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Abstract: A 40 kW–4000 rpm interior permanent magnet synchronous machine (IPMSM) applied to
an electric vehicle (EV) is introduced as the study object in this paper. The main work of this paper is
theoretical derivation and validation of the first-order and multi-order transient lumped-parameter
thermal network (LPTN) for the development of a fast thermal model. Based on the first-order LPTN
built, the study finds that the heat transfer coefficient of fluid and thickness of the air gap layer are
the main influencing factors for the final temperature and time of reaching the steady state. The
larger the heat transfer coefficient of fluid is, the lower the steady node temperature is. The smaller
the air layer thickness is, the lower the steady node temperature is. The multi-order LPTN theory is
further deduced based on the extension of the first-order LPTN. For the constant load and rectangular
periodic load, transient node temperatures of the IPMSM are obtained by modeling and solving the
first order inhomogeneous differential equations. Temperature rise curves and efficiency maps of the
IPMSM under load conditions are realized on a dynamometer platform. The FLUKE infrared-thermal
imager and the thermocouple PTC100 are used to validate the mentioned method. The experiment
shows that the LPTN of the IPMSM can accurately predict the node temperature.

Keywords: interior permanent magnet synchronous machine (IPMSM); lumped-parameter thermal
network (LPTN); conduction and convection

1. Introduction

The IPMSM has high power density and torque density, which is widely used as an
EV powertrain. The large amount of heat as a byproduct causes a significant temperature
rise in the motor. Therefore, it is necessary to accurately predict the motor temperature
distribution in advance.

A lumped-parameter thermal network (LPTN) model is always used to predict the
node temperature of various electric machines. Transient temperature rises of part nodes
are calculated by solving differential equations [1–10].

A full-order LPTN model was built in [1,2]. The LPTN model, combining electromag-
netic finite-element analysis (FEA) with a thermal resistance network, is built based on the
law of heat flux balance in two continuous iterative calculations [1]. The steady-state and
transient-state solution of the LPTN model are solved numerically with the fourth-order
Runge–Kutta method and the Gauss–Seidel method to predict the temperatures of a 7.5 kW
induction machine [2].

A low computational cost thermal model with order reduction is built for the online
prediction of the winding temperature of PMSMs. A set of experimental measure tempera-
tures from direct current (DC) tests is used for calibrating the generic thermal model of
induction machines. At the same time, several duty cycles are considered in [3–7].
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An infrared thermal imager was adopted to validate surface temperature distribu-
tion [8,9]. A convective heat transfer coefficient has a big impact on the temperature rise of
the machine [10–12]. The heat transfer coefficient is deduced theoretically in [8], analyzed
by a coupled electromagnetic and thermal model in [9] or evaluated by the average Nusselt
number in the stator channels between adjacent teeth [10]. The steady-state thermal net-
work analysis and experiment of a 25 kW IPMSM with “—” type PM per pole was finished
in [13].

Although the above studies have carried out a lot of valuable work in predicting the
temperature rise of nodes, some aspects still need improvement as follows.

A complex steady or transient LPTN needs to calculate many geometric and thermal
parameters, such as heat capacity, thermal resistance and power loss. In order to reduce the
computation burden, it is necessary to analyze a reduced-order model. A full LPTN model
usually consists of basic first-order transient thermal network elements. Differences in the
type of thermal network unit and factors influencing its temperature rise are not analyzed.
In addition, the change in node temperature rise under complicated conditions is seldom
discussed in the above studies.

In this paper, thermal resistance value is comparatively calculated for the “H”, “+”
and “I” types of LPTN units. The first-order LPTN is studied using the exponential decay
function and the exponential iteration method. A multi-order transient LPTN method
of the IPMSM is derived, which takes constant load and rectangular periodic load into
account. The exponential decay fit function from the first order to the third order is used to
match the measured temperature curve of stator winding. Finally, an IPMSM prototype
with a 48-slot/8-pole combination is manufactured and tested. A load experiment is set up
under the condition of multiple load cases. Winding temperature, phase current waves,
efficiency map and infrared thermal image are measured using the dynamometer platform.

2. Thermal Resistance Calculation of Thermal Network Unit

Based on three types of thermal network unit, namely “H”, “+” and “I” type, the ex-
ponential decay function method and the exponential decay iteration method are deduced.
The two methods are used to calculate the first-order LPTN. For a given constant power
loss and total heat flux, the bigger the convection heat transfer coefficient value, the lower
the steady-state temperature of the yoke iron core. The geometry parameters of a general
hollow cylinder and its unfolded brick are given in Figure 1. It also considers different heat
source locations relative to the center of mass [14]. The definitions of the parameters are
given in Figure 1.
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Figure 1. Component definition (a) hollow cylinder, (b) unfolded brick.

Thermal network units of “H” type, “+” type and “I” type are adapted to the geo-
metric shape of torus and brick. Thermal network units of “H” type, “+” type and “I”
type define thermal resistance, thermal capacitance, and power loss, which are shown in
Figure 2a–c, respectively.
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Heat resistance Rcond is the inverse of heat conductance Gcond, which is given by [14]

Rcond =
l

λAsec
, Gcond =

1
Rcond

(1)

where l is the length in the direction of thermal conductivity (m), λ is the coefficient of
thermal conduction (W/m·K) and Asec is the cross-section perpendicular to the direction of
thermal conduction (m2).

The equivalent thermal conductance Gmat1,2 of two kinds of materials with or without
assembly clearance is considered as follows [14].{

Gmat1,2 = 1
1/Gmat1+1/Gair+1/Gmat2

Gmat1,2 = 1
1/Gmat1+1/Gmat2

(2)

where Gair is the thermal conductance of air.

2.1. Thermal Network Unit of “H” Type

The thermal network unit of “H” type includes radial and axial thermal resistance
(R1r, R2r, R1a, R2a), which are given in Figure 2a and Table 1.

Table 1. Thermal resistance definition of “H” type [15–19].

Radial R1r, R2r, R3r Axial R1a, R2a, R3a

R1r =
1
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2.2. Thermal Network Unit of “+” Type

The thermal network unit definition of “+” type includes radial and axial thermal
resistance (R1r, R2r, R1a, R2a), as shown in Figure 2b. We assume here that heat source
location coincides with a center of mass. Here, middle radius is given as rm = (r1 + r2)/2.
Its thermal resistance is calculated in Table 2.

Table 2. Thermal resistance definition of “+” type.

Radial R1r, R2r Axial R1a, R2a

R1r = R2r =
(r1−r2)
4λrπrm l R1a = R2a = l

2λa(r2
1−r2

2)

2.3. Thermal Network Unit of “I” Type

The thermal network unit definition of “I” type only includes radial thermal resistance,
which are R1r and R2r, as given in Figure 2c and Table 3.
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Table 3. Thermal resistance definition of “I” type [6].

Radial R1r Radial R2r

R1r =
1

2πλr l ln
(

rm
r2

)
R2r =

1
2πλr l ln

(
r1
rm

)

Take stator yoke iron core as example; its dimensions are Φyo_o×Φyo_i×Lef: 208 × 178
× 120 (mm). According to theoretical equations of thermal resistance unit in Tables 1–3,
the calculation results of three kinds of thermal network unit are given in Table 4.

Table 4. Thermal resistance results with three methods.

Thermal
Resistance Radial Rr (K/W) Axial Ra (K/W)

“H” type
R1r 0.0023 R1a 1.466
R2r 0.0022 R2a 1.466
R3r −7.63 × 10−4, R3a −0.489

“+” type R1r 0.0023 R1a 1.466
R2r 0.0023 R2a 1.466

“I” type R1r 0.0024 — —
R2r 0.0022 — —

Due to radial thermal conductivity λr = 45 W/(m·K) being much larger than axial ther-
mal conductivity λa = 4.5 W/(m·K), radial resistance Rr is much less than axial resistance Ra.
For the thermal network unit of the stator iron core and rotor iron core, heat transfer in the
axial direction may be negligible. Therefore, we can approximately substitute “I” type for
“H” type and “+” type, which can obviously reduce matrix size and computational burden.

3. Transient Thermal Network Method of First Order

In this section, a multi-node LPTN model of IPMSM is established based on the “+”
type of thermal network unit. A heat capacity matrix, thermal conductivity matrix and node
loss matrix of LPTN are established. A first-order, non-homogeneous linear differential
equation is solved through discretization, and the temperature rise curves of each node
changing with time step iteration are obtained. Operating conditions considering copper
resistivity variation are analyzed based on the LPTN.

3.1. First-Order Transient LPTN Theory

Thermal flux qsec (heat flow intensity) through the unit section area (W/m2) is given as

qsec = λ
∂T
∂d

= h(Tact − T0) (3)

where h is the convection heat transfer coefficient (W/m2·◦C), Tact is the actual temperature
of the steady state (◦C), T0 is ambient temperature(◦C) and d is thickness in the direction of
heat conduction (m).

Thermal flux qsec through cross-sectional area Asec is a constant. It eventually reaches
the steady-state temperature (generated heat equals dissipated heat) by convection, as
shown in

Ploss(t) = h( Tact(t)− T0 )Asec = qAsec (4)

where Asec is the outer circumferential surface area of the stator yoke iron core (m2).
The temperature rise T(t) is described by an exponential decay function as below.

T(t) = Ploss(t)Req

(
1 − e−t/(ReqCeq)

)
(5)
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Tact(t) = T(t) + T0 (6)

where Req is equivalent thermal resistance (Req = Rcond + Rconv) and Ceq is equivalent thermal
capacity (Ceq = C).

It is assumed that the stator yoke core generates a continuous power loss of Psta_yo = 410 W
(heat source Psta_yo is constant) and is dissipated by a single end face. If the LPTN unit
is composed of a single heat source, its thermal resistance and thermal capacity are as
shown in Figure 3a. The heat is transferred in a single direction, and its corresponding first
thermal network is defined in Figure 3b. The heat transfer process is defined from one end
face to another, which leads to a temperature rise (Tact-T0) in the yoke iron core. Similarly,
the first-order model and its thermal network with air clearance are given in Figure 4a,b.
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If an end face has convection with the ambient air, thermal-convection resistance Rconv
should be connected with thermal-conduction resistance Rcond in series. The smaller the
convective thermal resistance, the stronger the convective heat transfer ability; the range
covers air cooling to water cooling. The more heat is dissipated to the ambient air, the
lower the temperature rise of the cuboid itself. If there is no convective thermal resistance
Rconv to the ambient air, the boundary of the cuboid is an isothermal boundary, which
reaches the limits of the thermal convection capacity.

When the convective heat transfer coefficient α takes different values with or without
assembly clearance (hac = 0.03 mm), the transient temperature curve with time is obtained,
as shown in Figure 5. For the given stator yoke loss (Psta_yo = 410 W), the time of reaching
the node steady temperature depends on the cooling ability of heat dissipation to the
ambient air and thermal resistance along the heat transfer path. In other words, the
increase in heat transfer convection coefficient α and the decrease in assembly clearance
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help to reduce the node temperature rise and shorten the time to reach the steady state
(about 2500 s).
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3.2. Multi-Order LPTN Theory

The transient temperature rise can be solved by the following differential equation.

Q(t) = ρVc∆T = C∆T = [P(t)− GT(t)]∆t (7)

.
T(t) >>

T(t + ∆t)− T(t)
∆t

= C−1[P − GT(t)] (8)

where the part density ρ, part volume V, part mass m, specific heat capacity c and thermal
capacity C are nxn diagonal matrixes, respectively. ∆T is the column vector of the tempera-
ture difference value. Q(t) is the quantity of heat and P(t) is the power loss of part node
(W). G is the nxn thermal conductivity symmetric matrix (W/◦C). T is the column vector of
temperature rise (◦C).

If the change in resistivity caused by temperature rise is considered, the loss matrix
P(t) should update in every time step. The change rate of the temperature rise matrix can
be obtained by solving the first-order inhomogeneous differential equation T(t).

.
T(t) = C−1P(t)− C−1GT(t) (9)

The general solution of the first-order inhomogeneous differential equation is the sum
of the general solution of the corresponding homogeneous linear equation and a particular
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solution of the inhomogeneous linear equation, where the constant term of the general
solution of the homogeneous linear equation is Ccon = T(t0).

T(t) = T(t0)e−C−1G(t−t0) +
∫ t

t0

e−C−1G(t−τ)dτC−1P(t) (10)

The continuous equation in (10) is discretized with (11). At time (n + 1)∆t and n∆t, the
temperature relation between T[(n + 1) ∆t] and T(n∆t) is given by

T[(n + 1)∆t] = e−C−1G∆tT(n∆t)− G−1C
(

e−C−1G∆t − I
)

C−1P(n∆t), n = 0, 1, 2 · · · (11)

The actual temperature Tact(n∆t) of each node is the sum of the ambient temperature
Tamb and the node temperature rise T(n∆t).

Tact(n∆t) = Tamb + T(n∆t) (12)

When the convergence criterion (T(n + 1) ∆t − T(n) ∆t)/T(n + 1)∆t < ε is satisfied,
the iteration process is terminated. We assume nmax∆t−τ is equal to u. The steady-state
temperature rise calculation is simplified as

T(nmax∆t) =
∫ nmax∆t

t0

e−C−1G(nmax∆t−τ)dτC−1P(t) = G−1P(t) (13)

According to Equations (7)–(13), the flow chart of the transient temperature rise
calculation of IPMSM is given in Figure 6. The flow chart also describes the change process
from ambient temperature Tamb to steady-state temperature Tmax.
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4. Transient Thermal Network of IPMSM

A half 40 kW IPMSM model and LPTN of temperature node distribution are built for
its axial symmetry in Figure 7a,b in this paper. For the transient thermal network model,
the IPMSM model is divided into the following 14 parts: (1) outer shell, (2) inner shell, (3)
stator yoke, (4) stator tooth, (5) slotted winding, (6) end winding, (7) rotor shoe, (8) PM, (9)
rotor yoke, (10) shaft, (11) end cap, (12) bearing, (13)–(14) inner air, (a), (c), (d) ambient air
and (b) water.
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Main heat generated by losses is taken away by circulating coolant in the shell. There-
fore, the shell is divided into the outer shell (1# node) and the inner shell (2# node)
considering heat convection. Due to the flux density difference between the stator tooth (3#
node) and the stator yoke (4# node), losses of stator tooth and stator yoke are considered
separately. Similarly, rotor iron loss falls into the rotor shoe (7# node) loss and the rotor
yoke (9# node) loss. The winding is divided into slotting winding (5# node) and end
windings (6# node). The end cap (11# node) and the shaft (10# node) are regarded as single
non-heat source nodes. The wind friction loss is exerted on the rotor shoe (7# node). Loss
values for the heat generation are applied to heat source nodes of the IPMSM.

For the non-heat source nodes, thermal capacity and thermal resistance connected
with adjacent nodes are considered. For the heat source nodes, thermal capacity, power
loss and thermal resistance are considered. The transient thermal network model is given
in detail in Figure 7b.

The main parameters of IPMSM are given in Table 5. Loss values for the heat genera-
tion are applied to the IPMSM parts. Loss values at rated load and node number are also
given in Table 6 for the volume heat generation of IPMSM parts.
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Table 5. IPMSM Dimensions and Parameters.

Parameter Value

Bus voltage Udc [V] 360 Number of turns per coil Ns 10
Rated power Pn [kW] 40 Length of air gap δ [mm] 1.5
Rated speed n [rpm] 4000 PM thickness hpm [mm] 6
Inner diameter of stator iron Dsi [mm] 150 Number of stator slots Q 48
Outer diameter of stator iron Dso [mm] 208 Number of pole pairs p 4
Length of stator iron Lef [mm] 160 Winding connection Y
Number of parallel branches a 2 Coolant flow speed V [L/min] 8

Table 6. Loss value of IPMSM parts.

Parameter Symbol Value No.

Stator yoke loss [W] PFej 410 3
Stator tooth loss [W] PFet 282 4
Slot winding loss [W] PCu1 810 5
End winding loss [W] PCu2 651 6
Rotor pole shoe loss [W] Pros 20 7
PM eddy loss [W] Ppm 38 8
Rotor yoke iron loss [W] Proy 45 9
Bearing loss [W] Pbe 0.11 12
Air friction loss [W] Pair 20 13

Loss values at 40 kW power and speed of 4000 rpm.

5. Load Case Analysis and Experiment

Transient temperature rise considering actual copper resistivity and intermittent
condition is analyzed in this section.

5.1. Consant Load Considering Copper Resistivity

Winding copper loss PCu of two groups of phases, phase resistance R and copper
resistivity ρ considering electrical resistivity variation with temperature are defined as:

PCu = mI2R0(1 + αT) = mI2R20(1 + α(T − 20))
R = ρ0(1 + αT) L

S = ρ20(1 + α(T − 20)) L
S

ρ = ρ0(1 + αT) = ρ20(1 + α(T − 20))
(14)

where T0 is ambient temperature (◦C), ρ0 is the electrical resistivity of copper at 0 ◦C
(ρ0 = 0.0165 Ω mm2/m), ρ20 is the electrical resistivity of copper at 20 ◦C
(ρ20 = 0.0176 Ω mm2/m), and α is the temperature coefficient of copper (α = 0.0039/◦C).
The winding copper resistivity ρ increases slightly with the increase in temperature T as
shown in Figure 8.



Energies 2021, 14, 7455 10 of 17

Energies 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

End winding loss [W] PCu2 651 6 
Rotor pole shoe loss [W] Pros 20 7 
PM eddy loss [W] Ppm 38 8 
Rotor yoke iron loss [W] Proy 45 9 
Bearing loss [W] Pbe 0.11 12 
Air friction loss [W] Pair 20 13 
Loss values at 40 kW power and speed of 4000 rpm. 

5. Load Case Analysis and Experiment 
Transient temperature rise considering actual copper resistivity and intermittent 

condition is analyzed in this section. 

5.1. Consant Load Considering Copper Resistivity 
Winding copper loss PCu of two groups of phases, phase resistance R and copper 

resistivity ρ considering electrical resistivity variation with temperature are defined as: 

( ) ( )( )
( ) ( )( )
( ) ( )( )

2 2
Cu 0 20

0 20

0 20

1 1 20

1 1 20

1 1 20

P mI R T mI R T

L LR T T
S S

T T

α α

ρ α ρ α

ρ ρ α ρ α

 = + = + −

 = + = + −

 = + = + −

 (14)

where T0 is ambient temperature (°C), ρ0 is the electrical resistivity of copper at 0 °C (ρ0 = 
0.0165 Ω mm2/m), ρ20 is the electrical resistivity of copper at 20 °C (ρ20 = 0.0176 Ω mm2/m), 
and α is the temperature coefficient of copper (α = 0.0039/°C). The winding copper 
resistivity ρ increases slightly with the increase in temperature T as shown in Figure 8. 

 
Figure 8. Copper resistivity variation with temperature. 

Based on the LPTN of IPMSM in Figure 7b and Equations (7)–(13), transient node 
temperature curves of the main heat sources are given in Figure 9. 

Figure 8. Copper resistivity variation with temperature.

Based on the LPTN of IPMSM in Figure 7b and Equations (7)–(13), transient node
temperature curves of the main heat sources are given in Figure 9.
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Figure 9. Transient temperature curve of different parts considering constant load.

First-order, second-order, and third-order exponential decay functions are used to
predict the transient winding temperature for two operating points, which are given as

y1th(x) = A1e−x/t1 + y0
y2th(x) = A1e−x/t1 + A2e−x/t2 + y0
y3th(x) = A1e−x/t1 + A2e−x/t2 + A3e−x/t3 + y0

(15)

where y0 is the offset distance; A1~A3 are amplitude; t1~t3 are the decay constant.
The parameters of three kinds of exponential decay functions are calculated by origin

as shown in Table 7.
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Table 7. Loss value of IPMSM parts.

Order
Sym Value Sym Value

3000 rpm—40 kW 6000 rpm—40 kW

1st
y0 106.69 y0 80.18
A1 −78.64 A1 −49.16
t1 190.44 t1 300.55

2nd

y0 109 y0 81.3
A1 −38.21 A1 −12.23
t1 372.11 t1 29.82
A2 −46.26 A2 −44.03
t2 100.99 t2 371.06

3rd

y0 109 y0 81.3
A1 −23.13 A1 −12.23
t1 101.01 t1 29.82
A2 −23.13 A2 −21.95
t2 100.97 t2 371.08
A3 −38.21 A3 −22.08
t3 372.11 t3 371.05

Comparison between the measured transient winding temperature and nonlinear
exponential fit curves are given for two operating points. The first operating case in
Figure 10a is line voltage Uab = 196.6 V, phase current Ia = 203.1 A, speed n = 3000 rpm and
Pn = 40 kW. The second operating case in Figure 10b is line voltage Uab = 245.6 V, phase
current Ia = 119.2 A, speed n = 6000 rpm and Pn = 40 kW. Winding temperature reaches the
steady state after 1600 s, which benefits from the excellent heat dissipation of the water
cooling. We can see from Figure 10 that the exponential decay fit function of the second
order and the third order has higher accuracy than that of the first order.
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5.2. Rectangular Wave Load

The copper loss curve of the rectangular periodic wave is discontinuous at the or-
thogonal turning point. Therefore, copper loss curve data expressed by Fourier series are
loaded discretely. Slotting winding loss and end winding loss are applied to corresponding
objects in the form of Fourier series. We set a period of 120 s and run 15 cycles. Winding
loss is given as

Pslo_win(t) = αdt(Aslo_win1 − Aslo_win2) + Aslo_win2

−
∞
∑

n=1

1
nπ

(
2(Aslo_win1 − Aslo_win2)·

sin(αdtnπ) cos(nωt − αdtnπ)

)
Pend_win(t) = αdt(Aend_win1 − Aend_win2) + Aend_win2

−
∞
∑

n=1

1
nπ

(
2(Aend_win1 − Aend_win2)·

sin(αdtnπ) cos(nωt − αdtnπ)

) (16)

where αdt is the duty cycle (here αdt = 0.5), Aslo_win1 and Aslo_win2 are the upper and lower
values of slotting winding loss (W), Aend_win1, Aend_win2 are the upper and lower values of
end winding loss (W), respectively, and ω is the angular frequency (rad/s).

Rectangular wave loss of slotting winding and end winding is given in Figure 11. A
rectangular periodic step torque from light load to heavy load is simulated, which leads
to the change of winding loss (Aslo_win1 = 810 W, Aslo_win2 = 203 W, Aend_win1 = 651 W,
Aend_win2 = 155 W). The thermal source matrix is updated at every time step and transient
temperature curves of slotting winding and end winding are given in Figure 12. We can
find that the calculation result of LPTN agrees well with the outcome of the experiment.
For the slotting winding at the steady state, there is about an 8 ◦C error between the
measurement value and the LPTN value. The reason for the higher value is that the value
of thermal resistance or winding loss may be high for single node modeling.
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Figure 11. Slotting and end winding losses in the form of rectangular wave load.
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Figure 12. Transient temperature curve of end and slotting winding considering rectangular
wave load.

In order to verify the LPTN model, the prototype of 48-slot/8-pole IPMSM with “V”
type rotor and ISDW stator is designed and manufactured. The stator and rotor are shown
in Figure 13. A load test platform is established to validate its temperature rise and output
characteristics, as shown in Figure 14.
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The measured phase current wave using three AC current clamps under rated load
conditions is shown in Figure 15A, whose peak value reaches 232 A. The phase current
under overload conditions is obtained in Figure 15B, whose peak value reaches 382 A.
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The temperature of the IPMSM parts is measured by thermocouple PTC100 and a
FLUKE infrared imaging device. Thermocouple temperature sensors PTC100 are inserted
into slotted windings for measuring the temperature of the slotted winding. The outer
surface temperature of the IPMSM is measured by using a FLUKE infrared imaging device
in Figure 16.
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The measured IPMSM efficiency versus different load torques at 3000 rpm and
6000 rpm are given in Figure 17. We found that efficiency is higher at a rated speed
of 3000 rpm. Due to a large copper loss and iron loss in the field-weakening region, effi-
ciency is relatively low. A measured IPMSM efficiency map including constant torque and
constant power operating regions is given in Figure 18. The operating point of the NEDC
duty cycle is also obtained by the test platform as shown in Figure 18. We found that the
maximum efficiency of IPMSM reaches about 97%; however, the relatively low efficiency
in the constant power operation region ranges from 80% to 87% for the NEDC duty cycle.
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6. Conclusions

The method of the first-order LPTN is deduced by solving the non-homogeneous
linear differential equation. The results show that the heat transfer coefficient of fluid and
thickness of air gap layer are the main influencing factors for reaching a steady temperature.
The larger the heat transfer coefficient of fluid is, the lower the steady node temperature is.
The smaller the air layer thickness is, the lower the steady node temperature is.

Furthermore, the multi-order LPTN theory is deduced based on the extension of first-
order transient LPTN. For the constant load and rectangular periodic load, the transient
node temperatures of IPMSM are obtained by modeling transient LPTN and solving the
non-homogeneous linear differential equation. Compared with the experimental data,
exponential decay fit function of the second order and the third order has higher accuracy
than that of the first order, which can serve as an alternative to full-order thermal networks.

The temperature rise experiment platform including IPMSM manufacture is estab-
lished to validate the above-mentioned method using a FLUKE infrared thermal imager
and thermocouple PTC100. Load current and efficiency maps are obtained using the dy-
namometer platform. The load experiment shows that the transient LPTN of the IPMSM
can accurately predict node temperature variation.
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