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Abstract: Upscaling of photoelectrode for a practical photoelectrochemical (PEC) water splitting
system is still challenging because the PEC performance of large-scale photoelectrode is significantly
low, compared to the lab scale photoelectrode. In an effort to overcome this challenge, sputtered
gold (Au) and copper (Cu) grid lines were introduced to improve the PEC performance of large-scale
cuprous oxide (Cu2O) photocathode in this work. It was demonstrated that Cu grid lines are more
effective than Au grid lines to improve the PEC performance of large-scale Cu2O photocathode
because its intrinsic conductivity and quality of grid lines are better than ones containing Au grid
lines. As a result, the PEC performance of a 25-cm2 scaled Cu2O photocathode with Cu grid lines
was almost double than one without grid lines, resulting in an improved charge transport in the
large area substrate by Cu grid lines. Finally, a 50-cm2 scaled Cu2O photocathode with Cu grid lines
was tested in an outdoor condition under natural sun. This is the first outdoor PEC demonstration
of large-scale Cu2O photocathode with Cu grid lines, which gives insight into the development of
efficient upscaled PEC photoelectrode.
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1. Introduction

The photoelectrochemical (PEC) water splitting system has been considered a promis-
ing pathway for generating eco-friendly hydrogen [1–3]. In the PEC water splitting system,
semiconductor photoelectrodes play a significant role because they produce electron-hole
pairs by absorbing the sunlight, inducing water splitting reactions in the interface between
the photoelectrode and water [4–6]. The PEC performance of photoelectrodes is impor-
tant for efficient hydrogen generation because it determines the solar-to-hydrogen (STH)
efficiency of a PEC water splitting system. In addition, the stability of photoelectrodes is
significant for sustainable hydrogen production due to the feasibility of the degradation
in the water, resulting in the loss of PEC performances. Therefore, the development of
efficient and durable photoelectrodes with low-cost materials is essential for a practical
PEC water splitting system.

Cuprous oxide (Cu2O) is a promising candidate material for efficient and durable
photoelectrodes due to its band position, optical characteristic, non-toxicity, and abun-
dancy [7–9]. It is suitable for a PEC photocathode because it is a p-type semiconductor and
its conduction band is more negative than the hydrogen evolution reaction (HER) potential.
In addition, it has a band gap of 2 eV, facilitating the utilization of visible light up to a
wavelength of 600 nm. Hence, the photocurrent density can be theoretically achieved up to
−14.7 mA cm−2 using Cu2O as a PEC photoelectrode. It corresponds to a STH efficiency of
18%, which is higher than the standard one (10%) for the commercialization of a PEC water
splitting system [3,10]. Although it is not stable in the water, it is avoidable by adopting
the protection layer with the intrinsic stable materials [11,12]. The state-of-the-art Cu2O
photocathode based on a nanowire structure with a gallium oxide overlayer, titanium oxide
(TiO2) protection layer, and ruthenium oxide (RuOx) HER catalysts shows a photocurrent
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density of −10 mA cm−2 at HER potential and stability over 100 h [13]. It is a considerable
PEC performance with remarkable stability, however, it is limited to the lab scale Cu2O
photocathode below 1 cm2.

Upscaling of photoelectrodes is inevitable for a practical PEC water splitting system
because it facilitates the mass production of hydrogen. Nevertheless, the quite low PEC
performance in a large-scale photoelectrode compared to the lab scale photoelectrode
has remained an unsolved problem. It is mainly caused by the potential drop from the
ohmic loss in a large-scale substrate [14–17]. To overcome this problem in the large-scale
photoelectrode, few efforts on reducing the substrate ohmic loss have been reported. W.J.
Lee et al. developed a large area, tungsten oxide photoanode-inserted silver (Ag) grid
with an area of 130 cm2 [18]. It was demonstrated that the screen-printed Ag grid is
effective in improving the conductivity of large area photoelectrodes. I.Y. Ahmet et al.
introduced the electrodeposited nickel line to reduce the potential drop in the large scale
(50 cm2) bismuth vanadate photoanode [19]. A. Vilanova et al. reported a 200-cm2 PEC-
photovolatic (PV) water splitting device based on the hematite (Fe2O3) photoanode [20].
They fabricated the modular large scale Fe2O3 photoanode assembled with several pieces
of small Fe2O3 photoanode, reducing the ohmic loss in a large scale photoelectrode. X.
Xiao et al. developed a 60-cm2 tantalum nitride photoanode on the metal titanium substrate,
which has better conductivity compared to the transparent conductive substrate [21].
However, to the best of our knowledge, the study on the reduction of ohmic loss in
large-scale Cu2O photocathode has still not been reported elsewhere, despite the Cu2O
photocathode being in the limelight for its efficient and durable PEC water splitting system.

In this work, a large-scale Cu2O photocathode with a metal grid structure was de-
signed for reducing the ohmic loss of a large area of Cu2O photocathodes. The electrode-
posited Cu2O photocathodes consisting of an aluminum doped zinc oxide (AZO) overlayer,
TiO2 protection layer, and RuOx HER catalysts were prepared on the metal grid sputtered
large-scale fluorine-doped tin oxide (FTO) substrate. Gold (Au) and copper (Cu) metal grid
lines were introduced to reduce the ohmic loss in the large substrate and their effects on
the PEC performance of large area Cu2O photocathode were analyzed. Finally, the Cu grid-
embedded large scale Cu2O photocathode was tested in outdoor conditions under natural
sun. It is the first outdoor demonstration of a PEC water splitting operation using large
scale Cu2O photocathode with a metal grid structure. Therefore, it would be a worthwhile
footprint for practical PEC water splitting using Cu2O photocathodes and it would provide
valuable insights on the upscaling of PEC photoelectrodes toward the commercialization
of a PEC water splitting system.

2. Materials and Methods

Prior to the fabrication of Cu2O photocathode, the FTO coated glass substrate (TEC-15,
G2E) was cleaned by successive ultrasonication processes for 10 min in acetone, ethanol,
and distilled water, respectively. The substrate cleaning was completed by ultravio-
let/ozone plasma treatment for 10 min to remove remained residues. Before the Cu2O
deposition, metal grid lines (Au or Cu grid lines) were sputtered on a cleaned FTO substrate
by using the sputtering deposition system (DP-650, Alliance-Concept, Annecy, France) at
room temperature. The thickness of the metal grid was fixed at 150 nm by adjusting the
deposition time based on the deposition ratio of each metal. The dimension of metal grid
lines with a width of 10 mm, a gap between each grid line of 50 mm was determined by the
mask with Kapton tape. A sputtered chromium (Cr) interlayer with a thickness of 45 nm
was inserted between the FTO substrate and the metal grid to improve the adhesion of
metal grid onto the FTO substrate [22].

Large scale Cu2O photocathode was fabricated on the prepared FTO substrates
with and without metal grid lines, following the fabrication process as reported pre-
viously [23–25]. In brief, the Cu2O films were deposited by the electrodeposition. A 3-nm
thin Au film was sputtered for better Cu2O deposition and hole extraction, before electrode-
position. The constant current density of −0.1 mA cm−2 was applied in a lactate-stabilized
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copper sulfate aqueous solution (pH 12) with a platinum (Pt) mesh counter electrode dur-
ing the Cu2O electrodeposition. It was carried out for 50 min, which was a deposition time
for the optimal PEC performance of electrodeposited Cu2O photocathodes [25]. A 20-nm
thick AZO overlayer was deposited on the Cu2O film to make a p-n junction for better
charge separation. Sequentially, a 100-nm thick TiO2 layer was deposited to protect the
Cu2O film. Both films were deposited by a thermal atomic layer deposition (Savannah
100, Cambridge Nanotech, Cambridge, USA). RuOx HER catalysts were finally deposited
by photodeposition, applying a constant current density of −28.3 µA cm−2 for 15 min
in a 1.3-mM potassium perruthenate (KRuO4) solution under light illumination. After
that, Ag contacts were deposited on edges of the FTO substrate for the efficient charge
collection to the external connection. In detail, Ag paint (ElectroDAG 1415, Agar Scientific,
Essex, UK) was brushed on the edges of the FTO substrate, and was dried at 80 ◦C for
30 min. The area of the large scale Cu2O photocathodes was determined by masking epoxy
(Loctite Hysol, Düsseldorf, Germany) as 25 cm2 for the study on the grid effect and 50 cm2

for the outdoor test, respectively.
Electrochemical characterizations were carried out using a standard three-electrode

system with a working electrode, Pt mesh counter electrode, and silver/silver chloride
(Ag/AgCl) reference electrode in the saturated potassium chloride. Measured data were
obtained by a potentiostat (SP-200, Bio-Logic Science Instrument, Seyssinet-Pariset, France).
The potential versus Ag/AgCl reference electrode was converted into a reverse hydrogen
electrode (RHE) scale using the equation: VRHE = VAg/AgCl + 0.197 V + 0.059 V pH.
The PEC performance of a large scale Cu2O photocathode was measured in a pH 5 aqueous
solution consisting of 0.1 M of potassium phosphate monobasic (KH2PO4) and 0.5 M of
sodium sulfate (Na2SO4) under light illumination with a scan rate of 10 mV s−1 and a scan
direction from positive to negative potential. Chronoamperometry (CA) measurement was
carried out at the HER potential (0 V versus RHE) under continuous light illumination
for the stability test. The light source for the measurement of a 25 cm2 scaled Cu2O
photocathode was a 100-W ozone free Xenon lamp equipped with an air mass (AM) 1.5 G
filter (Oriel LCS-100, Newport, Irvine, USA). The light intensity was one sun illumination
(100 mW cm−2) calibrated by a silicon diode. On the other hand, the light source for
the measurement of a 50-cm2 scaled Cu2O photocathode was a home-made warm white
LED array due to the limitation of lamp size. The light intensity was calibrated to the
similar intensity of one sun illumination based on the current information from a silicon
diode. Natural sun was a light source for the outdoor PEC operation, and its intensity was
calculated using a silicon diode.

To evaluate the grid effect on the PEC performance, the partial PEC performance of
large scale Cu2O photocathode was measured. For this measurement, a 25-cm2 scaled
Cu2O photocathode with and without metal grid lines was divided into three parts (upper,
middle, and bottom) with an area of 8.3 cm2 using a mask. In addition, the sheet resistance
values of Cu2O photocathode with and without metal grid lines were compared by a
4-probe measurement system (Kiethley 2400, Tektronix, Beaverton, OR, USA). Morphology
of a large scale Cu2O photocathode with metal grid lines was analyzed by a high-resolution
scanning electron microscope (SEM, Zeiss Merlin, Oberkochen, Germany).

3. Results and Discussion

Figure 1 shows the PEC performance of small-scale (0.25 cm2) and large-scale (25 cm2)
Cu2O photocathodes with an AZO overlayer, TiO2 protection layer, and RuOx HER cat-
alysts in a pH 5 aqueous solution under chopped one sun illumination. As shown in
Figure 1, the onset potential was approximately 0.5 V versus RHE and the photocurrent
density reached up to −5.1 mA cm−2 at HER potential (0 V versus RHE) in the small-scale
Cu2O photocathode. It is in good agreement with the previous report [25]. On the other
hand, the photocurrent density at HER potential was reduced to −1.5 mA cm−2, while
the onset potential was not changed in the large-scale Cu2O photocathode. Interestingly,
although the composition of Cu2O photocathode was same, the photocurrent density
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was remarkably decreased when the area of photocathode was increased a hundred-fold.
A large area substrate can affect the uniformity of the Cu2O film or the charge transport
in the Cu2O photocathode. It influences the PEC performance of the Cu2O photocath-
ode, especially the photocurrent density. Non-homogeneous Cu2O film plays a role as a
recombination center, resulting in poor PEC performance [24]. However, it was demon-
strated that the electrodeposited Cu2O film is quite homogenous even on the 50-cm2 scaled
large FTO substrate, with an approximate thickness of 280~300 nm (Figure S1). Hence,
the non-uniformity of Cu2O film can be excluded from the reason for the decreased PEC
performance in the large-scale Cu2O photocathode. Therefore, the poor PEC performance
of the large-scale Cu2O photocathode is likely due to the ohmic loss by the prolonged
charge transport in the large area substrate [14–17].
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Figure 1. Photoelectrochemical (PEC) performance of small-scale (0.25 cm2) and large-scale (25 cm2)
Cu2O photocathodes with an aluminum-doped zinc oxide (AZO) overlayer, titanium oxide (TiO2)
protection layer, and ruthenium oxide (RuOx) hydrogen evolution reaction (HER) catalysts in a pH 5
aqueous solution under chopped one sun illumination.

Metal grid lines were introduced to overcome this problem in the large-scale Cu2O
photocathode because they are a mature strategy for improving the charge transport in the
large-scale dye-sensitized solar cells and perovskite solar cells [26–29]. Table 1 shows the
reported conductivity of metals, which were considered as metal grid lines [30,31]. Ag was
preferentially considered due to its high conductivity. However, most Ag grid lines peeled
off during the electrodeposition of Cu2O. Hence, Cu and Au were alternatively selected
because they also have better conductivity compared to other metals, even though they
are less conductive than Ag. Figure 2 shows the schematic designs and photographs of
25-cm2 scaled Cu2O photocathodes with sputtered Au and Cu grid lines. Metal grid lines
did not hinder the light absorption to the large scale Cu2O photocathode because the Cu2O
film was electrodeposited on the metal grid lines (Figure 2a) and the light was illuminated
to the Cu2O film side, not the FTO substrate side. It seems that the quality of Cu grid
lines (Figure 2c) was better than one of Au grid lines (Figure 2b) in the large scale Cu2O
photocathode. Nevertheless, both thicknesses were almost the same at approximately
160 nm and their contacts with Cu2O film were dense and well connected, as shown in
Figure 3b,c. In addition, the thicknesses of the Cu2O film (260 nm), AZO overlayer (20 nm),
and TiO2 protection layer (100 nm) were almost the same in the part without the grid line
(Figure 3a), with the Au grid line (Figure 3b), and Cu grid line (Figure 3c), respectively.
It means that all layers of the Cu2O photocathode were homogenously deposited on the
grid-embedded large scale substrate.
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Table 1. The inherent conductivities of metals for the metal grid structure.

Silver (Ag) Copper (Cu) Gold (Au)

Conductivity (S m−1) 6.37 × 107 5.96 × 107 4.11 × 107
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Figure 4 shows the PEC performance of 25-cm2 scaled Cu2O photocathodes without
grid lines and with Au or Cu grid lines in a pH 5 aqueous solution under chopped one
sun illumination. The photocurrent density at 0 V versus RHE of Cu2O photocathode with
metal grid lines were almost double than one of the Cu2O photocathode without metal grid
lines, while the onset potential was the same. It is likely due to the improved chare transport
by the metal grid lines because other conditions of the Cu2O photocathode were the same,
as mentioned in Figure 3. On the other hand, the improvement of photocurrent density
in the Cu grid-embedded Cu2O photocathode was slightly higher than one in the Au
grid-embedded Cu2O photocathode. It is mainly caused by the different charge transport
capabilities of the two metals. Herein, the charge transport capability is affected by the
inherent conductivity of metals because the width, length, and thickness of each grid lines
are the same [27]. As shown in Table 1, the conductivity of Cu (5.96 × 107 S m−1) is superior
to one of Au (4.11 × 107 S m−1), resulting in the further improved PEC performance
using Cu grid lines. In addition, the quality of the Cu grid was better than the Au grid
(Figure 2b,c). Therefore, it was concluded that the Cu grid is more effective in improving
the charge transport in the large-scale Cu2O photocathode, compared to the Au grid.
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All devices include the AZO overlayer, TiO2 protection layer, and RuOx HER catalysts.

To evaluate the Cu grid effect on the large-scale Cu2O photocathode, the partial PEC
performance and the sheet resistance value of large-scale Cu2O photocathodes without and
with Cu grid lines were analyzed. Three parts with an active area of 8.3 cm2 were divided
for the partial PEC performance measurement, as illustrated in Figure 5a (Part 1, 2, and 3).
The measured area was exposed to light illumination, while other parts were covered by
the mask during the PEC measurement. Figure 5b shows the photocurrent densities of
each part without and with Cu grid lines at 0 V versus RHE in a pH 5 aqueous solution
under one sun illumination. All photocurrent densities were improved after introducing
Cu grid lines, compared to the Cu2O photocathode without Cu grid lines. It intuitively
supports that the charge transport of all parts was improved by the Cu grid lines. On the
other hand, the sheet resistance of the Cu2O photocathode without and with Cu grid lines
was measured. The charge flow was controlled in two directions, as shown in Figure 5a:
One direction is parallel to the grid lines (C→ A) and the other direction is perpendicular
to the grid lines (B→ D). As shown in Table 2, resistance values measured from two charge
flow directions were reduced by introducing Cu grid lines. In particular, when the Cu grid
lines were applied to the Cu2O photocathode, the resistance value on the charge flow from
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C to A was largely reduced by approximately 86.2% (3.6 Ω→ 0.5 Ω), while the resistance
value on the charge flow from B to D was reduced by only 25% (3.6 Ω→ 2.7 Ω). It is strong
evidence on the improvement of charge transport to the electrical connector by the Cu grid
lines. Hence, it was demonstrated that the Cu grid lines are effective to reduce the ohmic
loss of large scale Cu2O photocathode, leading to the improved PEC performance.
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Table 2. Sheet resistance values of the Cu2O photocathode without and with Cu grid lines along
with the different charge flow directions (Units: Ω).

Charge Flow C→ A B→ D

Without Cu grid lines 3.6 3.6
With Cu grid lines 0.5 2.7

For the demonstration of a large-scale Cu2O photocathode in an outdoor condition,
a 50-cm2 scaled Cu2O photocathode with Cu metal grid lines were fabricated. Although the
size of electrode was doubled, all compositions of Cu2O photocathode were homogenously
deposited on the substrate and the quality of Cu grid lines was good, as shown in Figure
S2. In addition, the sample was quite transparent (Figure S2), which is suitable for the
tandem water splitting system with a large-scale PEC photoanode or a PV module as a
bottom absorber. However, in this case, the design of Cu grid lines should be optimized
because grid lines restrict the light absorption to the bottom absorber. Figure 6 shows
the PEC performance and stability of the Cu grid-embedded 50-cm2 Cu2O photocath-
ode in a pH 5 aqueous solution under the continuous light from the warm white LED
array with the similar intensity of one sun illumination before the outfield demonstration.
The light from warm white LED array covers the visible light (Figure S3), thus it is suitable
for the PEC measurement of large-scale Cu2O photocathodes. As shown in Figure 6a,
the photocurrent density reached up to −3.1 mA cm−2, which was similar with one of the
25-cm2 scaled Cu2O photocathode with Cu grid lines. Moreover, it was maintained without
any decreases during the PEC operation for 60 min (Figure 6b). After the stability test,
the PEC performance of a 50-cm2 Cu2O photocathode with Cu grid lines was remeasured
to indirectly evaluate its stability. Surprisingly, it showed a similar PEC performance
with the unchanged small dark current. It guarantees that there were no degradations
on the Cu grid-embedded large-scale Cu2O photocathode during the continuous PEC
operation. In other words, the Cu grid line does not affect the stability of the large-scale
Cu2O photocathode.
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The outdoor PEC operational demonstration of a 50-cm2 Cu2O photocathode with Cu
grid lines was carried out in the late afternoon of autumn. The intensity of sunlight was
0.57 sun, which was calculated using the measured current density from the silicon diode.
The container for the PEC demonstration was provided and designed by the University
of Porto [32]. Figure 7 shows the PEC performance of the Cu grid-embedded 50-cm2

Cu2O photocathode in a pH 5 aqueous solution under natural sun. The photocurrent
density of reached up to −1.91 mA cm−2 at 0 V versus RHE, while the onset potential was
approximately 0.6 V versus RHE. It was observed that bubbles continuously came out from
the surface of the Cu2O photocathode during the continuous PEC operation at 0 V versus
RHE (Movie S1). It means that the water splitting reaction occurred at the surface of the
Cu grid-embedded large-scale Cu2O photocathode. Although the gas chromatography
measurement was not carried out due to the difficulty of its set up outside, it would be a
significant cornerstone for the efforts on the upscaling of Cu2O photocathodes.
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4. Conclusions

In this study, the metal grid structure was introduced to improve the poor PEC
performance of a large-scale Cu2O photocathode for PEC water splitting. Au and Cu
grid lines were fabricated on a large-scale FTO substrate by the sputtering deposition
with the Cr adhesive layer before the Cu2O electrodeposition. Between two materials,
the Cu grid showed to be more compatible in improving the PEC performance of the
large-scale Cu2O photocathode due to its excellent conductivity and quality, compared
to the Au grid. As a result, it demonstrated that the Cu grid lines facilitated the efficient
improvement of PEC performance in the large-scale Cu2O photocathode by reducing
the ohmic loss in the large area substrate. Finally, the PEC operational demonstration of
a 50-cm2 scaled Cu2O photocathodes with Cu grid lines was carried out in an outdoor
condition. It showed a stable photocurrent density of −1.91 mA cm−2 at 0 V versus RHE
in a pH 5 electrolyte under natural sun. In summary, it demonstrated that the metal
grid structure is an efficient strategy to improve the PEC performance of large-scale PEC
photoelectrodes. However, the optimization of the condition for the Cu grid line including
the quantity, width, and thickness is necessary for the further improved PEC performance
of a Cu grid-embedded large-scale Cu2O photocathodes in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14217422/s1, Figure S1: Cross-section SEM images of large scale Cu2O photocathode with
an area of 50 cm2 at different positions (A: Upper, B: Middle, and C: Down), Figure S2: A 50-cm2

scaled Cu2O photocathode with sputtered Cu grid lines, Figure S3: Lamp spectra of the warm and
cool white LED for the experiment of solar energy conversion devices, Video S1: PEC operation of
large-scale Cu2O photocathode in an outdoor condition.
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