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Abstract: In this paper, a novel neural network-based robust control method is presented for a
vehicle-oriented problem, in which the main goal is to ensure stable motion of the vehicle under
critical circumstances. The proposed method can be divided into two main steps. In the first step, the
model matching algorithm is proposed, which can adjust the nonlinear dynamics of the controlled
system to a nominal, linear model. The aim of model matching is to eliminate the effects of the
nonlinearities and uncertainties of the system to increase the performances of the closed-loop system.
The model matching process results in an additional control input, which is computed by a neural
network during the operation of the control system. Furthermore, in the second step, a robustH∞ is
designed, which has double purposes: to handle the fitting error of the neural network and ensure
the accurate tracking of the reference signal. The operation and efficiency of the proposed control
algorithm are investigated through a complex test scenario, which is performed in the high-fidelity
vehicle dynamics simulation software, CarMaker.

Keywords: vehicle control; model-matching; robust control; neural networks

1. Introduction and Motivation

In recent years, the main focal point of the automotive industry has shifted towards
the development of autonomous vehicles. This challenge involves several problems, which
must be solved before launching the first fully automated vehicle, e.g., decision making,
accurate sensing and the design of robust and reliable control systems. During the last few
decades, numerous control algorithms have been developed for the control and analysis
of nonlinear and safety-critical systems, such as autonomous vehicles. Most of these
control solutions are ordered as conventional control approaches and non-conventional
learning-based control algorithms.

The classical approaches include the robust optimal methods (H∞) [1], optimal con-
trols (LQR,H2) [2], model predictive control (MPC) approaches [3] and polytopic system-
based algorithms (LPV) [4]. The main advantage of these algorithms is that the achieved
stability and performances of the closed-loop system can be analytically proven, at least
for a specific region of their operating range. Furthermore, these solutions are good at
handling the specific nonlinearities of the production plant and can also deal with unmod-
elled dynamics and noises as well. However, their performances can significantly degrade
with the consideration of more uncertainties due to the resulting conservativeness of the
worst-case approaches. Furthermore, the determination and description of the unmodelled
dynamics and nonlinearities can also be a challenging task, which can make the control
design difficult.

With the increasing computational capacity of computers and with the increased
numbers of data sources, novel methods have become available for controlling autonomous
vehicles, e.g., learning-based approaches. This group of methods can include algorithms,
such as support vector machine (SVM) approaches [5], or further learning methods with

Energies 2021, 14, 7438. https://doi.org/10.3390/en14217438 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0211-3204
https://doi.org/10.3390/en14217438
https://doi.org/10.3390/en14217438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14217438
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14217438?type=check_update&version=2


Energies 2021, 14, 7438 2 of 14

neural-network-based agents (e.g., supervised learning for achieving deep neural networks,
reinforcement learning-based methods [6], etc.). These algorithms have a significant
advantage over the classical approaches: they use (and learn from) data, which describes
the behavior of the control plant more accurately than any modeling process is capable
of. Therefore, the performances of these solutions can be significantly better than classical
approaches. However, most of the machine learning-based control algorithms have a
notable pitfall, i.e., theoretical guarantees on the stability and performances of the closed-
loop system cannot be provided.

Therefore, the engineers started focusing on the development of mixed control al-
gorithms, which take advantage of both groups. For example, the combination of the
machine learning algorithm and Linear Parameter Varying (LPV) approach can be found
in [4,7]. Meanwhile, paper [8] presents an MPC-based solution, which is extended with a
machine learning-based reachability set computation for trajectory tracking of autonomous
vehicles. The use of linearization feedback can be a promising approach to deal with the
nonlinearities of the plant. However, the design of that feedback controller can also be
a challenging task using classical methods, but neural networks can provide satisfying
results. Since the classical approaches are good at guaranteeing predefined performances
in the case of linear systems and an appropriately linearized system can eliminate the effect
of the nonlinearities and other unmodelled dynamics, it can ease the control design.

In this paper, a novel robust control algorithm is proposed, which exploits the ad-
vantages of both the classical control and machine-learning-based methods. The whole
algorithm includes two main parts: the modeling and the control design phases.

• Modeling phase: A neural network-based model matching is proposed, which aims to
adjust the original nonlinear dynamics of the vehicle to a nominal, linear model.

• Control design phase: A robust control design based on theH∞ method is presented, in
which the fitting error of the resulting neural network is taken into account during the
design phase.

The aim of the model-matching part is to eliminate the effects of the nonlinearities and
uncertainties of the system. The neural network uses the measurable states of the vehicle
and determines an additional steering angle. This means that the neural-network creates an
inner loop of the control structure. Using the additional steering angle, the behavior of the
vehicle is modified and the goal is to match it to the nominal model. The nominal model
is determined using a classical single track dynamical bicycle model. The main challenge
of using a neural network-based control algorithm is that the stability of the closed-loop
system cannot be analytically proven. Therefore, a robustH∞ controller is designed, which
takes into account the effect and the errors of the neural network in order to compensate
the mentioned pitfalls of the neural network. Briefly summarizing the contribution of the
paper, the goal is to increase the performances and the stability of the closed-loop system
by combining a machine learning-based model matching algorithm and a robust control
approach. The main steps of the control design are illustrated in Figure 1, and are:

1. Simulation environment, which provides the datasets for training the neural network.
2. Model-matching algorithm, which contains the training phase of the neural network.
3. Control design, in which theH∞-based robust controller is designed.

The paper is structured as follows. Section 2 presents the nominal vehicle model,
which is used in the training of the neural network and in the robust control design phase
as well. Section 3 details the neural network-based model-matching method. The H∞-
based lateral control design is presented in Section 4. Finally, in the last section, a complex
simulation example is given to show the operation and effectiveness of the proposed
control algorithm.
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Figure 1. Illustration of the process for control design.

2. Formulation of the Nominal Model

In this section, the formulation of the nominal model is presented. The aim of the
formulation is to define the requested dynamics of the plant, which is achieved with the
neural-network. Then, the formulated linear model is used as a plant for the control design.

The formulated model consists of two main parts: the lateral motion model, which is
based on the two-wheeled bicycle model and the model of the steering system. Finally, the
formulated model for data acquisition purposes is introduced.

2.1. Formulation of the Lateral Vehicle Model

The main idea behind the modeling method is to replace the front and rear wheels
of the vehicle by one-one wheel, which are placed on the axis of symmetry of the vehicle.
Basically, it consists of two equations: the first describes the lateral motion of the car,
while the second equation represents its yaw-motion [9]. The model is extended with an
additional equation, which describes the connection between the lateral acceleration (v̇y)
and side-slip angle (β):

Izψ̈ = Ff ,y(α f )l f − Fr,y(αr)l2 (1a)

mvx(ψ̇ + β̇) = Ff ,y(α f ) + Fr,y(αr) (1b)

v̇y = vx(ψ̇ + β̇) (1c)

where m is the mass of the car, l f , fr are geometrical parameters and Iz denotes the yaw-
inertia. Moreover, β is the side-slip angle. The longitudinal velocity of the vehicle is (vx),
the steering angle is denoted by δ and ψ̇ is the yaw-rate. The lateral tire forces can be
computed as:

Fi,y = Ciαi, (2)

where Ci is the cornering stiffness of the tires and αi represents the side-slip angles of the
tires. Using Equations (1) and (2), a transfer function (Gdyn(s)) can be determined. The
input of the system is the steering angle (δ) and the output is the yaw-rate (ψ̇) of the vehicle.
This results in the following transfer function, which is formed as:

Gdyn(s) =
Bdyn(s)
Adyn(s)

(3)
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2.2. Dynamics of the Steering System

The presented model does not contain the dynamics of the steering system, which
has a significant effect on the dynamics of the vehicle. Therefore, in the following, the
model formulation of the steering system is detailed. The steering system can be effectively
approximated by a second-order system [10]:

Gst(s) =
b1s + b0

a2s2 + a1s + a0
, (4)

where bi and ai are the parameters of the given system, which are determined through
the identification process. During the identification process of the model parameters in (4)
the ARX (AutoRegressive model with eXogenous variable) structure is used, which is
formed as:

A(q)y(t) = B(q)u(t− n) + e(t), (5)

where y is the output of the system, which is the road-wheel angle (δ) and the input of the
system is the angle of the steering wheel. Using a q−1 shift operator, the polynomials for
A(q) and B(q) are the following:

A(q) = 1 + a1q−1 + a2q−2, B(q) = b1 + b2q−1. (6)

The transfer function for the steering system can be formed as:

Gst(q) =
B(q)
A(q)

. (7)

The details of the identification process (i.e., data acquisition, optimization method)
behind the parameter selection was found in an earlier paper, see [10].

2.3. Computation of the Inverse Model

Since the goal of the linearization process is to match the output of the real vehicle
to the output of the nominal model, the computation of the input of the nominal model
is required. It can be computed by using the inverse of the nominal model, which can be
determined as [11]:

G−1
nom(s) ≈ G−1

st (s)G−1
dyn(s) (8)

However, the computation of the inverse model may result in a non-causal system,
therefore a prefilter is applied to solve this issue.

G−1
p f ,nom(s) = Gp f (s)G−1

nom(s) (9)

where Gp f (s) denotes the transfer function of the prefilter. In the next step, the computed
inverse of the transfer function is discretized using Tustin’s method [12].

z = esT ≈ 1 + sT/2
1− sT/2

(10)

Finally, the presented inverse model (G−1
p f ,nom(z)) is used in the training of the neural

network, which is presented in the following.

3. Neural Network-Based Model-Matching Algorithm

In this section, the neural network-based model matching algorithm is presented. The
main purpose of this step is to modify the dynamics of the nonlinear system through an
additional input signal. More precisely, the final goal of the model matching process is to
achieve the same yaw-rate value of the nonlinear system as computed from the nominal
model. In Figure 2 the structure of the model matching process is shown. Basically, the
neural network forms an internal loop in the control algorithm.
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+

Figure 2. Illustration of the linearization algorithm.

Since the real system is not accurately known, the computation of the additional
control input is a challenging task. The whole system can be influenced by nonlinearities
(e.g., tire characteristics) and uncertainties (e.g., velocity). This means, that the additional
control input for the nonlinear model cannot be computed in only one step. In order to
address this issue, an iterative algorithm is proposed, by which the additional control input
can be determined for a predefined control input sequence. The main drawback of this
algorithm is that it cannot be used in real-time applications. Therefore, a neural network
is trained by using the results of the iterative algorithm, which can be used to determine
the additional input signal during the operation of the control system. In the following,
the generation of the training data is presented, which includes the computation of the
additional steering angle ∆δ.

3.1. Generation of the Training Data

In this paper, the CarMaker’s vehicle model is used as the nonlinear model, which is a
complex, highly nonlinear vehicle model [13]. As mentioned before, the determination of
the additional steering angle cannot be determined in one step due to several uncertainties
and nonlinearities. The main idea is to generate a reference input signal (δ) sequence and
a reference longitudinal velocity, which covers the whole operation range of the vehicle.
Using the nominal model, and the generated input, the goal is to determine an additional
steering angle sequence, by which the deviation between the computed yaw-rate (from
the nominal model) and the measured yaw-rate (from the CarMaker) can be decreased.
The steering angle and the longitudinal velocity vary in a wide range (δ ∈ {−0.2, 0.2}rad,
vx ∈ {10–25} m/s). The structure of the iterative algorithm can be seen in Figure 3.

Iterative learning method

-
+

Figure 3. Structure of the data generation.

The main goal of the iteration process is to calculate an additional steering angle
sequence (∆δ). The nominal yaw-rate (ψ̇n) can be computed using the nominal model
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and the steering angle sequence. In each iteration step, the yaw-rate of the vehicle is
measured and saved from CarMaker. The error between the two signals is computed and
an additional steering angle is determined using the inverse of the nominal model.

In the first step of the iteration process, the input of the nonlinear system is the same
as the input of the nominal model (δ). Note that during the iterative process the reference
control input sequence is not changed, this means that the nominal yaw-rate also remains
the same. After computing the error between the two yaw-rate values, the additional
steering angle (δ̂) is determined using the inverse of the nominal model. This steering angle
sequence is added to the nominal steering angle sequence and the simulation is performed
using the modified sequence. After each iteration step, the additional steering angle is
added to the previously determined steering angle sequence, as:

∆δ =
n

∑
i

δ̃i, (11)

where i denotes the ith iteration step. Using the computed additional steering angle
sequence the input for the nonlinear system can be determined as:

δ̂ = δ + ∆δ (12)

where n gives the maximum number of iterations. Due to the differences between the
nonlinear and the nominal model, the yaw-rate values may not match perfectly even after
numerous iteration steps. In parallel, the use of a large number of iterations makes the
whole process very time consuming. In order to solve this issue, the iterations continue
until the highest error value becomes less then a previously defined value:

max|ψ̇(δ)− ψ̇(δ̂)| ≤ ε, (13)

where ε is a design parameter, and defines the maximum deviation between the out-
put of the linear and the nonlinear model. In Figure 4 an example is presented for the
iteration process.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Iteration number increases

Iteration number increases

Figure 4. Example of the iteration process.

As Figure 4 illustrates, the error between the two outputs converges to zero. This
means that using the computed additional steering angle sequence, nearly the same yaw-
rate value can be achieved in case of the nonlinear system. Since the iterative algorithm
cannot be used in real-time applications, a neural network is trained to determine the
additional control input. The input of the neural network is the measurable states of
the vehicle, which is saved at the last iteration step. The sampling time during the data
collection was set to Ts = 0.01 s and over 200,000 data points were saved. For the training
process of the neural network, the following attributes were saved and collected:

• Longitudinal velocity (vx);
• Accelerations (longitudinal ax, lateral ay);
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• Angular velocities (yaw-rate ψ̇, pitch-rate Θ̇, roll-rate Φ̇);
• Steering angle (δ);
• The additional steering angle (∆δ).

3.2. Training of the Neural Network

In this subsection, the training process of the neural network is presented. The basis of
the training process is the collected dataset. The input vector of the network consists of the
velocities, accelerations, angular velocities and the steering angle of the vehicle. The output
of the network is the additional steering angle, by which the model matching is provided.

In general, the neural networks consist of three main types of layers: the input layer,
the hidden layer, and finally the output layer. The layers are built up by weights and
activation functions, and these functions are called neurons. Before the training process
of the neural networks, the number of hidden layers and the activation functions must be
chosen, see [14]. The applied neural network consists of one input, one output, and two
hidden layers. Since, the number of neurons can be chosen freely, to determine the optimal
number of them, the so-called k-cross validation technique was used. The basic idea behind
the k-cross validation technique is to divide the dataset into two subsets. The first one is
used in the training process and the second one is for validation purposes. Moreover, in
order to increase the generalization capability of the network, an additional Gaussian noise
was added to the training dataset [15]. In this case, the numbers of neurons in the hidden
layers were chosen to 20 and 15. In the first hidden layer we used the rectified linear unit
(ReLU), while in the second layer the log-sigmoid function was used. The training of the
neural network was performed by a Levenberg-Marquardt algorithm, see [14]. In Table 1
the parameters, which are used for the training of the neural-network are summarized. The
inputs of the neural network are the measurable data states of the vehicle, and the output
is the computed additional steering angle (∆δ). Using the computed additional steering
angle, the model matching process is carried out.

Table 1. Parameters of the neural network.

Parameters of the Neural Network

Number of neurons (1st h. layer) 20

Activation fcn. (1st h. layer) ReLu

Number of neurons (2nd h. layer) 15

Activation fcn. (2nd h. layer) log-sigmoid

Training of the network Levenberg-Marquardt alg.

Learning rate 0.005

Performance Means Squared Error

In Figure 5 the structure of the neural network is presented.

Figure 5. Neural network for the matching algorithm.
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The results of the training process are shown in Figure 6. The first figure shows error
of the trained neural network, and the second figure presents the mean squared error
during the training process.
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Figure 6. Results of the training process. (a) Error of the neural network. (b) Mean squared error
during the training process.

In Figure 7 an example is presented, which shows the efficiency of the neural network.
In this example, the neural network computes the additional steering angle, which is added
to the nominal control input. Note that the data collection process used a step function-like
input sequence (see: Figure 4). Nevertheless, during this test the control input was selected
for a different type of signal, which is a chirp signal. Using this different input signal, the
generalization capability of the network was also examined.
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Linearized model

Nonlinear model
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(b) Velocity of the vehicle

Figure 7. Validation of the neural network.

During the test of the neural network, both the nonlinear and linear vehicle models
are excited by the same chirp signal as the input of the system. As the figures show, the
outputs of the linear nominal model (dashed blue line) and the linearized model (red line)
are the same, apart from a short segment. At the beginning of the simulation, the velocity of
the vehicle starts from zero, which causes significant inaccuracy in the linearization, since
the presented nominal vehicle model is not valid at low longitudinal velocities. However,
in other cases, the neural network provides satisfying results.

4. Robust Tracking Control Design Based on the Linearized Model

The linearized system is controlled by a H∞-based robust controller, whose design
is detailed in this section. Since the neural network is able to linearize the plant, more
precisely to fit the original nonlinear dynamics of the vehicle to the nominal model, the
basis of the control design is the nominal model presented in Section 2.

Although the resulted linearized system is able to approximate the requested linear
system, error between the nominal and linearized models can be observed. Its reason is the
error of fitting in the neural-network generation process. The error in the control design
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process as an uncertainty is taken into account. First, the modeling of the uncertainty is
proposed and second, the design of the robust controller.

4.1. Uncertainty of the Linearized System

In order to quantify ψ̇n − ψ̇, several simulations have been performed using the
nonlinear vehicle model, which is implemented in CarMaker. During the simulations, the
linearized system is excited with different steering angles (its amplitude Aδ ∈ {0.05–0.2 rad}
and frequency ωδ ∈ {0.1–10 rad/s}), and the vehicle runs at different longitudinal velocities
(vx ∈ {10–30 m/s}). Using the results of the simulations, each point of the transfer function
from the measured yaw-rate (ψ̇) to the yaw-rate error (∆ψ̇ = ψ̇n − ψ̇) are calculated. The
resulted transfer functions from the numerical computations are illustrated in Figure 8.
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Figure 8. Transfer functions of the error of the neural network.

As can be seen, the amplitude of the yaw-rate error (∆ψ̇) decreases along with the
velocity and amplitude of the steering angle. The error of the neural network is handled as
an uncertainty in the control design, which is described by the presented transfer functions.

The uncertainty of the system is formed through the worst-case scenario of the sim-
ulations. Thus, the uncertainty for the robust control design with the achieved highest
magnitude of all scenarios is considered. The uncertainty from the difference between ∆δ
and ∆δ∗ is modeled as a first-order proportional term, i.e.,

W∆ =
A∆

T∆s + 1
, (14)

where A∆, T∆ are parameters, which are selected based on the simulation scenarios. Hence,
A∆, T∆ are fitted through a least-squares method to over-approximate the simulation results.

4.2. H∞-Based Lateral Control Design

The main goal of the lateral control design is to guarantee the trajectory tracking of
the vehicle, which can be achieved by the following performances:

• The minimization of the lateral position:

z2 = yre f − y, |z2| → min! (15)

• In order to guarantee smooth trajectory tracking, the tracking of the reference yaw-rate
is also prescribed:

z1 = ψ̇re f − ψ̇, |z1| → min! (16)

• The presented performances must be reached by using minimized intervention:

z3 = δ, |z3| → min! (17)
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The performances can be written into the following vector: z = [z1 z2 z3]. The
state-space representation of the extended system:

ẋ = Ax + Bu (18)

z = Czx + Du (19)

where A, B and Cz are the matrices of the state-space representation of the nominal
model (1), and its state vector: x = [ψ̇ ẏ y]. Cz is defined by the performances. Figure 9
illustrates the augmented plant for the robust control design.

+
+

+

+

+
+

+
+

-

-

Figure 9. Augmented system for control design.

As can be seen, the plant is augmented with several weighting functions. The goal of the
transfer functions Wz,1, Wz,2 and Wz,3 is to guarantee the predefined performances (15)–(17).
Ww,1 and Ww,2 are to attenuate the noises of the measured signals (ψ̇, y). The weighting
functions Wre f ,1 and Wre f ,2 aim to scale the reference signals of the controller. Finally, W∆
symbolizes the uncertainty of the neural network, which is determined from the presented
simulations (Figure 8).

The goal of theH∞ design is to minimize theH∞-norm of the co-sensitivity functions
of the closed-loop system (Tz,w), see [16,17]. This means that a K controller must be found,
which meets the following criterion:

||Tz,w||∞ < 1 (20)

Moreover, the resulted controller (K) must also guarantee that the closed-loop system
is asymptotically stable. Finally, Figure 10 shows the whole control algorithm including
the neural network-based model-matching method.

Vehicle

Neural
 network

Reference 
trajectory

+

+

+
+-

-

Figure 10. Structure of the proposed control algorithm.
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5. Simulation Example

A comprehensive simulation is presented in this section, which is made using Car-
Maker vehicle dynamics simulation software. During the simulation, the goal is to track the
given reference trajectory at varying longitudinal velocities, which contains sharp bends,
where the vehicle is close to its physical limits. The car is driven along the given section of
the track twice. In the first case, the vehicle is controlled by the extended robust controller
(with the neural network-based linearization), while in the second case, it is driven by the
plain nominal robust controller.

Figure 11 shows the longitudinal velocity profile of the vehicle. The velocity varies in
a high range between vx ∈ {13–22 m/s}.
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Figure 11. Velocity of the vehicle.

Figure 12 demonstrates the trajectory tracking of the vehicle for both cases. In the first
case, when the car is driven by the extended controller, it is able to follow the predefined
track. In the other case, the vehicle leaves the road at a sharp bend. It means that the
nominal controller is not able to guarantee the required performance.
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Figure 12. Path of the vehicles during the simulations.

Figure 13 depicts the lateral acceleration of the vehicle using the extended controller.
As can be seen, the lateral acceleration varies between ay ∈ {−8, 8 m/s2}, which means it
is close to the physical limits of the car. Basically, this is the cause of the unstable behavior
of the vehicle in the second case, when the nominal controller is used.
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Figure 13. Lateral acceleration of the vehicle.
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Figure 14 presents the yaw-rates of the vehicle. The yaw-rate of the nominal model
is denoted by the blue line, while the measured yaw-rate is given by the red line. As the
figure shows, the yaw-rate signals are close to each other, which means the linearization
algorithm provides satisfying performances.

0 10 20 30 40 50 60

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Y
a

w
 r

a
te

 (
ra

d
/s

)

Nominal model

Measured

Figure 14. Reference and measured yaw-rate.

Figure 15 demonstrates the yaw-rate for the case when the neural network-based
model-matching is not used. It can be seen that the two signals differ from each other,
especially at the sharp bend, where the vehicle becomes unstable.
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Figure 15. Yaw-rate without neural network linearization.

The reference and the measured yaw-rate signals are illustrated in Figure 16. The error
of the tracking has a maximum of ψ̇e ≈ 0.15 rad/s. This value may be considered to be
high; however, a balance must be found between the tracking of the lateral position and
the yaw-rate, which is dealt with by weighting functions illustrated in Figure 9.
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Figure 16. Yaw-rate tracking during simulation.

Finally, in Figure 17 the input signals are shown. It can be seen that the neural network
intervenes significantly when the vehicle is traveling at high velocity at the sharp bend.
Whilst, in other cases, when the vehicle is in the linear range, the neural network provides
a significantly smaller steering angle.
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Figure 17. Control input of the vehicle.

It can be concluded that the extended controller can ensure the stability requirements,
especially in those cases, when the vehicle is close to its physical limits. Moreover, the
performance of the model-matching algorithm has been investigated in [18].

6. Conclusions

In this paper, a novel H∞-based robust control algorithm has been proposed for
autonomous vehicles, which was extended with a neural network-based model-matching
approach. The main role of the neural network is to match the output of the nonlinear
system to the predefined linear one. The error of the neural network has also been taken
into account during the design phase as uncertainty on the measured signal. Finally, a
complex simulation example has been given, which showed the advantage of the proposed
control algorithm over the nominal robust controller. The whole simulation is performed
in a vehicle dynamics simulation software, CarMaker.
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