15.0
900 ◦C 3.9 11.9 3.6 10.9 2.1 16.2

The resulting gas was characterised by a high H2/CO ratio—in most measurements,
this value exceeded 3. The increase in temperature generally decreased this ratio, while
an increase in pressure had the opposite effect. In turn, the LHV of the resulting gas
ranges from 8.2 to 16.2 MJ/Nm3, and with an increase in temperature, this value generally
increases. On the other hand, the effect of pressure was ambiguous. However, gas obtained
during gasification at the highest pressure (1.5 MPa) was characterised by the highest LHV,
which results from the high percentage share of methane in this gas.

3.2.4. Effect of Process Conditions on Maximum Carbon Conversion Degree

Values of maximum carbon conversion degree achieved during steam gasification
of analysed RDF at various conditions are shown in Figure 5. Along with the increase in
process temperature, the values of the maximum conversion degree also increase, while the
increase in pressure decreases these values. As a result, the maximum carbon conversion
degree ranged between 22% (T—700 ◦C, p—1.5 MPa) and 56% (T—900 ◦C, p—0.5 MPa).
In addition, along with an increase in pressure, the effect of temperature on the carbon
conversion degree decreased. However, it should be noted that the maximum conversion
degrees achieved were low, regardless of process conditions. This phenomenon is probably
due to the high plastics content in the feedstock and the high intensity of the pyrolysis
stage, which favour the formation of liquid products during the process [27].
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3.3. Gasification of RDF in Carbon Dioxide Atmosphere
3.3.1. Changes in the Formation Rates of Gaseous Components

Figure 6 shows the changes in the formation rates of analysed gas components, i.e.,
carbon monoxide, hydrogen and methane, during CO2 gasification of RDF (on the example
of measurement at 800 ◦C and 1 MPa).
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Figure 6. Changes in the formation rates of gas components during CO2 gasification of RDF at 800 ◦C
and 1 MPa.

As in the case of gasification with steam, violent pyrolysis took place in the first
minutes of the measurements. During this stage, methane was characterised by the highest
release rate, followed by carbon monoxide and hydrogen (the formation rate of H2 was
minimal). After completion of thermal decomposition, the only component of the analysed
gas was carbon monoxide—the product of the Boudouard RDF char-CO2 reaction. The
curves obtained during gasification under different temperature-pressure conditions were
similar to those in Figure 6.

3.3.2. Effect of Process Conditions on the CO Formation Rates

As the main component of carbon dioxide gasification is carbon monoxide, the effect
of conditions on the process was assessed based on the formation rates of this gas. Figure 7
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presents the changes in the formation rates of CO during CO2 gasification of RDF at
analysed temperatures and pressures.
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As the process temperature increases, an increase in the carbon monoxide formation
rate was observed during the entire process, i.e., both pyrolysis and gasification stages. It
is related to the highly endothermic nature of the Boudouard reaction. Moreover, as in the
case of steam gasification, an increase in temperature extended the char gasification stage
(which at low temperatures and pressure of 0.5 MPa did not occur). On the other hand,
the effect of pressure is more complex—with increasing pressure, the maximum formation
rates of CO in the pyrolysis stage decreased, whereas in the gasification stage increased, but
only at low temperatures (700–750 ◦C). These results indicate that at low temperatures (in
which the gasification stage was not efficient), the increase in pressure improved the CO2
gasification reaction. This phenomenon is possibly related to an increased concentration of
active sites [43]. However, at higher process temperatures, the positive effect of pressure
was not observed.

3.3.3. Effect of Process Conditions on the Resulting Gas

The yields of the gas components obtained during CO2 gasification of the analysed
RDF under various conditions are shown in Figure 8.



Energies 2021, 14, 7502 12 of 15Energies 2021, 14, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 8. Yields of gas components formed during CO2 gasification of RDF at various temperatures 
and under: (a) 0.5 MPa; (b) 1 MPa; (c) 1.5 MPa. 

The results from Figure 8 confirm the conclusion drawn from the curves of CO for-
mation rates. The main component of the resulting gas was carbon monoxide, the yields 
of which increased due to an increase in temperature. In turn, an increase in pressure had 
a positive effect on CO yields only at low temperatures of 700–750 °C, wherein the greater 
the pressure increase, the lower the positive effect was. The second most-yielded gas com-
ponent was methane, and finally hydrogen (the yields of which was minimal). Both these 
gases were released only during the pyrolysis stage, and there was no unequivocal effect 
of process conditions on their quantity. 

In order to assess the quality of the gas obtained under various process conditions, 
the lower heating values were presented in Table 4. The H2/CO ratio was omitted due to 
the minimal content of hydrogen in the resulting gas. 

Table 4. The LHV of gas from CO2 gasification of RDF. 

LHV [MJ/Nm3] 

p\T 700 °C 750 °C 800 °C 900 °C 
0.5 MPa 19.9 19.7 17.0 16.8 
1 MPa 19.8 17.0 15.8 15.3 

1.5 MPa 17.9 16.2 15.6 15.4 

The LHV of the resulting gas was high—it ranges from 15.3 to 19.9 MJ/Nm3, and the 
influence of the process conditions on this parameter was unequivocal. Along with an 
increase in both temperature and pressure, the LHV decreased. This decrease was related 
to the decreasing percentage share of high calorific methane in the resulting gas, along 
with an increase in temperature and pressure. 

3.3.4. Effect of Process Conditions on Maximum Carbon Conversion Degree 
Values of maximum carbon conversion degree achieved during CO2 gasification of 

analysed RDF at various conditions are shown in Figure 9. 
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The results from Figure 8 confirm the conclusion drawn from the curves of CO
formation rates. The main component of the resulting gas was carbon monoxide, the yields
of which increased due to an increase in temperature. In turn, an increase in pressure had a
positive effect on CO yields only at low temperatures of 700–750 ◦C, wherein the greater
the pressure increase, the lower the positive effect was. The second most-yielded gas
component was methane, and finally hydrogen (the yields of which was minimal). Both
these gases were released only during the pyrolysis stage, and there was no unequivocal
effect of process conditions on their quantity.

In order to assess the quality of the gas obtained under various process conditions,
the lower heating values were presented in Table 4. The H2/CO ratio was omitted due to
the minimal content of hydrogen in the resulting gas.

Table 4. The LHV of gas from CO2 gasification of RDF.

LHV [MJ/Nm3]

p\T 700 ◦C 750 ◦C 800 ◦C 900 ◦C

0.5 MPa 19.9 19.7 17.0 16.8
1 MPa 19.8 17.0 15.8 15.3

1.5 MPa 17.9 16.2 15.6 15.4

The LHV of the resulting gas was high—it ranges from 15.3 to 19.9 MJ/Nm3, and the
influence of the process conditions on this parameter was unequivocal. Along with an
increase in both temperature and pressure, the LHV decreased. This decrease was related
to the decreasing percentage share of high calorific methane in the resulting gas, along with
an increase in temperature and pressure.

3.3.4. Effect of Process Conditions on Maximum Carbon Conversion Degree

Values of maximum carbon conversion degree achieved during CO2 gasification of
analysed RDF at various conditions are shown in Figure 9.
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Figure 9. Values of maximum carbon conversion degree during CO2 gasification of RDF at various
temperatures and pressures.

As CO was the dominant gas component of the analysed process, the yield of this
gas determined the carbon conversion degree achieved. Therefore, along with an increase
in process temperature, the values of the maximum conversion degree also increased. In
turn, an increase in pressure increased these values at 700–750 ◦C and decreased at higher
temperatures of 800–900 ◦C. As a result, the maximum achieved conversion degree ranged
between 12% (T—700 ◦C, p—0.5 MPa) and 46% (T—900 ◦C, p—0.5 MPa). Since the same
RDF was subjected to CO2 and steam gasification process, the maximum carbon conversion
degrees were also low in this case.

4. Conclusions

Based on the performed measurements, the effect of temperature-pressure conditions
on RDF gasification in steam and carbon dioxide was assessed. The vast majority of lit-
erature research on gasification process is based on the ex situ method, i.e., previously
prepared and cooled char is then used in the measurements. Therefore, to better reflect
the process of fuel gasification occurring in the commercial gasifiers, a new approach was
used, i.e., samples of fuel rather than its char were subjected to gasification measurements.
Moreover, the use of unique equipment (developed by the authors) based on the thermo-
volumetric method enables a much more reliable process analysis than the widely used
thermogravimetric method since it includes an analysis of sample reactivity and the quality
and quantity of the resulting gas.

In turn, to the best of the authors’ knowledge, the effect of high pressure on RDF
gasification has not been the subject of published studies so far. The results obtained during
the examinations also enable a preliminary assessment of RDF for the process of gasification
and can be used to model the process. The RDF selected for research was characterised by
especially high volatile matter, ash, and hydrogen contents compared to reference refuse-
derived fuels. The gasification measurements proved that increase in temperature from
700 to 900 ◦C has a positive effect on the process. During measurements, the formation
rates of main gas components (CO and H2 in steam gasification and CO in carbon dioxide
gasification) increased. Moreover, yields of these gases and maximum carbon conversion
degrees were improved. However, when this positive effect of temperature was lower, the
higher the pressure was.

On the other hand, the increase in pressure from 0.5 MPa to 1.5 MPa generally had an
adverse effect on the gasification process, regardless of the gasifying agent used. In most
cases, higher pressure caused deterioration of the analysed parameters. The exceptions
were the measurements at low temperatures (700–750 ◦C) in the atmosphere of carbon
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dioxide (when an increase in pressure resulted in higher CO formation rates during RDF-
char gasification stage as well as an increase in yields of CO and maximum conversion
degree achieved). The results obtained during the examinations enable a preliminary
assessment of RDF for the process of gasification.
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