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Abstract: Battery energy storage systems (BESSs) are key components in efficiently managing
the electric power supply and demand in microgrids. However, the BESSs have issues in their
investment costs and operating lifetime, and thus, the optimal sizing of the BESSs is one of the crucial
requirements in design and management of the microgrids. This paper presents a problem framework
and its solution method that calculates the optimal size of the BESSs in a microgrid, considering
their cooperative operations with the other components. The proposed framework is formulated as a
bi-level optimization problem; however, based on the Karush–Kuhn–Tucker approach, it is regarded
as a type of operation scheduling problem. As a result, the techniques developed for determining the
operation schedule become applicable. In this paper, a combined algorithm of binary particle swarm
optimization and quadratic programming is selected as the basis of the solution method. The validity
of the authors’ proposal is verified through numerical simulations and discussion of their results.

Keywords: microgrids; battery energy storage systems (BESSs); bi-level optimization; optimal sizing;
optimal operation scheduling; particle swarm optimization (PSO); quadratic programming (QP);
Karush–Kuhn–Tucker (KKT) approach

1. Introduction

Microgrids are a framework of smart power grids that manage a localized group
of electrical power sources and loads, which can be operated in both connected and
disconnected to bulk power grids [1–3]. In association with the growth in the installation
of renewable energy-based variable generation systems (VREs), microgrids are highly
expected as some of the most realistic, sustainable power grids, in terms of the efficient
use of renewable energy sources (RESs). In fact, extensive studies and developments have
been promoted to improve their operations since the early 2000s [4,5], and demonstrative
field tests are actively being carried out [6,7].

Generally, components of a microgrid are classified into a controllable and uncon-
trollable component. The former type consists of controllable power generation systems
(CGs) and battery energy storage systems (BESSs). Meanwhile, the latter type includes
electrical loads and VREs, which can be treated as one aggregated uncontrollable com-
ponent in microgrid operations; this is the net load. Operators of the microgrid make an
operation schedule of the controllable components, relying on the assumed profiles of
the uncontrollable components (or the assumed profile of the net load) in advance, and
adjust the schedule by reflecting the actual behavior of the net load. In the process, the
BESSs take on an extremely important role that compensates the power surplus or shortage
in the microgrid by their charging or discharging function, in addition to contributions
to the reduction of operational costs and peak shaving [8–11]. By contrast, the BESSs, as
is well known, have issues in their investment costs and operating lifetime, and these
create a bottleneck in design and management of the microgrid. For these reasons, it
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becomes a crucial requirement to calculate the optimal size of the BESSs in consideration
of the operation schedule after the BESS installation, despite difficulties in the operation
scheduling [12–14].

Focusing on the CGs only, their operation scheduling is formulated as a mixed integer
programming (MIP) problem that combines problems of the unit commitment (UC) and
the economic load dispatch (ELD). As it is essentially the same as the UC–ELD problem for
the thermal power generation units in the bulk power grids, their solution techniques are
applicable. Historically, the traditional optimization algorithms, e.g., branch-and-bound
(BB) [15,16] and dynamic programming (DP) [17,18], have been used for the solution meth-
ods of the UC–ELD problems. Intelligent optimization algorithms, which include genetic
algorithms (GAs) [19], simulated annealing (SA) [20,21], and particle swarm optimization
(PSO) [22,23], are adopted to the problems, too. Although various algorithms have been
applied, there are still none established for the UC–ELD problems, as well as the operation
scheduling problems of the CGs.

In microgrids, VREs and BESSs have significant portions in the electrical power source,
and we cannot forget their influences on the balancing operations of the power supply and
demand. The VREs, whose outputs strongly depend on the weather conditions, increase
the uncertainty in the assumed profile of the net load. The BESSs enhance flexibility in
the microgrid operations; however, they bring additional variables into the operation
scheduling problems, which represent their operational states. Hence practical operation
scheduling problems become more complicated than the case when we only treat the
UC–ELD problem [24–28]. Similarly, the optimal BESS sizing has often been discussed
separately from the optimal operation scheduling in spite of the fact that the size and the
operations of the BESSs have influences on each other.

The authors propose a problem framework and its solution method that calculates the
optimal size of BESSs, while determining the optimal operation schedule of controllable
components in a microgrid. To emphasize the mutual interaction in the optimal sizing
and the optimal operation scheduling, the proposed framework is formulated as a bi-level
optimization problem. However, in the solution process, the problem is regarded as a
type of standard optimization problem under Karush–Kuhn–Tucker (KKT) conditions.
In the solution method, a combined algorithm of binary particle swarm optimization
(BPSO) and quadratic programming (QP), which is the BPSO–QP [23,28], is applied to the
problem framework. This algorithm was originally proposed for operation scheduling
problems, but in this paper, it provides both the optimal size of the BESSs and the optimal
operation schedule of the microgrid under the assumed profile of the net load. By the
BPSO–QP application, we can localize influences of the stochastic search of the BPSO into
the generating process of the UC candidates of CGs. Through numerical simulations and
discussion on their results, the validity of the proposed framework and the usefulness of
its solution method are verified.

2. Problem Formulation

As illustrated in Figure 1, there are four types in the microgrid components: (1) CGs,
(2) BESSs, (3) electrical loads, and (4) VREs. Controllable loads can be regarded as a type of
BESSs. The CGs and the BESSs are controllable, while the electrical loads and the VREs
are uncontrollable that can be aggregated as the net load. Operation scheduling of the
microgrids is represented as the problem of determining a set of the start-up/shut-down
times of the CGs, their output shares, and the charging/discharging states of the BESSs. In
operation scheduling problems, we normally set the assumption that the specifications of
the CGs and the BESSs, along with the profiles of the electrical loads and the VRE outputs,
are given.
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Figure 1. Conceptual illustration of a microgrid.

If the power supply and demand cannot be balanced, an extra payment, which is
the imbalance penalty, is required to compensate the resulting imbalance of power in
the grid-tie microgrids, or the resulting outage in the stand-alone microgrids. Since the
imbalance penalty is extremely expensive, the microgrid operators secure the reserve power
to prevent any unexpected additional payments. This is the reason why the operational
margin of the CGs and the BESSs is emphasized in the operation scheduling. Moreover, the
operational margin of the BESSs strongly depends on their size, and therefore, it is crucially
required to calculate the appropriate size of the BESSs, considering their investment costs
and the contributions by their installation.

To simplify the discussion, the authors mainly focus on a stand-alone microgrid and
treat the BESSs as an aggregated BESS. The optimization variables are defined as:

Q ∈ R+
0 , (1)

ui,t ∈ {0, 1}, for ∀i, ∀t, (2)

gi,t ∈
[

Gmin
i , Gmax

i

]
, for ∀i, ∀t, (3)

st ∈
[
Smin, Smax

]
, for ∀t. (4)

The traditional frameworks of the operation scheduling normally require accurate
information for the uncontrollable components; however, this is impractical in the stage of
design of the microgrids. The only available information is the assumed profile of the net
load (or the assumed profiles of the uncontrollable components) including the uncertainty.
The authors define the assumed values of the net load and set their likely ranges as:

d̂t ∈
[
dmin

t , dmax
t

]
, for ∀t. (5)

The target problem is to determine the set of (Q, u, g, s) in terms of minimizing the sum
of investment costs of the newly installing BESSs, f1(Q), and operational costs of the mi-
crogrid after their installation, f2(u, g, s). Based on the framework of bi-level optimization,
the target problem is formulated as follows:

Upper-level problem:

min
u,g,s

[ f1(Q) + f2(u, g, s)], (6)

s.t. ∑NG
i=1 gi,tui,t + st = d̂t, for ∀t, (7)

If 0 < uon
i,t < UTi then ui,t = 1; If 0 < uoff

i,t < DTi then ui,t = 0, for ∀i, ∀t, (8)

∆G−i ≤ gi,t − gi,t−1 ≤ ∆G+
i , for ∀i, ∀t, (9)
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gmin
i,t ≤ gi,t ≤ gmax

i,t , for ∀i, ∀t.

(gmax
i,t = min

(
Gmax

i , gi,t−1 + ∆G+
i
)
; gmin

i,t = max
(
Gmin

i , gi,t−1 + ∆G−i
)
.)

(10)

The detailed definitions of f1 and f2 are as shown below:

f1(Q) = ψQ, (11)

f2(u, g, s) = ∑T
t=1 ∑NG

i=1

[
(αi + βigi,t + γig2

i,t)ui,t + δiui,t(1− ui,t−1)
]
. (12)

Lower-level problem:
min

Q
f1(Q), (13)

s.t. ξlowQ ≤ qt ≤ ξupQ, for ∀t, (qt = qt−1 − st.) (14)

smin
t ≤ st ≤ smax

t , for ∀t,(
smax

t = min
(
Smax,

(
qt−1 − ξlowQ

))
; smin

t = max
(
Smin, (qt−1 − ξupQ)

)
.
) (15)

dmax
t ≤

(
∑NG

i=1 gmax
i,t ui,t

)
+ smax

t ;
(
∑NG

i=1 gmin
i,t ui,t

)
+ smin

t ≤ dmin
t , for ∀t. (16)

In the upper-level problem, Equation (7) represents the balancing constraint of the
power supply and demand, and the specifications of the CGs are reflected into the con-
straints of Equations (8)–(10). Meanwhile, in the lower-level problem, the specifications
of the aggregated BESS are expressed with Equations (14) and (15), and the operational
margin of the microgrid is secured by Equation (16).

As shown in Equations (6)–(12), the upper-level problem is similar to the operation
scheduling problems because the function f1 is treated as though it is a constant. However,
the value of f1 is unknown until we solve the lower-level problem, and the values in s
are constrained by the value of Q. In addition, the optimal size of the aggregated BESS,
Q∗, can be determined only after finding the optimal operation schedule, (u∗, g∗, s∗), from
the viewpoints of the operational reliability and the economic efficiency. By the mutual
interaction in the problems, the target optimization problem becomes complicated, as
compared to operation scheduling problems.

In the problem framework, we can treat Equations (8) and (9) as inactive constraints
if the time interval and the ramp-up and the ramp-down specifications of the CGs, ∆t,
∆G+

i , and ∆G−i , satisfy the conditions of Equations (17) and (18) [23,29]. Similarly, the
calculations of gmax

i,t and gmin
i,t are unnecessary in Equation (10) because their values are

equal to Gmax
i and Gmin

i , respectively. In other words, this constraint can be integrated into
the definition of Equation (3). The conditions Equations (17) and (18) are often satisfied
in the operation scheduling of microgrids, and for this reason, the authors remove the
constraints Equations (8)–(10) from our discussion.

∆t ≥ UTi + DTi, for ∀i, (17)

∆G+
i ≥ Gmax

i − Gmin
i ; ∆G−i ≤ Gmin

i − Gmax
i , for ∀i. (18)

3. Solution Method

Bi-level optimization is a special form of optimization problem and appears in various
models of economics, game theory, and mathematical physics [30]. Its typical applica-
tions are found in equilibrium models and in semi-infinite programming [31,32]. From
a topological viewpoint, the bi-level optimization is more complicated than standard
optimization problems.

In this paper, the KKT approach is applied to the target problem, and then the problem
is treated as a type of standard optimization problem. The KKT approach is a methodology
that finds the (local) minimizers of the original bi-level optimization problem by computing
the (local) minimizers of the relaxation problem [33,34]. To apply the KKT approach,
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the definition of Equation (4) is converted in accordance with the specifications of the
BESSs into:

st ∈
[
−Q

η
,

Q
η

]
, for ∀t. (19)

By using Equation (19), the variables smax
t and smin

t in Equations (15) and (16) are
replaced with:

smax
t = min

(
Q
η

,
(

q0 −∑t−1
τ=1 sτ − ξlowQ

))
; smin

t = max
(
−Q

η
,
(

q0 −∑t−1
τ=1 sτ − ξupQ

))
, (20)

where q0 is the initial state of charge (SOC) of the aggregated BESS.
Owing to the representation, all constraints in the lower-level problem become the

BESS size-dependent ones. Now, we set the functions ϕl(Q), of which l is the numbers
(l = 1, 2, 3) sequentially assigned to the constraints Equations (14)–(16). The lower-level
problem is a linear programming (LP) problem, and it can be reformulated in the style of
the KKT approach as:

∇ f1(Q∗) + ∑3
l=1 λl∇ϕl(Q∗) = 0, (21)

λl ≥ 0, for ∀l, (22)

ϕl(Q∗) ≤ 0, for ∀l, (23)

λl ϕl(Q∗) = 0, for ∀l, (24)

where λl is the Lagrange multipliers in the lower-level problem.
By the reformulation, the KKT approach becomes applicable and integrates the lower-

level problem to the constraints of the upper-level problem as the set of Equations (21)–(24).
Therefore, we can treat the bi-level optimization as the single-level optimization prob-
lem whose objective function is Equation (25) and constraints are Equations (7)–(10) and
Equations (21)–(24). For further details of the KKT approach, refer to the references.

min
Q,u,g,s

[ f1(Q) + f2(u, g, s)], (25)

The reformulated problem is an extended framework of the operation scheduling,
which determines the discrete variables, u, and the set of continuous variables, (Q, g, s).
Hence, we can apply the solution methods developed for operation scheduling prob-
lems. In this paper, the BPSO–QP is selected as the basis of the solution method for the
reformulated problem.

3.1. Activation of Quadratic Programming

To improve compatibility between the target problem and its solution method, the
authors redefine the optimization variables Equations (2)–(4) or Equations (2), (3) and (19)
as Equations (26) and (27), and then, replace the function Equation (12) with Equation (28).

u′k,t ∈ {0, 1}, for ∀k, ∀t, (26)

g′k,t ∈
[

G′min
k , G′max

k

]
, for ∀k, ∀t, (27)

f ′2
(
u′, g′

)
= ∑T

t=1 ∑NG+1
k=1

[(
α′k + β′kg′k,t + γ′k

(
g′k,t

)2
)

u′k,t + δ′ku′k,t

(
1− u′k,t−1

)]
, (28)

where k is the number assigned to the controllable components (k = 1, 2, . . . , NG + 1); u′k,t
is the ON/OFF state variable of the controllable component k (ON: 1, OFF: 0), which is an
element of the vectors u′t and u′; g′k,t is the output of the controllable component k, which is

an element of the vectors g′t and g′; G′max
k and G′min

k are the maximum and the minimum
outputs of the controllable component k; α′k, β′k, and γ′k are the coefficients for fuel cost



Energies 2021, 14, 7442 6 of 13

function of the controllable component k; δ′k is the sum of start-up cost of the controllable
component k.

In Equations (26)–(28), the (NG + 1)-th component represents the aggregated BESS
(st = g′N+1,tu

′
N+1,t; Smax = G′max

NG+1; Smin = G′min
NG+1). The variables u′NG+1,t are the dummy

variables whose values are 1 in each time slot (always ON). The values of α′NG+1, β′NG+1,
γ′NG+1 and δ′NG+1 are set all to zero because the operational cost of the BESS, as shown in
Section 2, is expressed with the change of CGs’ operational costs. By these settings, the
target problem can be relaxed as a quadratic optimization problem if the values of u′ are
specified. That is, the QP solvers become applicable after generating u′, and there is no
need to discern the difficulty in determining continuous variables.

3.2. Application of Binary Particle Swarm Optimization

When we apply the QP, the dimensions of the solution space are reduced from
(Q, u, g, s) to u′. However, there is still difficulty in finding the optimal UC solution
among a huge number of possible UC candidates [23,28,29]. In this paper, a PSO is used
only for generating the feasible UC candidates.

The standard PSO is a population-based stochastic algorithm that iteratively searches
the solution space while improving a given measure of solution quality [35], which is the
fitness function. Until a termination condition is met, an initial set of randomly generated
solutions (initial swarm) updates the position in the solution space towards the globally
optimal solution. All members of the swarm (particles) share their information for the
solution space during the searching process. Each particle m (m = 1, 2, . . . , M) has a position
xm,n and a velocity vm,n in the iteration n (n = 1, 2, . . . , N), and these are updated as:

xm,n = xm,n−1 + vm,n, for ∀m, ∀n, (29)

vm,n+1 = ωnvm,n + θ1r1[x∗m − xm,n] + θ2r2

[(
min

m
x∗m
)
− xm,n

]
, for ∀m, ∀n, (30)

where x∗m is the personal best for the particle m (pbest); min
m

x∗m is the best in the

swarm (gbest).
The positions of the particles, xm,n, are defined as the UC candidates, (u′)m,n, and the

fitness function is defined as:

f = f1(Q) + f ′2
(
u′, g′

)
+ νVIO, (31)

where ν is the penalty factor ( f1 + f ′2 � νVIO); VIO is the weighted sum of the con-
straint violations.

Although the PSO has succeeded in many continuous problems, there remain some
difficulties in treating discrete optimization problems [36]. Therefore, a strategy of BPSO is
adopted in the proposed solution method as shown below:

If 0.5 <
1

1 + exp
(
−u′k,t

) then u′k,t = 1, else u′k,t = 0, for k ≤ NG, ∀t. (32)

If we focus on the grid-tie microgrids, the penalty term in (31) is replaced with the
assumable imbalance penalty, paying for the bulk power grid [23].

3.3. Approximation of Outputs of Controllable Power Generation Systems

By applying the QP, we can localize influences of the stochastic search of the intelligent
optimization algorithms into the generating process of the UC candidates. On the other
hand, the QP application often leads to impractical computational time depending on the
number of the optimization variables or the length of the target period (the value of T). To
relax this issue, a strategy that approximates the CG outputs [37] is applied.
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As opposed to the bulk power grids, the number of the CGs in a microgrid is so
small that we can generate all hourly, selectable UC candidates. For example, with five
CGs, the number of selectable UC candidates is 25 (=32) in one time slot, and these are
common in each time slot. In the approximation strategy, first, the hourly UC candidates
are enumerated completely. Associating with the enumerated hourly UC candidates, next,
the sets of the optimal output shares and their fuel costs are calculated by the QP within
the possible output range of the operating CGs. By using the non-linear regression, finally,
the calculated sets of the fuel costs are independently approximated as the fuel functions,
with respect to the UC candidates.

According to the procedure, we replace Equation (27) or Equation (3),
Equations (7) and (16) with Equations (33)–(35), respectively.

hu′t
∈
[

Hmin
u′t

, Hmax
u′t

]
, for ∀t,

(
Hmax

u′t
= ∑NG

k=1 G′max
k u′k,t ; Hmin

u′t
= ∑NG

i=1 G′min
k u′k,t.

)
(33)

hu′t
= d̂t − st, for ∀t,

(
st = g′N+1,tu

′
N+1,t

)
(34)

dmax
t ≤ Hmax

u′t
+ smax

t ; Hmin
u′t

+ smin
t ≤ dmin

t , for ∀t, (35)

where hu′t
is the sum of outputs of the operating CGs (= ∑NG

k=1 g′k,tu
′
k,t).

In addition, the operational cost function in Equation (31) can be converted into:

f ′′2
(
u′, s

)
= ∑T

t=1

(
Au′t

+ Bu′t
hu′t

+ Cu′t

(
hu′t

)2
+ Du′t

)
, (36)

where Au′t
, Bu′t

, and Cu′t
are the coefficients of approximated fuel cost functions asso-

ciating with the vector u′t; Du′t
is the sum of start-up costs of newly starting-up CGs

(= ∑NG
k=1 δ′ku′k,t

(
1− u′k,t−1

)
).

As shown in Equations (33)–(36), the CG outputs, g′k,t (k ≤ NG) (or gi,t for ∀i), are
linked to the UC candidates. In addition, the approximation can be completed for all
selectable UC candidates as a preprocessing of the BPSO–QP. These indicate that we can
remove the CG outputs from the optimization variables in the process of the solution
method, and thus, reduce the computational cost in the calculation of Equation (31) (itera-
tive calculation of the ELD). For further details of this strategy, refer to the reference.

4. Numerical Simulations and Discussion on Their Results

To verify the validity of the authors’ proposal, numerical simulations were carried out
on the microgrid model illustrated in Figure 1. To specify the discussion on the numerical
simulation results, the target period was set to 24 h (T = 24), and its interval was set to
1 h (t = 1, · · · , 24). The microgrid components were set as five CGs, one aggregated BESS,
one aggregated electrical load, and one aggregated photovoltaic generation system (PV).
Specifications of the CGs are summarized in Table 1 and Figure 2, and the profile of the
assumed net load is displayed in Figure 3. These were made with reference to [6,7,37,38].
The unit price of the aggregated BESS, ψ, was set to 20,000\/kWh (“\” means “any currency
unit is applicable”) [39,40], and the operating lifetime was assumed to 10 years. According
to these conditions, the investment cost of the aggregated BESS was converted into the
daily one. In the operation scheduling, the authors set the values of ξup and ξlow to 0.9 and
0.3, and the hour rate η to 1.0, respectively. The initial SOC level of the aggregated BESS
was set to 60% of its capacity, and the SOC level had to be returned to the original level
until the end of the scheduling period. That is, the optimal operation schedule must satisfy
the following additional constraints:

q0 = q24 = 0.6Q. (37)
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Table 1. Specifications of CGs. “¥” means “any currency unit is applicable”.

i αi (Y =) βi (Y = /MW) γi
(
Y = /MW2) δi (Y =) Gmax

i (MW) Gmin
i (MW)

1 9 7500 2000 400 0.500 0.100
2 8 7000 3000 600 1.060 0.212
3 7 6500 3500 700 1.580 0.316
4 6 6000 4000 800 2.000 0.400
5 6 6000 4000 800 2.240 0.448

Figure 2. Fuel cost functions of each CG. “¥” means “any currency unit is applicable”.

Figure 3. Profiles of net load, electrical load, and aggregated PV output.

By preliminary trial and error, parameters of the BPSO were respectively set as the
following: the total number of particles M is 100, the maximum iteration N is 1000, the
initial and the final inertia weight factors ω1 and ω1000 are 0.70 and 0.95, and the cognitive
factors θ1 and θ2 are 1.6 and 2.0.

Under these conditions, the authors calculated the optimal size of the BESS while deter-
mining the optimal operation schedule (Case 1). In comparison, the operation schedules un-
der the traditional framework of the operation scheduling were also determined. Since the
BESS size is required in the traditional operation scheduling, the authors set it to 2.00 MWh
(Case 2) or 3.00 MWh (Case 3) by referring to the results of Case 1 (Q∗ = 2.62 (MWh)).
Figure 4 illustrates the obtained operation schedules of Case 1, and Figures 5 and 6 are
the results with giving the BESS size in advance (Cases 2 and 3). Table 2 summarizes the
results of their comparison, and Figure 7 displays the difference in the operational cost
transitions of each case.

Table 2. Comparison of obtained solutions in Cases 1–3.

Case Size of BESS Total Cost Investment Cost Operational Cost

1 (Authors’ proposal) 2.62 MWh 826,930 ¥/day 14,348 ¥/day 812,582 ¥/day
2 2.00 MWh (Given) 841,753 ¥/day 10,959 ¥/day 830,795 ¥/day
3 3.00 MWh (Given) 842,093 ¥/day 16,438 ¥/day 825,655 ¥/day
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Figure 4. Obtained solution in Case 1 (Q∗ = 2.62 (MWh)): (a) operation schedule; (b) transition of SOC level.

Figure 5. Obtained solution in Case 2 (Q = 2.00 (MWh)): (a) operation schedule; (b) transition of SOC level.

Figure 6. Obtained solution of Case 3 (Q = 3.00 (MWh)): (a) operation schedule; (b) transition of SOC level.

Figure 7. Comparison of operational costs in Cases 1–3. BESS size in each case is 2.62 MWh in Case 1,
2.00 MWh in Case 2, and 3.00 MWh in Case 3.

In all of Figures 4–6, the balance of power supply and demand on the assumed net
load was maintained by the coordinated operation of the CGs and the aggregated BESS.
However, there were several differences in the operation schedules and their SOC levels,
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and they appeared as the differences between the costs, as shown in Table 2 and Figure 7.
In Table 2, the operational cost in Case 1 (the authors’ proposal) was the smallest, and thus,
its total cost also became the smallest. In Case 2, the investment cost was smaller than
that in Case 1; however, the operational cost was increased (+2.2%). Also, the operational
cost in Case 3 was larger than that in Case 1 (+1.6%), even though the largest BESS was
assumed in that case. It implies a possibility that the BESS size in Case 3 was too large for
the target microgrid. In the comparisons, the differences in the total costs were sufficiently
small, but this is a result demonstrating that we set the BESS size in Cases 2 and 3 based
on the BESS size optimized in Case 1. The differences can become large in the actual
situation because we do not know the optimal BESS size. Therefore, we can conclude that
the authors’ proposal is useful in the design and management of a microgrid.

For reference, influences of the approximation strategy were evaluated through ad-
ditional numerical simulations. Figure 8 displays the obtained operation schedules with-
out the approximation strategy (Case 4). Table 3 summarizes the comparison results of
Cases 1 and 4, and Figure 9 illustrates the difference in their operational cost transitions.
The comparison result of their computational time is shown in Table 4, and the differences
in the search process of the BPSO–QP are displayed in Figure 10.

Figure 8. Obtained solution in Case 4 (Q∗ = 2.64 (MWh)): (a) operation schedule; (b) transition of SOC level.

Table 3. Comparison of obtained solutions in Cases 1 and 4.

Case Size of BESS Total Cost Investment Cost Operational Cost

1 (With approximation) 2.62 MWh 826,930 ¥/day 14,348 ¥/day 812,582 ¥/day
4 (Without approximation) 2.64 MWh 823,714 ¥/day 14,490 ¥/day 809,223 ¥/day

Figure 9. Comparison of operational costs in Cases 1 and 4. BESS size in each case is 2.62 MWh in
Case 1 and 2.64 MWh in Case 4.
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Table 4. Comparison of computational time of Cases 1 and 4.

Case Computational Time

1 (With approximation) 298 s
4 (Without approximation) 1759 s

Figure 10. Transitions of gbest in Cases 1 and 4.

These results show that the approximation strategy brought the differences in the BESS
size and the operation schedules, and as a result, the total cost became slightly larger than
the case without the strategy. From Figure 10, the authors concluded that the differences
were originated in the search process of the BPSO–QP. In contrast, as shown in Table 4, the
computational time was dramatically improved. If we treat a microgrid that has more CGs
or set the target period longer, the approximation strategy becomes more effective. It can
be summarized that the approximation strategy improved applicability of the BPSO–QP at
the slight expense of the solution optimality.

5. Conclusions

This paper presented a problem framework and its solution method, which calcu-
lates the optimal size of BESSs, considering their cooperative operations with the other
controllable components in a microgrid. In the problem formulation, the target problem
was represented as a bi-level optimization to emphasize the mutual interaction in the
optimal sizing and the optimal operation scheduling. However, in the solution process,
the problem was treated as a type of operation scheduling problem based on the KKT
approach. By the problem reformulation, the BPSO–QP, which was originally developed
for the operation scheduling, became applicable. In the results of numerical simulations,
the proposed framework led to better results, as compared to the case when we solved the
operation scheduling problem by giving the BESS size in advance. Furthermore, it was
confirmed that the approximation strategy improved the applicability of the BPSO–QP in
exchange for slight deterioration in the optimality of the obtained solution.

In future works, the authors will improve the proposed solution method through
discussion on appropriate selection of its basis. In addition, a method distributing the
calculated BESS size into the individual BESSs will be discussed.
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Nomenclature

t Time slots (t = 1, · · · , T).
i Numbers assigned to controllable generators (i = 1, · · · , NG).
Q Size of aggregated battery energy storage system.
ui,t ON/OFF state variable of controllable generator i (ON: 1, OFF: 0), which is an

element of vectors ut and u.
gi,t Output of controllable generator i, which is an element of vectors gt and g.
Gmax

i , Gmin
i Maximum and minimum outputs of controllable generator i.

st Output of aggregated battery energy storage system, which is an element of vector s.
Smax, Smin Maximum and minimum capable outputs of aggregated battery energy storage

system (Smin ≤ 0 ≤ Smax).
dmax

t , dmin
t Maximum and minimum values of assumable net load.

∆G+
i , ∆G−i Ramp-up and ramp-down specifications of controllable generator i.

uon
i,t , uoff

i,t Consecutive operating and suspending durations of controllable generator i.
UTi, DTi Minimum operating and suspending durations of controllable generator i.
ψ Unit cost of aggregated battery energy storage system.
αi, βi, γi Coefficients for fuel cost function of controllable generator i.
δi Start-up cost of controllable generator i.
qt State of charge of aggregated battery energy storage system.
ξup, ξlow Upper and the lower acceptable state-of-charge levels of aggregated battery energy

storage system (0 < ξlow < ξup < 1).
η Hour rate of aggregated battery energy storage system.
m Numbers assigned to particles (m = 1, 2, . . . , M).
n Number of iterations (n = 1, 2, . . . , N).
ωn Inertia weight factor in iteration n.
θ1, θ2 Cognitive factors.
r1, r2 Random numbers uniformly generated in the range of [0, 1].
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