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Abstract: CO2-based enhanced gas recovery (EGR) is an appealing method with the dual benefit of
improving recovery from mature gas reservoirs and storing CO2 in the subsurface, thereby reducing
net emissions. However, CO2 injection for EGR has the drawback of excessive mixing with the
methane gas, therefore, reducing the quality of gas produced and leading to an early breakthrough
of CO2. Although this issue has been identified as a major obstacle in CO2-based EGR, few strategies
have been suggested to mitigate this problem. We propose a novel hybrid EGR method that involves
the injection of a slug of carbonated water before beginning CO2 injection. While still ensuring
CO2 storage, carbonated water hinders CO2-methane mixing and reduces CO2 mobility, therefore
delaying breakthrough. We use reservoir simulation to assess the feasibility and benefit of the
proposed method. Through a structured design of experiments (DoE) framework, we perform
sensitivity analysis, uncertainty assessment, and optimization to identify the ideal operation and
transition conditions. Results show that the proposed method only requires a small amount of
carbonated water injected up to 3% pore volumes. This EGR scheme is mainly influenced by the
heterogeneity of the reservoir, slug volume injected, and production rates. Through Monte Carlo
simulations, we demonstrate that high recovery factors and storage ratios can be achieved while
keeping recycled CO2 ratios low.

Keywords: CCUS; CO2 storage; enhanced gas recovery; carbonated water; optimization

1. Introduction

The global demand for energy has been rising over the past few decades and is
expected to continue growing. In 2021 alone, this demand is projected to increase by
approximately 4.6% [1]. Expanding industries and the world’s continuously growing
population are major contributors to the global thirst for energy [2]. Despite significant
advancements in renewable energy technologies, fossil fuels still remain the dominant
source of world energy, and this trend is predicted to continue [3–5]. Currently, oil, natural
gas, and coal contribute more than 70% of primary energy consumed globally [6]. However,
a preference for natural gas is becoming evident, as it is considered a relatively cleaner
source of energy. The share of natural gas as a source of global primary energy has risen
from approximately 21% to 25% over the last decade, while comparatively, the shares of oil
and coal have dropped [7]. This suggests that natural gas is expected to play a significant
role in the global energy mix, especially for power generation and other important processes
such as water desalination [8–10].

In contrast to the rise in demand for natural gas, the discovery of new conventional
gas reservoirs has been decreasing. The global reserves-to-production ratio of natural gas
has gradually declined over the last two decades [7]. Easily recoverable gas has become
more difficult to find, yet the demand for it continues to rise. Therefore, it is crucial to
improve the recovery from existing reservoirs, which can be achieved through enhanced
gas recovery (EGR) processes [11,12].
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On the other hand, the consumption of natural gas for energy contributes to green-
house gas emissions. In 2020 in the United States, natural gas contributed to 34% of the
energy consumed and 36% of the emitted carbon dioxide (CO2) [13]. The world is cur-
rently striving to move to a net-zero carbon economy, and mitigating CO2 emissions is
an important step to this goal [14]. The use of CO2 for EGR is an appealing solution with
a dual benefit. First, CO2 is disposed of in deep depleted gas reservoirs, which have a
proven capacity to hold large amounts of gas for long periods of time, and second, an
incremental amount of natural gas is recovered, which can help to offset the cost of CO2
storage [12,15,16].

EGR involves the injection of a fluid that was not initially present in the gas reservoir to
improve recovery. The most common EGR mechanism is gas–gas displacement, which has
been widely studied both experimentally and numerically, and has been suggested as a way
to prolong the life of gas reservoirs and improve recovery [11,17–19]. Gas injection helps
to improve recovery via two main mechanisms: pressure maintenance, by replacing the
produced methane [20,21], and by displacing the in-situ natural gas towards the production
wells [11]. Gases that could be injected into the reservoirs for EGR include nitrogen and
CO2 [11,16]. While nitrogen serves as a viable fluid for EGR, particular emphasis has been
placed on CO2 because of the pressing need to reduce carbon emissions [22].

CO2-based EGR is promising in terms of improving gas recovery and storing CO2.
When CO2 is injected into gas reservoirs at elevated pressures and temperatures, it is
relatively denser and more viscous than the in-situ gas. This change in the thermodynamic
properties of CO2 helps to achieve a better displacement efficiency [23]. However, the
efficiency of this displacement is affected by the mixing of CO2 and methane. Despite
their density and viscosity contrasts, these two components are miscible at reservoir
conditions [22]. Their miscibility is driven by mechanical mixing, dispersion, and molecular
diffusion [18,24–27]. A major problem caused by this mixing is the early breakthrough
of CO2 to the production wells [19,28,29]. This mechanism is undesired as it leads to
poor gas recovery efficiency due to excessive CO2 recycling and gas contamination [23].
Furthermore, greater costs are incurred in separating the recycled CO2 from the natural gas
stream, leading to higher project CAPEX and OPEX associated with surface separation and
processing facilities [22,30]. Because of the higher density of CO2, density-driven dynamics
take place leading to the down-dip flow of the heavier fluid [31–33]. The presence of thief
layers or fractures at the bottom of the reservoir aggravates the problem as it can accelerate
the injected fluid breakthrough [34,35].

While mixing, early breakthrough, and consequently, excess recycling of CO2 have
been identified as major obstacles in implementing CO2-EGR, there has been little re-
search done on strategies to mitigate these phenomena. Furthermore, studies on the
co-optimization of CO2-EGR and CO2 storage are scarce in the literature, and the available
studies approach the problem from a deterministic point of view. In this study, we propose
a new CO2-based EGR method that involves two stages. This EGR method is applicable for
depleted gas reservoirs that have undergone the primary recovery stage. Such reservoirs
are generally at low pressures ranging from 2000–5000 kPa [12]. When pure CO2 is injected
at these pressures, it will be in the gas phase, and this will result in prominent mixing and
poor sweep and displacement efficiencies. Furthermore, the CO2 mobility will be high
leading to faster breakthrough and more recycling.

In our method, we propose to co-inject carbonated water and supercritical CO2. The
first stage involves the injection of a slug of carbonated water. This serves two main
purposes. First, the injection of carbonated water helps to build up the pressure before
beginning supercritical CO2 injection. Second, CO2 is disposed of in the aqueous phase, in
which it is stable and exhibits increasing solubility as the pressure builds up. Furthermore,
the presence of carbonated water, which is dense and flows down-dip to the bottom
of the reservoir, inhibits the mobility of free CO2. After a determined pore-volume of
carbonated water is injected, the second stage begins. In this stage, pure CO2 is injected in
its supercritical state. At the relatively higher reservoir pressure, CO2 has a better sweep
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and displacement efficiency, and its mobility is inhibited due to the presence of carbonated
water, therefore delaying breakthrough and reducing recycling.

In this work, we demonstrate the effectiveness of the proposed CO2-based EGR
method using reservoir simulation on a synthetic case and a real gas field. Furthermore, we
perform a rigorous sensitivity analysis and uncertainty assessment to identify important
uncertain and operation parameters that influence the processes under study. We also
carry out optimization to identify the ideal operation and transition conditions considering
methane recovery factor, CO2 stored, and CO2 recycled as our objective functions. These
objective functions are coupled in a global objective function which is maximized to co-
optimize between methane recovery and CO2 storage. The sensitivity analysis, uncertainty
assessment, and optimization are carried out as part of a structured Design of Experiments
(DoE) framework that approaches the problem in a non-deterministic manner.

This paper is organized as follows. We first review the governing equations of multi-
phase fluid flow in porous media. The reservoir models are then introduced, followed by
the proposed modeling workflow using a DoE. In the Results section, the thermodynamics
of CO2/water systems corresponding to CO2 solubility and phase behavior is validated
with measured data. The optimization approach is then applied for a synthetic case and a
3D field case. Finally, we provide the main conclusions.

2. Governing Equations
2.1. Flow Model

The governing equations for multiphase compositional flow in porous media are given
by the component balance equations, Darcy’s law, and the thermodynamic equilibrium
between the phases [36]. In this work, we neglect capillary pressure due to the negligible
interfacial tension in CO2-methane systems at the conditions of interest in this study [37].

The material balance for each component in the phases is given by:

φ
∂czi
∂t

+∇ ·Ui = 0 i = 1, . . . , nc (1)

where φ is the porosity, c is the overall molar density, zi is the overall mole fraction of
component i, Ui is the molar flux of component i, and nc is the total number of components.
The molar flux Ui is given by:

Ui = ∑
α

(cαxi,αvα + SαJi,α) (2)

where α is the phase (water, oil, or gas), cα is the molar density of phase α, xi,α is the mole
fraction of component i in phase α, vα is the phase velocity, Sα is the saturation of phase α,
and Ji,α is the diffusion flux of component i in phase α.

The global and phase compositions zi and xi,α respectively are constrained by the relation:

nc

∑
i=1

zi =
nc

∑
i=1

xi,α = 1 (3)

The velocity of each phase is given by Darcy’s law [38] as:

vα = −kkr,α

µα
(∇p− ραg) (4)

where k is the absolute permeability of the porous medium, kr,α, µα, and ρα are the relative
permeability, viscosity, and mass density respectively of phase α. p is the pressure and g is
the gravitational acceleration vector.

The diffusion flux J is given by the generalized Fick’s law [36,39]:

Jα = −cαDα∇xα (5)
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where Dα is the diffusion coefficient in phase α. For a multicomponent multiphase mixture,
Equation (5) in an expanded form is given by:

Ji,α = −cα

nc−1

∑
j=1

Di,j,α∇xj,α, i = 1, . . . , nc − 1 (6)

The diffusion flux is constrained by [40]:

nc

∑
i=1

Ji,α = 0 (7)

The equation for pressure is written based on the concept of volume balance [41]:

φξ
∂p
∂t

+
nc

∑
i=1

vi∇ ·Ui = 0 (8)

where ξ is the total fluid compressibility and vi is the total partial molar volume of compo-
nent i.

The local thermodynamic equilibrium is defined by the equality of the fugacities of
each component in the phases α1 and α2, that is:

fi,α1(T, p, xj,α1) = fi,α2(T, p, xj,α2), i = 1, . . . , nc, j = 1, . . . , nc − 1 (9)

In the above equation, fi,α is the fugacity of a component i in phase α, which can be
calculated using an equation of state.

2.2. CO2-Water Phase Behavior

Understanding the interaction of CO2 with water and the thermodynamic properties
of the resulting mixture is an important part of CO2 storage research. The dissolution
of CO2 in formation water is a primary CO2 trapping mechanism over the long term.
This reaction is relatively fast, and therefore, thermodynamic equilibrium is assumed.
This equilibrium is expressed as the equality of fugacities in the gas and aqueous phases,
such that:

fi,g = fi,aq, i = 1, . . . , nc (10)

where, fi,g is the fugacity of the ith component in the gas phase, and fi,aq is the fugacity
of the ith component in the aqueous phase. For CO2 gas, its fugacity in the gas phase is
related to its partial pressure by:

fCO2,g = ϕPCO2 (11)

where ϕ is the fugacity coefficient calculated from the Peng-Robinson EOS [42], and PCO2

is the partial pressure of CO2. In the aqueous phase, the fugacity of CO2 is calculated using
extended Henry’s law [43].

fCO2,aq = yCO2 HCO2 (12)

where, yCO2 is the mole fraction of CO2 in the aqueous phase and HCO2 is Henry’s
constant. In pure water, Henry’s constant in Equation (12) is calculated as a function
of pressure, temperature, the universal gas constant, and partial molar volume with respect
to a reference pressure, is given by:

ln HCO2 = ln H∗
CO2

+
vi(p− p∗)

RT
(13)

In saline water, a correction is made to Henry’s constant to account for salinity, as follows:

ln
(

Hs,CO2

HCO2

)
= ks,CO2 ms (14)
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where Hs,CO2 is Henry’s constant for CO2 in the brine, HCO2 is Henry’s constant for CO2 in
pure water, ks,CO2 is the Setchenov salting-out coefficient for a CO2-water aqueous phase,
and ms is the molality of the dissolved salt.

3. Mechanistic Simulations

In this study, we use CMG GEM v2019.1, a commercial simulator from Computer
Modeling Group (CMG). GEM is a fully-coupled compositional Equation of State (EOS)
simulator capable of modeling subsurface flow problems, including CO2 storage in oil and
gas reservoirs [44].

3.1. Synthetic Reservoir 2D Cross-Section

We first consider a 2D gas reservoir model of physical dimensions 500× 10× 100 m
representing a vertical (I-K) cross-section. The cross-section is discretized into a 50× 1× 20
regular Cartesian grid, as shown in Figure 1. There are 10 geological layers with varying
permeability. Each layer is assumed to be homogenous, and the physical properties are
uniform. The heterogeneity of the reservoir model is quantified by the Dykstra–Parsons
coefficient [45], which is 0.5 for the case shown. There are two vertical wells (an injector
and producer) completed across the entire thickness of the reservoir. Other physical,
initialization, and sensitivity parameters for the simulation model are summarized in
Appendix A, Table A1. The simulations of CO2-EGR and storage for the synthetic reservoir
cross-section are controlled by the constraints summarized in Table A2.
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Figure 1. 2D synthetic reservoir cross-section showing the geologic layers, grid discretization,
permeability distribution, and well completion.

For consistency, we define two dimensionless ratios that capture the production and
injection rates and the pressure at which EGR has commenced. These ratios are defined as:

• Productivity ratio—is the ratio of the production rate to the injection rate.
• Depletion pressure ratio—is the ratio of the pressure at the start of EGR to the original

reservoir pressure.

3.2. Real Reservoir 3D Sector

To demonstrate the proposed method in the presence of complex heterogeneities, we
consider a 3D sector from a real gas field as shown in Figure 2. The sector is approximately
3500× 4100× 500 ft in dimension and is discretized into a 63× 75× 32 Cartesian grid,
resulting in 151,200 grid blocks. The porosity varies between 0.05 and 0.23, while the
permeability varies from less than 1 mD to more than 1600 mD. There is one vertical
producer and one vertical injector. The producer is placed up-dip from the location of
the injector. Relevant physical and initialization parameters are summarized in Table A3.
Simulation constraints are presented in Table A4.
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Figure 2. View of the 3D reservoir sector showing the permeability distribution and placement of
the wells.

4. DoE Framework

We defined a Design of Experiments (DoE) workflow to perform sensitivity analysis,
uncertainty assessment, and optimization. The key steps of this workflow are presented in
Figure 3. We began by identifying and screening multiple possible uncertainty parameters.
We used 2-level Plackett-Burman analysis [46,47] because it is computationally inexpen-
sive [48]. However, in some cases, this design might not be enough to capture the response
surface accurately. Therefore, we switched to Latin Hypercube Sampling (LHS). Using the
experiments generated through LHS, we performed Sobol analysis [49] to identify the most
sensitive parameters. These are the parameters considered for the uncertainty assessment.
Furthermore, using the results of LHS sampling, we built a polynomial proxy model. We
verified the quality of the proxy model using blind tests. Once the quality of the proxy
model was verified, Monte Carlo simulations were performed using the proxy as part
of the uncertainty assessment. We also performed optimization using the proxy model
as part of the Latin Hypercube plus Proxy Optimization algorithm. The flowchart of the
optimization algorithm is presented in Figure 4.

The proposed EGR method was evaluated based on 3 main dimensionless objec-
tive functions; methane recovery factor, CO2 stored, and CO2 recycled. These objective
functions are defined as:

Recovery Factor =
CH4 mass produced

CH4 mass originally in place
(15)

CO2 Stored =
CO2 mass injected−CO2 mass produced

Maximum storable CO2 mass at target p, T
(16)

CO2 Recycled =
CO2 mass produced
CO2 mass injected

(17)

These objective functions are coupled in a linear global objective function of the
form aX1 + bX2 − cX3, which is maximized to identify the ideal operation and transition
conditions. The variables,X1, X2, and X3 are the recovery factor, CO2 stored, and CO2
recycled respectively while a, b, and c are bios coefficients that could be varied to reflect
the relative importance of the objective functions in the optimization.
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5. Results and Discussion
5.1. Simulator Validation

Prior to conducting multi-dimensional simulations, we performed controlled calibration
and verification of the simulator used to identify and assess the key governing mechanism
related to CO2-EGR and storage. These mechanisms were studied to ensure the accuracy and
representativeness of our simulation models. The investigated mechanisms include:

- CO2 solubility in water as a function of pressure, temperature, and salinity.
- CO2 density (molar volume) as a function of pressure and temperature.
- CO2-saturated water density as a function of pressure and temperature.
- Water vaporization as a function of pressure and temperature.
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The solubility of CO2 in pure water versus pressure and temperature is shown in
Figure 5. CO2 solubility increases with increasing pressure and decreases with increasing
temperature. The simulator calculates the fugacity of gas components soluble in the
aqueous phase using Henry’s law [43], as previously discussed. There is a good match
between the experimental data and the calculations for the range of data presented. The
model is also capable of calculating CO2 solubility in water at different salinities (see
Figure 6), where the method based on the Scaled Particle Theory by Li and Nghiem [51] is
used to correct Henry’s constants in the presence of salt.
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Figure 6. Solubility of CO2 in 0, 1, and 3 molal brine at 50 ◦C (left) and 100 ◦C (right) as a function of
pressure. The discrete points are experimental data presented in [53], and the continuous lines are
calculated by the simulator.

The density of the gaseous phase is calculated using the Peng-Robinson correla-
tion [42]. Figure 7 shows excellent agreement between the calculated density of CO2,
related to the molar volume by molar mass, and the experimental data for a range of
pressures and temperatures. The density of the aqueous phase considering dissolved com-
ponents is calculated using the Rowe-Chou correlation [54]. Figure 8 shows the density of
the CO2-saturated aqueous phase as a function of temperature and pressure. The aqueous
density increases with increasing pressure and decreases with increasing temperature.

Water vaporization enables the mobilization of previously immobile water at low
saturations, which could lead to salt precipitation [55,56]. The water content in the CO2-rich
gas phase as a function of temperature and pressure is shown in Figure 9, with a good
match between the calculations and the experimental data.
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temperature and pressure. The discrete points are experimental data from [52], and the continuous
lines are calculated by the simulator.

5.2. Benefit of Carbonated Water Injection

We performed mechanistic simulations to assess the feasibility of the proposed EGR
method, including sensitivity analysis to quantify the uncertainty and identify the optimum
transition and operation conditions. Each simulation covers four main periods. First,
natural depletion followed by carbonated water injection when the reservoir pressure
drops to a certain depletion pressure limit. After a defined volume of carbonated water
is injected, pure CO2 injection follows. Once the reservoir pressure reaches the original
reservoir pressure, injection is stopped.

Before carrying out a detailed sensitivity analysis, uncertainty assessment, and op-
timization, we compared two baseline cases to observe the difference between EGR that
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begins with pure CO2 injection and injection of a slug of carbonated water first. We observe
the flow patterns in the 2D cross-sections comparing the two cases, as shown in Figure 10.
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Figure 10. Overall CO2 mole fraction at different times for CO2 injection only (left) and carbonated
water combined with CO2 injection (right). The time is given in months since injection began.

Figure 10 shows a series of concentration maps comparing the flow and sweep patterns
of the case of CO2 injection only and the hybrid case of carbonated water combined with
CO2 injection. CO2 injection and carbonated water injection begin in their respective cases.
After 5 months, better sweep and displacement efficiency can be seen in the hybrid case. In
the hybrid case, the high permeability channels contain water which inhibits the mobility
of CO2 through these channels, unlike in the absence of carbonated water injection. After
13 months, the injection of the pre-determined carbonated water slug is completed, and
the hybrid case switches to pure CO2 injection. At 61 months, CO2 breaks through at the
production well in the case with no carbonated water slug injected. Comparatively, CO2
breaks through after 77 months in the hybrid case.

To understand the effect of the volume of carbonated water injected, we performed
several simulations with different slug volumes injected from 0 up to 0.1 pore volumes. We
compare these cases by the recovery factor, CO2 stored, and the number of pore volumes
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injected at the breakthrough time, which is a direct dimensionless indicator of breakthrough
time, as shown in Figure 11. The recovery factor slightly improves as more carbonated
water is injected. This behavior is attributed to the lower mobility of water, thus giving
a better displacement efficiency. However, the CO2 stored decreases if more carbonated
water is injected, which is attributed to carbonated water occupying potential storage space
in the reservoir. On the other hand, breakthrough is delayed for up to 0.1 PV of carbonated
water injected. The delay, however, approaches a plateau as more carbonated water is
injected. This points to a decreasing benefit as more water is injected.
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Figure 11. Recovery factor (top left), CO2 stored (top right), and PV injected at CO2 breakthrough
(bottom) as a function of carbonated water slug volume injected.

Considering the opposing trends observed in Figure 11, we couple these phenomena
in a single objective function to quantify the overall benefit of the proposed hybrid scheme.
When this objective function is plotted as a function of carbonated water slug volume, we
observe an increasing trend followed by a decrease, as shown in Figure 12. This suggests
that for up to some amount of carbonated water injected (~0.3 PV in this case), there is
a benefit. However, after this amount, there is no evident benefit in injecting a slug of
carbonated water considering recovery factor, CO2 stored, and breakthrough time.
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5.3. Sensitivity Analysis, Uncertainty Assessment, and Optimization

To understand the most dominant parameters influencing the proposed EGR method,
we initially performed sensitivity analysis, uncertainty assessment, and optimization on
the synthetic cross-section. This study was done following the DoE framework presented
in Section 4. The parameters analyzed are presented in Table A1. As part of the sensitivity
analysis, the influence of 9 parameters on the methane recovery factor, CO2 stored, and
CO2 recycled was investigated. The sensitivity was quantified by the Sobol method [49,58],
which is a variance-based sensitivity analysis method. About 108 experiments sampled us-
ing Latin Hypercube sampling were performed and were sufficient to capture the response
surface. The results of the sensitivity analysis are presented in Figure 13, where DP is the
Dykstra–Parsons coefficient to quantify heterogeneity, and “EGR Comm. Pressure” is the
pressure at which EGR begins.
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A 1% significance threshold was set to eliminate parameters, which did not influence
the objective functions. Considering this criterion, parameters chosen for uncertainty
assessment are:

- Dykstra–Parsons coefficient;
- Production rate;
- EGR commencement pressure;
- Carbonated water slug volume injected;
- Average permeability;
- Vertical to horizontal permeability ratio.

In the uncertainty quantification, a polynomial proxy model was built using 300 training
experiments and verified using 14 blind test cases. Figure 14 shows the proxy verification
for the main objective functions; recovery factor, CO2 stored, and CO2 recycled. The proxies
generated were accurate enough to be used in Monte Carlo simulations, with R2 values
above 0.9.
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Figure 14. Polynomial proxy verification for recovery factor (top left), CO2 stored (top right), and
CO2 recycled (bottom).

In the next step, the verified proxy was used for Monte Carlo (MC) simulation. Each
MC simulation uses 65,000 samples to ensure few gaps in the sampling space. Better space
filling in the sampling space generally gives better predictions [59,60]. The results for
methane recovery factor, CO2 stored, and CO2 recycled are shown in Figure 15. From the
MC simulation, the most likely methane recovery factor is ~94%. This is in agreement with
recovery factors from some gas reservoirs around the world, which have reached up to
~96% [61]. The possible recovery factors range between 90% and 98%. The most likely
value for CO2 stored as a percent of the maximum storable CO2 at the reservoir conditions
is ~79%. The range of possible storage ratios is from 71% to 87%. On the other hand, the
most likely value for CO2 recycled is ~16% of the injected CO2, while the possible range is
from 10% to 30%. These results are promising as they show a likelihood of achieving high
recovery factors while storing most of the CO2 injected using the proposed EGR method.
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Figure 15. Results from MC simulation showing the recovery factor (top left), CO2 stored (top right),
and CO2 recycled (bottom) with 65,000 runs.
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The polynomial proxy model built was used in the optimization algorithm described
in Section 4 to identify the optimum operation and transition conditions for the proposed
EGR method. This process is done by maximizing a global objective function that couples
the recovery factor, CO2 stored, and CO2 recycled. The algorithm analyzes 500 experiments
within the optimization framework, as shown in Figure 16.
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Figure 16. Evolution of the global objective function as the optimization algorithm tries to find an
optimum solution.

Initially, a set of experiments is generated by Latin Hypercube sampling and is used
to train a proxy model. Once the proxy model is generated, it tries to find an optimum
solution, which is validated by a full-physics simulation. In Figure 16, there is a jump
in solution quality when the proxy model begins the optimization at ~300 experiments.
This result shows the efficiency of the proxy model in finding possible optimum solutions.
Some outlier points are the result of the optimizer searching possible far-field solutions to
ensure it is not stuck at local maxima.

From the optimization study, the operation and transition conditions of the optimum
case were:

- Productivity ratio: 0.5;
- Depletion pressure ratio: 0.115;
- Carbonated water PV injected: 1.5%.

Comparing cases close to the optimum case, we identified that the lower productivity
and depletion pressure ratios resulted in the highest global objective function values. In
addition, a small PV ranging from 1% to 3% of carbonated water was beneficial. These
conditions resulted in the delayed breakthrough of CO2 and relatively higher methane
recovery factors.

5.4. Field Case (Viking Field)

Viking Field is a gas field off the coast of Lincolnshire, England, in the North Sea [62].
It lies in the Rotliegendes sandstone at an approximate depth of 9000 ft subsea [63]. Viking
Field has two main reservoirs which are currently depleted, Viking A and Viking B, and
several smaller gas pools which totally held approximately 3.6 Tcf of initial gas in place.
The produced gas from Viking Field contains 0.3–0.35 mol% of CO2 [64].

To demonstrate the proposed hybrid EGR method on a more complex multi-dimensional
domain, two cases were compared on a sector from the Viking B field. For computational ef-
ficiency, the depletion period was omitted, and the initialization reservoir pressure was set
to 300 psi, reflecting the actual abundant pressure of the depleted gas reservoir. Figure 17
shows the flow behavior in the sector as CO2 displaces methane and moves from the
injection well to the production well. The wells are placed in a quarter 5-spot pattern. At
time zero, injection begins in the respective cases. At 6 months, it is clear how the more
mobile CO2 is advancing faster through the higher permeability layers compared to the
carbonated water. At 22 months, carbonated water injection is completed, and pure CO2
injection begins in the hybrid case. At 129 months, breakthrough occurs in the CO2-only case,
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and the production well is shut-in due to excessive CO2 production. In comparison, CO2
breaks through in the hybrid case after 208 months, and the production well is also shut-in.
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Figure 17. Global CO2 mole fraction at different times for CO2 injection only (left) and carbonated
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The above demonstration of flow behavior and breakthrough time on a sector from
the Viking Field shows the potential applicability of the proposed hybrid method on more
complex multi-dimensional domains. It is, however, important to identify some of the
uncertainties associated with scaling up to the field level. The heterogeneity at the field scale
is a major source of uncertainty and directly impacts the flow behavior and breakthrough
of injected fluids. The available pore volume is also an inherent source of uncertainty,
as it affects the available space for CO2 storage. Furthermore, certain operational and
decisional parameters, for instance, well spacing, affect breakthrough and are parameters
to be considered in order to optimize the implementation of the method.
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5.5. Potential Field Applications, Economics, and Limitations

The proposed hybrid method is very novel and has not been deployed in any actual
gas fields as of now. Furthermore, this method has not been previously suggested in
published literature, to the best of our knowledge. However, co-injection of carbonated
water with supercritical CO2 for EGR is quite promising, as shown by the presented
simulation studies and the field demonstration using a sector from the Viking gas field.
Based on published works from the literature, we identify other candidate reservoirs which
could potentially benefit from the proposed hybrid method:

• Altmark Field in Germany is a gas field that has reached the tail end of its production
phase, with a recovery factor > 78%. The reservoir pressure in the more productive
Altensazwedel compartment of this field has dropped to 4000 kPa. Altmark Field
has been considered as a candidate for CO2 EGR coupled with storage, and several
studies have been done to investigate the feasibility of this [18,65,66]. The permeability
distribution in the Altensazwedel compartment is such that higher permeability layers
are lower in the compartment. Studies showed that the CO2 distribution in the
reservoir after injection was strongly linked to the heterogeneity configuration, and
breakthrough was likely to occur after ~96 months from the beginning of injection [67].

• K12-B Field is an offshore gas field located in the Dutch sector of the North Sea, which
was close to depletion when CO2 injection field tests were conducted [68,69]. Gas
production was from the Rotliegendes formation, with a heterogeneity configuration
similar to the Viking Field. Monitoring studies for the CO2 injection pilot showed
CO2 breakthrough to the production wells after 130 days for the first well and after
463 days for the second well [70].

• Otway CO2 storage project was the first CCS project implemented in Australia. Nat-
ural gas was produced from the Naylor Field, and CO2 injection was done into a
25–30 m thick sandstone reservoir in this field [71,72]. Monitoring studies showed the
injected CO2 form a plume that migrated up-dip to the production wells through the
more permeable layers in the mid-bottom of the reservoir. Tracers injected along with
the CO2 were observed at the production wells after ~150 days, pointing to an early
breakthrough [73].

From a technical perspective, the obtained results support the benefit of the hybrid
CO2 injection method. However, for implementation in actual fields, the effectiveness of
this method will be determined not only by its technical efficacy but rather by considering
the additional benefit it provides in terms of project economics, with or without exter-
nal incentives. The additional benefit given by the delayed breakthrough and extended
production period must be compared against the capital and operation cost of injecting
carbonated water. Various potential fields have different infrastructures in place, and the
additional cost value may vary significantly depending on the already available facilities
and the individual need for upgrades. Therefore, each candidate field must be evaluated in-
dividually to weigh the technical benefit of injecting carbonated water against the financial
cost of its implementation.

While the proposed hybrid method in this work is promising and shows good poten-
tial, it is necessary to highlight some of the limitations or possible challenges that could be
encountered while implementing this method. Some of these challenges include:

• The proposed method is dependent on the individual reservoir heterogeneity. There-
fore, each case must be individually evaluated in detail to determine whether this
method could be applicable and beneficial or not.

• Results have shown that up to 3% PV of injected carbonated water is beneficial. This
is a significant amount of water required for injection and could be a challenge for
fields that do not have an existing water supply available.

• The preparation of carbonated water in large quantities under desired pressure and
temperature conditions may require specialized processing facilities. This could be an
additional cost to the overall project expenses.
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• The dissolution of CO2 in water leads to the formation of carbonic acid. Carbonic acid
could lead to corrosion of steel tubes that are not corrosion-resistant.

6. Conclusions

In this work, we propose a novel CO2-based enhanced gas recovery (EGR) method
to mitigate the issue of early CO2 breakthrough and excessive recycling in CO2 EGR. We
use reservoir simulation to assess the feasibility and benefit of this method. We also define
a Design of Experiments (DoE) framework to understand the most dominant reservoir
and operational parameters affecting the proposed method. This DoE framework is also
used to quantify the uncertainty involved and perform optimization to find ideal operation
and transition conditions for the proposed method. The most salient conclusions from this
work include:

• Injection of a slug of carbonated water followed by CO2 injection is beneficial to
some extent considering three factors; recovery factor, CO2 stored, and CO2 break-
through/recycling. In this study, injection of up to ~3% PV of carbonated water was
most beneficial considering all three factors. Injection volumes more than this resulted
in no benefit compared to only CO2 injection.

• The recovery factor was mostly affected by the reservoir heterogeneity, depletion
pressure, and production rates. The CO2 stored was mainly affected by the pore
volume of carbonated water injected. This is because injection of any amount of water
occupied potential storage space in the reservoir. The CO2 breakthrough and recycling
were primarily affected by the production rates and reservoir heterogeneity as high
permeability paths allowed much faster CO2 breakthrough.

• In general, the proposed hybrid EGR method is significantly influenced by reservoir
heterogeneity. Compared to only CO2 injection, the method performs best in reservoirs
with high permeability paths in the bottom layers. For CO2 floods in gas reservoirs,
CO2 is denser than methane and flows to the bottom of the reservoir due to gravity
segregation. When it encounters high permeability paths at the lower layers, it is likely
to break through much faster. Injection of carbonated water becomes beneficial in such
reservoirs because water, also denser than methane and the in-situ brine, flows down
to the bottom of the reservoir. This water plugs the high permeability channels and
thus hinders the mobility of CO2, therefore, delaying breakthrough. This also forces
the CO2 injected after the water to go through lower permeability layers resulting in
more even sweep profiles.

• From the Monte Carlo simulations performed, the recovery factor is generally high,
and P10, P50, and P90 values fall above 90%. The CO2 stored ranges between ~70%
to ~90% of the maximum storable CO2 at the reservoir conditions. The CO2 recycled
ranges between ~10% to ~30%. These results are promising and show that with the
proposed EGR method, high recovery factors can be achieved while storing most of
the CO2 injected with low recycling rates.

• While the proposed method is promising in terms of improving recovery with high
storage ratios, it is necessary to weigh this benefit against the cost of implementing
the method. This should be done considering both environmental value and external
incentives in order to get an overall quantification of its effectiveness and feasibility.

• Modern reservoir simulators are powerful tools that can contribute to CO2 storage
research advancement. These simulators incorporate many mathematical and empir-
ical models that capture different physical phenomena. However, these models are
limited to particular ranges of conditions. It is crucial to first verify and properly cali-
brate simulation models to ensure representativeness and reliability of results before
moving to complex multi-dimensional problems. In this study, we take the time to
properly validate the simulator used and carefully select appropriate empirical models
to calculate important properties such as CO2 solubility for the range of expected
pressure, temperature, and salinity conditions.
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• Careful design of experiments combined with proxy modeling is a useful method to
exploit computational resources in an efficient manner. Proxy models, when carefully
built and verified, allow us to explore multitudes more scenarios compared to full-
physics simulations. Optimal solutions are arrived at much faster with proxy models,
and thousands of Monte Carlo simulations can be performed within a fraction of the
time taken on reservoir simulators. However, it is crucial to validate the results from
proxy models as they are not constrained by physics and sometimes give results that
violate fundamental physical relations, for instance, recovery factors greater than 1.
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Appendix A

Table A1. Reservoir and operation parameters in the synthetic simulation model (values defined as
ranges are parameters in the sensitivity analysis and uncertainty assessment).

Parameter Value/Range Unit

Original reservoir pressure 20,000 kPa
Reservoir temperature 75 ◦C

Porosity 0.3 -
Average permeability 50–500 mD

Dykstra-Parsons coefficient 0.5–0.9 -
kv/kh 0.1–0.5 -

Initial methane saturation 0.8 -
Irreducible water saturation 0.2 -

Salinity 0–3 molal
Molecular diffusion coefficient (aq) 0–1 × 10−5 cm2/s

CO2 injection rate 10 % PV/year
Carbonated water slug volume 0–20 % PV

Productivity ratio 0.5–1.5 -
Depletion pressure ratio 0.1–0.25 -

Table A2. Simulation constraints for the synthetic reservoir model.

Constraint Value Unit

Simulation time 100 years
Minimum allowed producer bottom

hole pressure (BHP) 2000 kPa

Maximum allowed injector BHP 20,000 kPa
Maximum allowed CO2 cut in

production stream 50 %
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Table A3. Reservoir and operational parameters for the 3D sector.

Parameter Value/Range Unit

Original reservoir pressure 3000 psi
Reservoir temperature 75 ◦C

kv/kh 0.2 -
Initial methane saturation 0.8 -

Irreducible water saturation 0.2 -
Salinity 1 molal

Molecular diffusion coefficient (aq) 1 × 10−5 cm2/s
CO2 injection rate 4 % PV/year

Carbonated water slug volume 2 % PV
Productivity ratio 0.25 -

Depletion pressure ratio 0.1 -

Table A4. Simulation constraints for the 3D reservoir sector.

Constraint Value Unit

Simulation time 100 years
Minimum allowed producer bottom

hole pressure (BHP) 300 psi

Maximum allowed injector BHP 3000 psi
Maximum allowed CO2 cut in

production stream 50 %
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