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Abstract: Transportation agencies optimize signals to improve safety, mobility, and the environment.
One commonly used objective function to optimize signals is the Performance Index (PI), a linear
combination of delays and stops that can be balanced to minimize fuel consumption (FC). The critical
component of the PI is the stop penalty “K”, which expresses an FC stop equivalency estimated in
seconds of pure delay. This study applies vehicular trajectory and FC data collected in the field, for
a large fleet of modern vehicles, to compute the K-factor. The tested vehicles were classified into
seven homogenous groups by using the k-prototype algorithm. Furthermore, multigene genetic
programming (MGGP) is utilized to develop prediction models for the K-factor. The proposed K-
factor models are expressed as functions of various parameters that impact its value, including vehicle
type, cruising speed, road gradient, driving behavior, idling FC, and the deceleration duration. A
parametric analysis is carried out to check the developed models’ quality in capturing the individual
impact of the included parameters on the K-factor. The developed models showed an excellent
performance in estimating the K-factor under multiple conditions. Future research shall evaluate the
findings by using field-based K-values in optimizing signals to reduce FC.

Keywords: fuel consumption; stops; signalized intersection; stop penalty; performance index; signal
timings optimization; multigene genetic programming

1. Introduction and Background

Emissions of greenhouse gases (GHG) are a significant public concern due to their
association with the ongoing climate change [1,2]. The leading cause of this problem is the
combustion of fossil fuels. With 24% of total U.S. GHG emissions, light-medium- and heavy-
duty vehicles and trucks are among the most significant contributors [3]. The negative
impact of vehicular fuel consumption (FC) is not limited to environmental concerns,
but it extends to affect human health by increasing the concentration of some harmful
pollutants (e.g., particulate matters) [4]. One of the primary sources of excess fossil FC in
the transportation sector is the stop-and-go events [5] that occur primarily at intersections
because they involve high traffic density and crossing of two or more roads [6,7].

Traffic signals are one of the most used devices to control the flows of traffic at intersec-
tions [8–11]. Since early in the history of retiming traffic signals, several studies have proved
that adjusting retiming signals is one of the most valuable techniques to reduce FC [12–14].
That is usually done by reducing the number of stops, which decreases FC caused by
unnecessary deceleration-acceleration events. Thereby, traffic signal optimization has been
recognized as a policy that can help mitigate vehicular FC and emissions [15,16]. However,
stops and FC minimization might lead to a significant increase in delay [15,17–19].
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Thus, one of the very important, early research achievements in traffic signal con-
trol was the development of the Performance Index (PI) [20]—an objective function for
optimization of traffic signal timings. Researchers recognized the PI as a way to reduce un-
necessary (stop-related) FC without a substantial increase in delay [15]. The PI, expressed
in Equation (1), is a linear combination of delay (D) (seconds) and the number of stops
(S), with a weighting factor (K) (also known as ‘stop penalty’) (seconds) given to a single
stop [20]. The variable K refers to the number of seconds of delay during which a waiting
vehicle consumes the same amount of fuel consumed when making a full stop.

PI = D + K× S (1)

With the passage of time, the concept of the PI has become one of the central perfor-
mance measures to optimize traffic signals. Nowadays, some of the widely used signal
timing optimization programs (e.g., Synchro) use the PI as the primary objective function
for the optimization, not so much to reduce FC, but as a way to find a balance between
two of the most crucial performance measures at signalized intersections, delays and
stops [21,22]. Such optimization programs usually use a very low value for K (e.g., 10 s),
which has been shown not to be appropriate if the goal is to minimize FC at signalized
intersections [13,15,16,23–25].

Several studies have attempted to compute the K-factor, where each study used a
unique approach [13,15–23]. The first serious discussions and analyses of the K-factor
emerged in 1975 by Courage and Parapar [13]. They computed the K-factor by dividing
the FC of a complete stop (containing the fuel consumed during deceleration, idling, and
acceleration modes) by the FC of 1-h of idling time transformed to one second, as expressed
in Equation (2). This approach is mainly problematic because Courage and Parapar [13] did
not distinguish between FC caused by the action of stopping (deceleration and acceleration
modes) and FC associated with pure delay during idling (referred to as stopped delay
hereafter) at the signal.

K = 3600× Fs

FI
(2)

where FS is fuel consumed in a complete stop (gallon), FI is fuel consumed by 1-h idling
(gal/hour), and 3600 is a conversion factor.

In 1980, Robertson et al. [15] evaluated the influence of several values of K on the
delay and FC. The authors demonstrated that a K value of 20 s could reduce FC without a
substantial increase in delay. Unlike Courage and Parapar [13], Akcelik [16] differentiated
between FC during deceleration-acceleration modes and FC caused by the stopped delay.
He calculated the K-factor by dividing the FC during deceleration-acceleration modes by
the fuel rate while idling at the signal (stopped delay) (Equation (3)).

K = 3600× Fs − FI × ds − FI × dh
FI

(3)

where FS is fuel consumed in a complete stop (liter), FI is fuel consumed by 1-h idling
(liter/hour), ds is stopped delay (hour), and dh is delay caused by deceleration-acceleration
action (hour).

We note here that the K-factor reported elsewhere [13,15,16] has only been computed
based on macroscopic FC estimates. Such low-resolution FC measures did not provide
accurate computations of the K-factor. A recent study by Stevanovic et al. [23] proposed an
analytical model (described later) to compute the K-factor by making a complete distinction
between the FC caused by the deceleration-acceleration event (stopping action) and fuel
consumed while idling (zero speed).

Despite these great efforts, the literature has not estimated the K-factor based on very
representative field datasets collected for a large number of various vehicles whose FCs
may vary. Moreover, none of the previous studies developed a prediction model to estimate
the K-factor based on multiple contributing factors (e.g., speed, grade, and vehicle type).
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This study bridges these gaps in the state-of-the-art by using vehicular trajectories and
FC data from a large fleet of contemporary vehicles (the dataset was collected in 2017) to
compute the K-factor. Hence, this research represents the most trustworthy attempt to
estimate the K-factor for a representative fleet. Furthermore, this study develops a series of
predictive models for the K-factor by utilizing the computed stop penalties from the field
based on high-resolution FC measurements. The models developed in this study could
then be used to predict K values for various movements at signalized intersections under
different operating conditions. Those conditions are vehicle type, cruising speed, road
gradient, driving behavior, idling FC, and the deceleration duration.

The rest of the paper is divided into three sections. The first section explains the
methodology used in this research. The second section presents and discusses the results.
Finally, the concluding remarks and future directions are presented in section three.

2. Methodology

This section starts by giving a brief overview of the computation procedure for the K-
factor as proposed in [23]. Then, the factors that impact the K-factor, which are investigated
in this study, are presented. The field data collection is then briefly described. The following
subsection explains data preparation, classifying the tested vehicles into homogenous
categories, and processes the vehicular trajectory data. Subsequently, information on the
development and application of the seven predictive models for the K-factor is provided.

2.1. Overview of the Stop Penalty Derivation

The stop penalty needed to reduce FC was derived based on the fuel consumed during
the three driving modes of a complete stop at signalized intersections. These modes are
deceleration, idling, and acceleration. An example of field vehicular trajectory of those
modes is shown in Figure 1a. The change in speed during those modes can be represented
by a Cruising Speed Stop Profile (CSSP), as displayed in Figure 1b. Cruising speeds before
deceleration and after acceleration are not necessarily equal. In fact, field data processing,
discussed later, showed that it is rare that a vehicle decelerates from a particular cruising
speed and accelerates back to the exact original speed. The reality is that the cruising speed
after accelerating can be lower or higher than the original cruising speed before stopping.
Figure 1c depicts changes in acceleration during a stop event. Finally, the instantaneous FC
changes over time during a CSSP are demonstrated in Figure 1d. The total FC of a CSSP is
formulated in Equation (4) [23], where all units are identical and can be in gallons, liters,
or grams:

FCCSSP = FCD + FCI + FCA (4)

where FCCSSP is total fuel consumed during a CSSP, FCD is fuel consumed during the
deceleration mode, FCI is fuel consumed during the idling mode, and FCA is fuel consumed
during the acceleration mode.

The K-factor is the number of seconds of delay that consume the same amount of
fuel consumed by a stopping event. Hence, it is crucial to separately identify extra fuel
consumed during a stopping event (deceleration and acceleration modes), represented as
FCDA (FCD + FCA), from what is consumed during the stopped delay, represented as FCI.
Thus, we can say that FCDA is equal to a constant (Ke) multiplied by the FCI, as expressed
in Equation (5).

FCDA = Ke · FCI (5)

By rearranging Equation (5), the unitless constant (Ke) can be denoted as shown below:

Ke =
FCDA
FCI

(6)

The stopped delay varies based on the length of the red interval for a given phase.
So, for this reason, the FCI is divided by the total idling time (TI) in seconds, as shown
in Equation (7). This step is important to assign the number of seconds of stopped delay
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equivalent to a stopping event, which is the stop penalty (K-factor). The PI (Equation (1))
can then be called FC-PI (since it is derived to reduce FC) and is expressed as shown in
Equation (8).

K =
FCDA

FCI
TI

=
FCDA·TI

FCI
(7)

FC− PI =
n

∑
i=1

Di +
(FCDA·TI)i

(FCI)i
·Si (8)

where Di is stopped delay on link i (seconds), Si is total stops on link i, and n is number of
links in the network or links included in the optimization process.
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2.2. Factors Impacting Stop Penalty

It is apparent from Equation (7) that the K-factor depends significantly on the operating
conditions that impact the FC during the deceleration, idling, and acceleration modes of
a stopping event. Such primary conditions include vehicle type, proportion of heavy
vehicles in the fleet (because of their heavy masses [25]), driving behavior, road gradient,
cruising speed, and aerodynamic effect. The individual and combined impacts of all the
previously mentioned conditions on the stop penalty, based on simulation results, were
documented elsewhere [24,26]. However, the impact of two additional factors (idling FC
rate (FCI/TI) and deceleration duration (TD)) was not examined in the previous studies.
On the one hand, higher FC rates (FCI/TI) result in lower K values, as it can be concluded
from Equation (7). On the other hand, a longer deceleration duration causes a higher K
value because the excess FC during the deceleration phase depends on the duration of the
deceleration process, which depends on several factors, including the driver’s behavior
and the traffic dynamics of the vehicle(s) in front of the stopping vehicle. Thus, regardless
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of how small the FC (per unit of time) during deceleration is, longer deceleration times
mean more fuel consumed.

Therefore, the predictive models developed in this study are based on the com-
bined impact of various vehicle types, cruising speeds, road gradients, driving behaviors
(acceleration-deceleration rates), FC rate during idling, and deceleration durations. Besides
their profound effect on the K-factor, these factors were chosen because they can be (mostly)
acquired from the vehicular trajectories recorded via On-board diagnostics (OBD) readers
in the field. It is worth mentioning that for cruising speed, road gradient, and driving
behavior parameters, attention was given for the acceleration side of those parameters (e.g.,
speed after accelerating, grade while accelerating, and acceleration itself). That is because
the same parameters during deceleration have an insignificant impact on the stop penalty,
as discussed later in the paper.

2.3. Collection of Field Data

This study investigates the stop penalty by utilizing a dataset provided by the De-
partment of Energy (DOE) [27] and collected by the Idaho National Lab [28]. The dataset
includes vehicular trajectories of field trips lasting for 1850 h and covering 41,385 miles of
various urban arterials in Michigan, which offers a wide range of collected FC rates under
different operating conditions. InMetrics telemetry On-board diagnostics (OBD) recorder
from ISAAC instruments (InMetrics telemetry, Ohio, United States) [29], combined with a
Global Positioning System (GPS) module, was installed in the tested vehicles, and used to
collect the field data. Although the OBD recorder can sample over 40 distinctive parameters
with a frequency of up to 10 Hz, only eight parameters were included in the dataset. This
study focused on the parameters latitude, longitude, altitude, speed, and mass airflow, and
the last one was used to compute FC (more details below). The process of collecting the
data with a sample of the utilized parameters are shown in Figure 2.
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Figure 2. Field data collection process.

The authors decided to use this field dataset because it contains many CSSPs, it
includes stops on uphill and downhill roadway sections, it has a fleet consisting of many
vehicle types, and it encompasses various drivers with different driving behaviors. These
characteristics made this dataset suitable to test the impact of various operating conditions
on the K-factor. The following subsection discusses the preparation of field data that was
followed to achieve the goal of the study.
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2.4. Data Preparation

The DOE provided the dataset as a giant Comma-separated values (CSV) file; hence,
it was necessary to divide the entire dataset into smaller subsets for easier handling.
Each subset included trajectories for a single tested vehicle. Prior to commencing the
data preparation, tested vehicles were classified into homogenous groups based on their
properties that impact FC, especially based on vehicular engine sizes. The purpose of the
classification was to combine the stop penalties computed for similar vehicles in one group
as it is formidable to present the results for each vehicle. Following this step, a Python code
was developed to extract all the CSSPs for each tested vehicle (discussed in Section 2.3)
and determine the following parameters for each CSSP, cruising speeds, (i) right before
decelerating and (ii) right after the end of accelerating; grades while decelerating and
accelerating; idling FC rate; duration of deceleration stage; acceleration. In the end, the
stop penalty was computed for all extracted CSSPs individually using Equation (7) and FC
estimates recorded in the field.

2.4.1. Vehicle Classification

This section presents the vehicle clustering process. For the reader’s convenience,
Table 1 summarizes the notation used in this subsection.

Table 1. Nomenclature.

Variable Description

C Total cost function of the k-prototype algorithm
l Number of clusters
i Cluster

Cr
i Cost of assigning numerical objects in cluster i

Cc
i Cost of assigning categorical objects in cluster i

WCSS Within-cluster sum of squares
xr

ij Numerical object number j in cluster i
qr

i Mean point of the centroid of cluster (i)
nr Number of numerical objects in each cluster i
qc

ij Categorical prototype number j in cluster i
nc Number of categorical objects in cluster i
Cj Set of all unique values in the categorical attribute j

LDV Light-duty vehicle
LDT Light-duty truck

A total of 177 vehicle models with various Internal Combustion Engines (ICEs) were
tested during the DOE field data collection campaign, including many vehicular styles (e.g.,
2-Door, 4-Door, passenger van, minivan, and pickup). Examples of the vehicles included
1996 Toyota Corolla sedan, 2000 Ford Truck Windstar van, 2003 Lexus GS 300, 2006 Honda
Civic, Audi A4 Quattro, 2014 Hyundai Tucson, and Mazda CX-3. The 2012 Ford Truck
F250 Crew 4 × 4 was the heaviest and the most powerful vehicle with an 8-DSL 6.7 L
T/C engine, while the 2014 Toyota Yaris with 4-FI 1.5 L engine was the lightest and one
of the least powerful vehicles. Classifying the tested vehicles is a fundamental procedure
that is required when dealing with FC and the K-factor concepts. This is because the
amount of vehicular FC and the K-factor depend significantly on vehicle characteristics,
such as vehicle make, year of manufacture, engine technology, engine size, and vehicle
mass. This study categorizes vehicles on two levels, (i) based on its size and purpose,
a vehicle is either an LDV or an LDT (this classification level is similar to how the state
of art FC models such as the Comprehensive Modal Emission Model CMEM, Virginia
Tech microscopic (VT-Micro) model, and Virginia Tech Comprehensive Power-based Fuel
Consumption Model (VT-CPFM) VT-CPFM categorize their tested vehicles), and (ii) based
on vehicular operating characteristics that impact FC, and such classification is done by
using the k-prototype algorithm [30].
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The k-means algorithm is efficient for classifying various datasets, thus widely utilized
for many data mining applications [31,32]. The major drawback of the k-means is that it is
primarily limited to numeric data because it minimizes the Euclidean distance measured
between data points and means of clusters [30]. In contrast, the k-prototype algorithm is a
data-mining technique that clusters objects with numeric and categorical attributes based
on and with the same efficiency as the k-means paradigm [30]. The k-prototype method
dynamically updates the k-prototypes to maximize the intra-cluster similarity of objects.
The object similarity measure is derived from both numeric and categorical attributes.
Thus, the k-prototype algorithm was utilized in this study to classify the 177 tested vehicles
into seven categories that were similar in operating characteristics impacting FC. The clas-
sification process was based on a 177-by-n matrix that included several vehicle attributes,
including the vehicle class, vehicle year, engine size and technology, and vehicle mass. The
k-prototype algorithm aims at minimizing a total cost function (C) [30]:

C =
l

∑
i=1

Cr
i + Cc

i (9)

The first term of the total cost function is the total cost on all numerical objects (Cr
i )

in cluster i. Cr
i is represented by the within-cluster sum of squares (WCSS), which is often

defined as the Euclidean distance sum of squares between each object (xr
ij) and the mean

point (qr
i ) of the centroid of cluster (i), as expressed in Equations (10) and (11).

l

∑
i=1

Cr
i = WCSS =

l

∑
i=1

nr

∑
j=1

(
xr

ij − qr
i

)2
(10)

qr
i =

∑nr
j=1 xr

ij

nr
(11)

The second term of Equation (9) (Cc
i ) is represented as the number of mismatches

between an object and each cluster prototype (qc
ij) of cluster (i), which can be represented

as follows:
l

∑
i=1

Cc
i =

l

∑
i=1

nc

∑
j=1

nc

(
1− p(qc

lj ∈ Cj

∣∣∣i)) (12)

where Cj is a set of all unique values in the categorical attribute j, and p(qc
lj ∈ Cj

∣∣∣l) is the
probability of categorical prototype (qc

lj) occurring in cluster i. Hence, C in Equation (9) can
be rewritten as:

C =
l

∑
i=1

nr

∑
j=1

(
xr

ij − qr
i

)2
+ γ

l

∑
i=1

nc

∑
j=1

nc

(
1− p(qc

lj ∈ Cj

∣∣∣i)) (13)

where γ is a weight for categorical attributes for cluster l. Such weight is introduced to
avoid favoring either type of attribute (numerical or categorical). The selection of a γ value
was recommended in [30] as the average standard deviations of numeric attributes. It
should be noted that categorical values are unitless, whereas the numerical values follow
the unit of the attribute being clustered.

The k-prototype algorithm was applied to the data by using the Python programming
language, allowing the user to input categorical and numerical vehicular characteristics for
each tested vehicle to cluster vehicles into somewhat homogenous groups. When clustering
the vehicles, all tested vehicles were initially divided into LDVs and LDTs because, as
discussed earlier, LDVs and LDTs have significantly different FC characteristics. The
number of LDV and LDT groups is determined by using the ‘Elbow method,’ which is
based on the rate of ‘diminishing returns’. The Elbow method (Figure 3) uses the quality of
clustering performance as a function of the number of groups to select a point at the elbow
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of the curve that indicates the optimum number of groups. From the result of the Elbow
method in Figure 3, one can observe that four and three groups are suggested for LDVs
and LDTs, respectively. Therefore, all tested vehicles were classified into seven groups
identified as LDV1, LDV2, LDV3, LDV4, LDT1, LDT2, and LDT3.
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2.4.2. Instantaneous Fuel Consumption Rates

Given that the OBD recorder provides the mass air flow (MAF) along with a timestamp,
instantaneous FC rates can be derived from the recorded MAF [33,34]. Specifically, the
instantaneous FC rates (gram/sec) were computed by using the MAF records, under the
assumption that the stoichiometric (aka air-fuel) ratio is 14.7 [35]. The instantaneous FC
can then be calculated using Equation (14). It should be noted that using a constant air-fuel
ratio is not 100% accurate because the petroleum mixture will run lean or rich, depending
on the power required by the engine [34,35]. Therefore, FC estimates from Equation (14)
include a certain level of error. Although the air-fuel ratio can range from 6.1 to 20.1 for
a gasoline engine [35], the vehicle’s catalytic converter and its management system work
together to keep the stoichiometric ratio at 14.7. Therefore, assuming a stoichiometric ratio
of 14.7 in this study is expected to have an insignificant impact on FC estimates, as shown
in other studies [33,34], which are later used to compute the K-factor, as discussed in the
following subsections.

FC =
a
s

(14)

where FC is the fuel consumption (grams/sec), a is the mass air flow (grams/sec), and s is
the stoichiometric ratio equals to 14.7.

2.4.3. Cruising Speeds and CSSPs

The next step was to detect and extract CSSPs, for each tested vehicle, from the entire
vehicular trajectories. Such a step started by detecting zero speeds (idling time) and then
determining the two cruising speeds of a stop event. First, the cruising speed before
starting the deceleration phase (referred to as initial speed hereafter), and second, the
cruising speed after the accelerating phase (referred to as final speed hereafter). We define
initial speed as the maximum speed at which a stopping vehicle starts to decelerate to
zero speed. Similarly, the final speed is the maximum speed reached after accelerating
before the vehicle reaches its initial speed or starts decelerating again. The initial and final
speed definitions were used to develop a Python (Python Software Foundation, Haarlem,
Netherlands) code to determine and extract each CSSPs from the vehicular trajectory data.

Initial data processing showed that some vehicles decelerating from an initial speed
do accelerate for a short time (<2 s) before decelerating to zero. The opposite situation can
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happen during accelerating, where accelerating vehicles can decelerate for a short time due
to queuing and then continue accelerating to their cruising speed. Therefore, the developed
code accounted for such inconsistencies and determined the actual initial and final speeds
to extract CSSPs.

After the initial and final speeds were determined for each CSSPs, the next step was
to determine idling FC rate, decelerations and accelerations, deceleration’s duration, and
road gradients. Idling FC rate is defined as an average FC in grams/sec during idling.
Deceleration and acceleration are the rates of change in velocities from initial speed to
zero and zero to the final speed, respectively. The following subsection explains the grade
computation during the deceleration and acceleration phases.

2.4.4. Road Gradient

Road gradient during the deceleration mode was computed as an average value based
on the difference in altitude between the point of initial speed and the point at which the
vehicle reaches a zero speed. Similarly, the road gradient during the acceleration mode was
computed based on the difference in altitude between the starting acceleration point (at
zero speed) to the point at which the vehicle reaches its final speed.

Initial observation of the data showed that the altitude data are missing for several
tested vehicles. Moreover, resolutions of some of the altitude data may not be sufficiently
accurate for computational purposes. Thus, the missing altitude data of higher resolution
were acquired, when needed, from the National Elevation Dataset available from the U.S.
Geological Survey [36] (an agency in the US Department of the Interior) based on recorded
latitude and longitude coordinates in the field.

Finally, the stop penalty was computed for all CSSPs from the field using Equation (15),
which results from substituting Equations (7) and (14).

K =

[ a
s
]

DA
[ a

s ]I
TI

=

[ a
s
]

DA·TI[ a
s
]

I
(15)

As mentioned previously, a recent simulation-based study [24] investigated the indi-
vidual impact of multiple operating conditions (e.g., cruising speed and road gradient) on
the K-factor (Figure 4). The study concluded that the K-factor varies significantly under
various conditions. Thus, the K-factor should be a function of multiple factors. To achieve
that, the following subsection explains the development of a series of predictive models to
estimate the K-factor, considering the simultaneous impact of various factors.
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2.5. Machine Learning (ML) Models

ML techniques have been used extensively in various transportation applications
(e.g., [37]). This subsection presents an evolutionary computation (EC) technique to esti-
mate the K-factor based on various operating conditions, such as vehicle type, cruising
speed, road gradient, driving behavior, idling FC, and deceleration duration.

2.5.1. Multigene Genetic Programming

An EC method was used in this study because of two primary reasons, (i) EC models
converge faster than a typical ML (e.g., neural network), and (ii) explicit mathematical
formulations of the relationship between the K-factor and its independent factors can be
derived [38–41]. The EC technique used in this study is called multigene genetic program-
ming (MGGP). In MGGP, a single GP individual (program) is derived from a few genes,
each of which is a tree expression [40,41]. Each model evolved by MGGP is a weighted lin-
ear combination of the outputs from a few GP trees. The trees are called “genes.” Figure 5
and Equation (16) show a typical 2-gene program evolved by MGGP. The inputs of the
model are x2, x5, and x8. Several functions can be used for the evolution process (e.g., ×,
−, +, Log, and

√
). The model is linear in the parameters for the coefficients β0, β1, and β2

despite using nonlinear terms. As it is seen from Figure 5, the evolved model is a linear
combination of nonlinear transformations of the predictor variables. Two important MGGP
parameters that need significant attention are the maximum allowable number of genes
and maximum tree depth. Restricting the tree depth mainly results in generating more
compact models. The products of MGGP are profoundly nonlinear equations, reached after
forming millions of preliminary models through a complex evolutionary process [42]. As
described in previous sections, field data is used to generate the MGGP models, consisting
of thousands of K values for a wide range of operating condition scenarios.

y = β0 + β1

√
x2· x5

x8
+ β2

x5
2 ·√x8

x5
(16)
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2.5.2. Development of MGGP Models

The initial inputs (or independent variables) included eight parameters for the training
of the MGGP models, with the output (or dependent variable) being the stop penalty. Those
independent variables are initial-final speeds, deceleration-acceleration grades, idling FC
rates, deceleration-acceleration values, and the deceleration durations. Table 2 presents the
input parameters with their minimum and maximum values. The vehicle type was also
considered the ninth variable (to impact the stop penalty) by developing seven individual
MGGP models for the seven vehicular groups described in the data preparation section. A
few dozen of preparatory runs were conducted to determine the impactful input variables
on the stop penalty. The outcomes revealed that decelerating grades and deceleration itself
had an insignificant effect on the stop penalty. Accordingly, the MGGP models (seven
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models, one for each vehicular group) were developed by using only the six remaining
variables, as given in Equation (17).

K = f (SD, SA, GA, FCI , TD, A) (17)

where SD is decelerating (initial) speed (mph), SA is accelerating (final) speed (mph), GA
is accelerating grade (%), FCI is idling FC rate (gram/sec), TD is decelerating duration
(second), and A is acceleration (ft/sec2).

Table 2. Values of the input parameters used in the training sets.

Input Parameter
LDV1 Model LDV2 Model LDV3 Model LDV4 Model LDT1 Model LDT2 Model LDT3 Model

Min Max Min Max Min Max Min Max Min Max Min Max Min Max

SD (mph) 9.32 74.56 9.32 65.24 9.32 60.27 9.32 74.56 9.32 74.56 9.32 55.92 10.56 57.17
SA (mph) 9.32 75.19 9.32 70.21 9.32 55.92 9.32 72.7 9.32 66.49 9.32 59.65 9.32 59.65

GA (%) −13.67 13.16 −13.43 12.08 −13.29 13.69 −12.8 15.28 −9.54 8.55 −10.48 8.65 −6.36 11.49
FCI (gram/sec) 0.09 1.2 0.09 1.314 0.1 1.18 0.1 1.17 0.09 1.21 0.09 0.98 0.1 1.04

TD (sec) 1.7 30 1.4 30 3.1 30 0.6 30 1.3 30 2.3 30 2.6 33.5
Ar (ft/sec2) 0.28 37.97 0.39 36.45 0.1 22.02 0.16 36.45 0.24 30.38 0.59 22.78 0.3 9.11

CSSPs for each vehicle group were randomly partitioned into training, testing, and
validation datasets based on the proportions 60%, 20%, and 20%, respectively. The best-
performed models on the training and testing data were also assessed using a new (valida-
tion) dataset. GPTIPS toolbox [43], a free access MGGP training tool developed in MATLAB
(MathWorks, Natick, MA, USA), was used to create the prediction models. Seven models
were developed for the stop penalty, four for LDVs and three for LDTs. Table 3 shows the
final attributes setting for the MGGP as recommended in previous studies [29,31,32].

Table 3. Optimal MGGP attributes setting.

Attribute * Options/Value

Function set +, −, x, /, log, sqrt, square
Population size 800

Number of generations 500
Maximum number of genes allowed in an

individual 6

Maximum tree depth 4
Tournament size 80
Tournament type Pareto (probability = 1)

Elite fraction 0.7
Number of inputs 8
Constants range [−10, 10]

Complexity measure Node count
* All attributes are labeled as they are defined in the GPTIPS toolbox manual [43].

Coefficient of determination (R2) and the root-mean-squared error (RMSE) were
employed to judge the performance of the introduced models. RMSE and R2 equations are
displayed in Equations (18) and (19).

RMSE =

√
∑n

j=1(Ci − Ei)
2

n
(18)

R2 =

 ∑n
j=1
(
Ci − C

)(
Ei − E

)√
∑n

j=1
(
Ci − C

)2
∑n

j=1
(
Ei − E

)2

2

(19)

where Ci is computed K-factor for the jth output, pi is estimated K-factor for the jth output,
C is average computed K-factor, E is average estimated K-factor, and n is sample size.
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Equations (20)–(26) in Table 4 represent the stop penalty under various operating
conditions for each vehicle group (LDV1, LDV2, LDV3, LDV4, LDT1, LDT2, and LDT3).
These models were developed using (6188, 2604, 1379, 4073, 1588, 888, and 225) and (2063,
869, 460, 1358, 530, 269, and 75) sets of training and testing data, respectively.

Table 4. Mathematical formulations of the MGGP models.

Model Equation #

LDV1

KLDV1 =
1.321e−2·SD

2·TD+0.3979·TD
2−5.102·FCI ·TD

FCI ·TD
+ 1.608·SD+0.2311·SD ·TD+4.966e−3·SD

2·GA ·TD+3.073e−2·SD
2·FCI ·TD+7.796e−3·SA ·SD ·TD

FCI ·TD ·A
(20)

LDV2

KLDV2 =
SD

2·[8.426×1015·(GA+FCI )+4.229×1016]·4.337×10−19

FCI ·A +
4.235×10−22[FCI ·SA

2·TD
2·6.245×1019·SD

2+8.126×1020·TD+2.781×1022·FCI−1.44×1022·FCI · log(|A|)]
FCI ·A

(21)

LDV3

KLDV3 =
3.341e−4·FCI ·(SA+SD)

GA
2 − 1.11×10−15[3.904×1015·TD−2.643×1015·SD+2.972×1014·SD ·TD]

TD
+

8.674×10−19·[4.58×1017·FCI ·TD+6.994×1015·SD
2·GD+2.46×1016·SD

2·TD−6.994×1015·SD ·GD ·TD]
GA ·TD

(22)

LDV4

KLDV4 = 0.01948·SD
2·A3−FCI ·SD ·0.01757

FCI ·A4 −
6.345·FCI+0.2576·TD+0.008612·SD

2+4.518×10−6·A2·FCI ·TD
2+

0.0025·SD
2 ·GA√

(|A|)
FCI

(23)

LDT1

KLDT1 =
8.674e−19·SD ·(1.574e14·SA ·GA

2+1.574e14·SA ·SD ·GA+7.553e17)
(FCI ·A)

−
(8.314e−3·SD

2·FCI
2·TD

2+8.977·SD
2·FCI+5.725e3·FCI

2+2.983·(SA ·FCI ·TD)+4.946·TD)·1.694e−3
FCI 2

(24)

LDT2

KLDT2 =
1.059e−3·SA ·SD

2·FCI
3+GA · log(|TD |)·SD

2·FCI
2·0.002112+0.5789·SD ·FCI

2

(FCI )
3·A

−
0.0002673·SD−0.01809·SD

2·FCI
2−2.792·FCI

2·
√

(|TD |)+9.811·FCI
3

FCI 3

(25)

LDT3

KLDT3 = 3.006e−2·SD
2

GA
+ 0.4344·FCI ·TD − 0.003328·(SA + SD + FCI + TD)

2 + 13.16
GA

+

(5.023×1015(SA+SD+GD))·4.441×10−16

TD
+

(GD

(
−1·GD

2+
SD
GA

)
·0.2658

TD
− 39.4

(26)

3. Results and Discussion
3.1. Models Training, Testing, and Validation

Figures 6 and 7 present the performance indices of the MGGP models on the training,
testing, and validation datasets. As seen, the MGGP models have an excellent fitting and
high coefficient of determination represented by R2 values of more than 0.96. It is important
to note that the same training datasets (for the seven-vehicle groups) were used to develop
multivariate linear regression models. The obtained R2 values were less than 0.35 for most
of those regression models. Such poor performance of the conventional multivariate linear
regression models can be explained by limitations of such statistical regression techniques.
In most cases, the best linear or nonlinear models developed using the commonly used
statistical approaches are obtained after controlling a few equations established in advance
(30). Thus, such models cannot efficiently consider the interactions between the dependent
and independent variables.
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On the other hand, MGGP introduced completely new characteristics and traits
and directly derived correlations without assuming prior forms of existing relationships.
Figure 8 shows a simple summary example of a run in GPTIPS. The upper part and lower
part of Figure 8 show the log10 value of the best RMSE and the mean RMSE achieved over
the generations of a run. It is worth mentioning that the log10 value of the RMSE is the
error metric that GPTIPS attempts to minimize over the training data.

Figure 9 visualizes an example of the training procedure for minimizing the error
and simplifying the complexity of the MGGP models during the evolutionary process.
The green dots represent the Pareto front of models in terms of model performance and
complexity. Blue Xs represent non-Pareto models. The red circled dot represents the best
model in the population based on the R2 value on the training data. The final model for
each vehicle group was selected based on two criteria, accuracy and model complexity.
The developed models are validated with a fresh dataset to evaluate the generalization
capability of the developed models. Figures 6(c1–c4) and 7(c1–c3) show the acceptable
performance of the models for the validation data.
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3.2. Parametric Analysis

A parametric analysis was performed to investigate the impact of the tested indepen-
dent factors on the stop penalty and to investigate the robustness of the developed models.
This analysis was done by varying one parameter within a practical range, while other
parameters were kept constant at their average values. Figure 10 shows the results of the
parametric study for the best models. Figure 10 shows that all the studied factors had a
significant impact on the value of the stop penalty. Some conditions (such as the final speed
and idling FC rate) had a much more significant impact than the others (e.g., initial speed).
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Figure 10 shows that the LDT groups had larger K values than those of the LDVs’.
The difference in K value between LDT and LDV groups is most remarkable for the initial
speed, accelerating grade, deceleration duration, and acceleration. The same difference
is still observed for the other factors but with a smaller margin. Such findings can be
mainly attributed to the vehicles’ masses, where heavier vehicles, represented by the LDTs,
require more fuel (thus higher K value) than the lighter vehicles (LDVs) to operate under
the same conditions of a stop event. On average and under various operating conditions, K
values of LDTs were ~1.2–3 times higher than those of LDVs. It is expected that heavy-duty
diesel vehicles (HDDVs) would have an even higher K value. It can also be observed from
Figure 10 that the K value differs internally among the individual LDV and LDT groups.
For instance, K values for LDV1 in Figure 10a range from 70–85 s, while LDV4′s range
starts from 67–75 s. Thus, when computing the K value, it is crucial to pay considerable
attention to the percentage of various vehicle types arriving at signalized intersections.

As shown in Figure 10a,b, the K-factor shows approximately linear and exponential
relationships with the increase of the initial and final speeds, respectively. A comparison of
the two relationships shows that the final speeds impact the K value much more than the
initial speeds. As a result, various initial and final speeds lead to a K value between 67–105
and 15–350 s, respectively, for various vehicle types. The difference in the two ranges
for the initial and final speeds is attributed to the fact that the amount of fuel consumed
during acceleration is far larger than its counterpart during deceleration. Such a difference
is important to be taken into account when computing the K-factor for left and right turns
because, in those cases, initial and final speeds are often very different.

Regarding the grades, the findings show that grades during deceleration have a
negligible impact on the K-factor, as mentioned in the previous sections. On the other hand,
the road gradient on the acceleration side is found to correlate linearly with the K-factor. It
is interesting to note that all seven models developed in this study cover a wide range of
accelerating grades which can be as low as −13.5% and as high as 15% for most LDVs. In
contrast, narrower ranges (−6% to 8%) were conducted for the LDTs, as shown in Table 2.

One of the most important findings of this study reveals an approximately quadrino-
mial relationship between idling FC rate and K-factor (Figure 10d). Such a relationship
results in a K value of more than 250 s for some vehicle types at low idling FC rates. Most
vehicles included in this study had an idling FC rate range between 0.1–1 g/s. There
could be several reasons for such a wide range of idling FC rates, and engine size, mass,
and ambient temperature are the most important ones. Since it is not easy to identify the
idling FC rate for all vehicles stopping at signalized intersections, it is recommended that
operating agencies use distributions of idling rates based on various vehicle types, various
times of the day, and various climates zones.

Despite its minimal impact on the K-factor, it was necessary to show the relationship
between FC during deceleration and the stop penalty. It is worth noting that the decelera-
tion FC is highly unpredictable, as it depends on the driver’s characteristics (e.g., driving
behavior and perception reaction time), geometrical characteristics of intersections, and the
interactions (while breaking) with other vehicles. This study used deceleration durations to
represent the deceleration FC. Figure 10e demonstrates that deceleration duration impacts
the stop penalty linearly.

Surprisingly, higher accelerations were found to reduce the stop penalty, as illustrated
in Figure 10f. This finding was unexpected and suggested that maybe the acceleration
duration (required to reach the final speed) is more impactful than the aggressiveness of
accelerating. This is speculated because higher accelerations require a shorter time to reach
a particular speed. Therefore, caution and engineering judgment must be applied until
further research is conducted because the findings of the impact of acceleration on the stop
penalty might not be generalized or transferable to other datasets with the field vehicular
trajectories.
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3.3. Comparison of Stop Penalties from Various Studies

As mentioned in the introduction, only a few studies have computed the stop penalty,
either by using FC collected in the field or FC estimates from simulated vehicular trajectories.
This subsection discusses the stop penalty values from various studies [13,15,16,21,23,24]
to address how the outcomes of this research may improve practices and policies when
optimizing signal timings in urban corridors.

Considering that most of the evaluated studies report only the cruising speed (as a
factor associated with the reported stop penalties), we developed in Figure 11 (with our
best effort as data from various studies may not be 100% consistent) a set of relationships
between the stop penalty and cruising speed from seven sources, MGGP models developed
in this paper; “Synchro”—a widely used signal timing optimization tool [21]; field-based
stop penalties reported by Courage and Parapar [13], Akcelik [16], Stevanovic et al. [23],
and Robertson et al. [15]; simulation-based stop penalties from Alshayeb et al. [24].

Energies 2021, 14, x FOR PEER REVIEW 19 of 24 
 

 

3.3. Comparison of Stop Penalties from Various Studies 
As mentioned in the introduction, only a few studies have computed the stop 

penalty, either by using FC collected in the field or FC estimates from simulated vehicular 
trajectories. This subsection discusses the stop penalty values from various studies 
[13,15,16,21,23,24] to address how the outcomes of this research may improve practices 
and policies when optimizing signal timings in urban corridors. 

Considering that most of the evaluated studies report only the cruising speed (as a 
factor associated with the reported stop penalties), we developed in Figure 11 (with our 
best effort as data from various studies may not be 100% consistent) a set of relationships 
between the stop penalty and cruising speed from seven sources, MGGP models 
developed in this paper; “Synchro”—a widely used signal timing optimization tool [21]; 
field-based stop penalties reported by Courage and Parapar [13], Akcelik [16], Stevanovic 
et al. [23], and Robertson et al. [15]; simulation-based stop penalties from Alshayeb et al. 
[24]. 

 
Figure 11. Stop penalty vs. cruising speed from various studies [13,15,16,21,23,24]. 

Figure 11 shows that various studies show different trends, where most of them point 
to a positive impact of the speed on stop penalty. To be more precise, the studies can be 
classified, according to their trends, into two groups, (i) studies that report constant stop 
penalties (Courage and Parapar [13], Akcelik [16], and Synchro [21]) and (ii) studies that 
define the stop penalty as a function of—at least—the speed (field data covered in this 
research, Robertson et al. [15], Stevanovic et al. [23], and Alshayeb et al. [24]). The 
following paragraphs discuss in detail the results shown in Figure 11. 

Courage and Parapar [13] were among the first to report a single stop penalty value 
(60 seconds) using FC measurements of a mixed fleet with a cruising speed of 30 mph and 
level grade, as reported by Claffey [44]. Akcelik [16] derived the stop penalties for three 
fleet distributions, one consisting exclusively of light vehicles, another of heavy vehicles, 
and one composite fleet with 10% of heavy vehicles, which resulted in K values of 54, 104, 
and 60 s, respectively. Those three stop penalty values are shown in Figure 11 as orange 
dots with various color intensities for a cruising speed of 37 mph. Reporting the speed at 

Figure 11. Stop penalty vs. cruising speed from various studies [13,15,16,21,23,24].

Figure 11 shows that various studies show different trends, where most of them point
to a positive impact of the speed on stop penalty. To be more precise, the studies can be
classified, according to their trends, into two groups, (i) studies that report constant stop
penalties (Courage and Parapar [13], Akcelik [16], and Synchro [21]) and (ii) studies that
define the stop penalty as a function of—at least—the speed (field data covered in this
research, Robertson et al. [15], Stevanovic et al. [23], and Alshayeb et al. [24]). The following
paragraphs discuss in detail the results shown in Figure 11.

Courage and Parapar [13] were among the first to report a single stop penalty value
(60 seconds) using FC measurements of a mixed fleet with a cruising speed of 30 mph and
level grade, as reported by Claffey [44]. Akcelik [16] derived the stop penalties for three
fleet distributions, one consisting exclusively of light vehicles, another of heavy vehicles,
and one composite fleet with 10% of heavy vehicles, which resulted in K values of 54, 104,
and 60 s, respectively. Those three stop penalty values are shown in Figure 11 as orange
dots with various color intensities for a cruising speed of 37 mph. Reporting the speed at
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which the stop penalty was computed in both studies [13,16] indicates that the authors of
those studies were aware of the importance of cruising speed on the stop penalty. However,
the same studies did not collect field FC data for various vehicle types and other important
factors (e.g., idling rate, grade), and for that reason, their reported stop penalties would
not reflect the impact of those conditions.

Based on FC measurements from Robertson et al. [15], stop penalties show a positive
linear trend with the cruising speed. However, that study also did not cover a wide range of
cruising speeds (only three speeds) and was based on macroscopic FC measurements. Thus,
the MGGP results seem to be more reliable because they were based on high-resolution FC
measurements and covered a wide range of speeds.

Although a recent study by Stevanovic et al. [23] was conducted under some lim-
itations (e.g., utilized a single vehicle, utilized a single driver, limited speed range of
~20–45 mph), the stop penalties from the MGGP models showed that the findings from
Stevanovic et al. [23] are still quite valid. However, the MGGP models were still based on a
much larger data set that includes many different vehicles and drivers and covers a much
broader range of speeds (~10–75 mph).

When comparing the MGGP stop penalties with those from the simulation mod-
els [24], Figure 11 shows that both data series depict the same trend (stop penalty correlates
positively with the cruising speed), but it seems that the simulation-based stop penalties
underestimate those from the field (e.g., either from this study or the results from Ste-
vanovic et al. [23]). On the other hand, Figure 12, which compares the field and simulated
stop penalties as functions of the road gradient, shows that the simulated data overesti-
mated the field values. There could be several reasons for such differences between the
field and simulated stop penalties (for both speeds and grades). One is the difference in the
FC idling rate, which ranges from 0.1 to 1.3 g/sec in the field, whereas the range is smaller
in the simulation (~0.20–0.6 g/sec). Or it could be that tested vehicle types in the field are
very different from evaluated vehicle types in the simulation.
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It is important to note that none of the previous studies, except for the one with
simulated data [24], reported the impact of other factors (excluding cruising speed) on
the stop penalty. The simulation-based study [24] covered the effect of multiple factors
on the stop penalty, which are 15 vehicle types (make year 1990–2000), driving behavior
represented by acceleration-deceleration functions, road gradient while accelerating (−7%
to 7%, as shown in Figure 12), cruising speed (assuming equal speed before and after
stopping), and aerodynamic effect from the wind. We also note that the simulation-based
study [24] did not develop a prediction model to estimate the stop penalty considering
various factors—it simply derived bivariate relationships between each individual factor
(while other have been kept constant) and the stop penalty. In comparison to that study
with simulated data, this work developed MGGP models that cover more than 170 modern
vehicle types (1996–2017), driving behavior with higher resolution by separately including
the deceleration and acceleration times, a larger range of road gradients (while accelerating)
(~−14% to 14%), a broader range of cruising speeds, etc. Finally, the MGGP models are not
bivariate—they represent multivariate correlations between the stop penalty (as dependent
variable) and all of the listed impact factors.

Based on the previous discussion, the major unique features of the MGGP models can
be summarized as follows:

• The models were developed using high-resolution FC measurements, unlike Courage
and Parapar [13], Akcelik [16], and Robertson et al. [15], whose FC measurements
were not of the same accuracy.

• FC measurements were collected in the field, unlike Alshayeb et al. [24], whose stop
penalties were simulation-based.

• Large number of LDVs and LDTs were included, whereas most previous studies used
less than three vehicles.

• The tested fleet consisted of modern vehicles, whereas tested vehicles in the previous
studies, except for Stevanovic et al. [23], are old for contemporary standards.

• Tested vehicles covered long distances, resulting in a significantly larger dataset than
those used in the previous studies.

• The models cover multiple factors impacting the stop penalty (vehicle type, cruis-
ing speed, road gradient, FC idling rate, driving behavior, and decelerating dura-
tion), whereas most of the previous studies investigated only the impact of the cruis-
ing speed.

While transportation agencies in different regions in the US can utilize the developed
models because they included a large fleet of commonly driven vehicles on US roads, it is
unknown whether the K-factor might vary for various locations. However, it is expected
that this will be the case, as the K-factor depends on the operating conditions of each specific
area. For example, an area could have a large percentage of elderly or youthful population,
whose driving behaviors are quite different. Thus, the K values for such a location can be
significantly different from a demographically well-balanced area. Consequently, further
research is needed to develop regional K values for multiple distinctive regions. That
can be done by collecting floating vehicle data, including FC in the field, especially for
critical signalized corridors in the region, or by modeling the operating conditions of those
distinctive regions in traffic simulation and FC models and designing proper experiments
to derive K values.

Another future research should utilize the emerging basic safety message (BSM) data
from connected vehicles to calibrate the developed models. Further, in a fully vehicular
connected traffic environment, the BSM data can be used to compute the current K value
for each network movement and use such a value for real-time adjustment of traffic timing
parameters. Finally, the BSM data can also be used to derive the K-factor based on user
satisfaction instead of equivalent FC. In such a case, the K-factor is expected to be lower
at movements where drivers may be more inclined to wait longer or be stopped more
frequently (e.g., side streets) than at movements where drivers expect good progression
(e.g., through movement on the major street).
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4. Conclusions and Future Research

This study had two major objectives, (i) to assess the impact of the major operating
conditions (vehicle type, cruising speed, road gradient, idling FC rate, deceleration dura-
tion, and driving behavior) on the stop penalty (K-factor) using vehicular trajectories and
FC estimates collected from the field, and (ii) to develop valid EC models, namely MGGP,
to formulate the stop penalty as a factor of various operating conditions.

An extensive real-world dataset from the field was used to develop predictive models
for seven vehicular groups classified in this study. The performance of the developed
models was evaluated by using testing and validation datasets. The models developed
achieved high accuracy for the training, testing, and validation datasets.

A parametric study was also carried out to investigate the impact of the investigated
factors on the stop penalty and to ensure the robustness of the developed models. The
parametric study revealed that the stop penalty is positively correlated with all of the
factors studied. Specifically, initial speed, grade while accelerating, and deceleration
duration have linear relationships with the stop penalty, whereas the idling FC rates and
accelerations have quadrinomial ones. Lastly, final speed seemed to impact the stop penalty
exponentially. These findings suggest that, in general, the stop penalty is not a low constant
value as widely thought in the traffic signal optimization community.

An implication of this study is the possibility of feasibly computing the K-factor by
using the models developed in this study. It is recommended that traffic agencies should
implement FC-based stop penalties in their signal timing optimization practices. Such
implementation can be as simple as changing the value of K when optimizing signals
using Synchro—or integrating the PI with correctly computed stop penalty as the objective
function when optimizing signal timings utilizing various optimization techniques (e.g.,
genetic algorithm).

One limitation of the current study is that it does not analyze the impact of some other
important factors affecting the stop penalty (e.g., pavement type and ambient temperature)
due to their unavailability in the field dataset. However, this research has identified a
few questions that require further investigation. Most importantly, a future study should
investigate the actual applicability of various K-values (especially K > 250 s) for different
movements of signalized intersections on the reduction of FC and other performance
measures (e.g., progression and delay). In addition, one could develop a microscopic level
ML model and evaluate and validate the performance of such a microscopic model. One
could also integrate a vehicle dynamics model to consider vehicle throttle and braking
levels to assure more accurate FC and emissions estimates. This would be particularly
important when connected and automated vehicles are considered.
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