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Abstract: Like the widely-used semiconductor switch, Insulated Gate Bipolar Transistors (IGBTs)
are subject to many failures and degradation in power electronic converters. In Short Circuit Fault
(SCF), as the most reported failures in IGBTs, drastic, sudden temperature rise, and peak SCF current
are widespread failures owing to a relatively long delay of the protection subsystem. This paper
proposes a protection strategy to limit the junction temperature rise by limiting the SCF current
by adding a small value resistor in the IGBT emitter. Second, it reduces the SCF current to a value
much less than the saturated current. With the proposed control approach, sudden temperature rise
during SCF is controlled, preventing significant failure in IGBTs. The extension of the permissible
SCF time is achieved even for the cases with temporary arcs. A simple control loop activates in the
SCF condition and does not create slow transients for the IGBT. The results of this paper are validated
through simulation and experiment.

Keywords: IGBTs; reliability; protection; short circuit fault

1. Introduction

Insulated Gate Bipolar Transistors (IGBTs) are one of the most important components
in medium and high power converters. They are commonly used in traction systems [1,2],
pulsed power supplies [3–5], HVDC circuit breakers [6–8], and solid-state transform-
ers [9,10]. IGBTs and capacitors are the components with 34% failure rates in the power
converters [11–13]. Short Circuit Faults (SCFs) are specially important as a frequent failure
modes in the IGBT operation. There are several further factors that may break the device
in particular cases; however, IGBT can withstand the SCF condition for a limited time,
e.g., IGBTs can survive 10 µs of SCF condition until it reaches thermal runaway [14,15].
Among serious failure modes during SCF condition, we can name latch-up [16], gate
oscillation [17,18], self-turn off [19], thermal run away during the turn-off state [20,21],
Negative Differential Resistance (NDR) [22,23], and Metal–Oxide–Semiconductor Field-
Effect Transistor (MOSFET) mode [24]. Toward enhancing the reliability of IGBT devices,
there have been several attempts in the literature.

The latch-up process occurs when the parasitic thyristor of the device is activated, and
SCF current limiting of the IGBT malfunctions immediately. For latch-up, modifications in
the structure of IGBTs are proposed in [25], which has been applied in newer generations of
IGBTs. For the modern IGBTs, therefore, the advanced designs provide a homogeneously
SCF current sharing between the device cells, and hence, less sensitivity to latch-up failure
has been obtained. In the gate-oscillation, leading to gate-oxide breakdown, both gate
circuit elements and structural factors play important roles, and specific design and imple-
mentation for gate-oscillations mitigation are required [26]. Structural modifications are
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also proposed for preventing self-turn-off and MOSFET modes [27]. In the NDR condition,
the SCF current flows unevenly through the IGBT in the turning-off process, which results
in the current filament. Therefore, structural parameters of IGBTs, such as temperature
dependency of device bipolar current gain (βPNP) and the turning-off speed of the device,
are the main origins of this mode [28]. The thermal runaway in the turn-off state is a major
challenge for the low-power IGBTs. In this failure mode, the device can withstand the SCF
until 50∼100 µs after the SCF removal owing to the high leakage current. Considering the
above discussion, limiting the SCF energy can be an effective approach for protecting the
switch during this failure modes [20,29].

Besides the aforementioned, there are several efforts for protecting the IGBTs during
SCF by shortening the SCF time interval with the general aim to minimize the SCF time and
avoid the thermal runaway. In [30,31], de-saturation is proposed as an effective protection
approach. In this technique, the collector-emitter voltage of the IGBT is monitored after
the turn-on command to be negligible or not. In the SCF condition, this value is high and
perceived as an indicator of device operation in its active region, and the IGBT must be
turned off to terminate the SCF. The main drawback though is the mandatory blanking time
(1∼5 µs) between sensing the fault and resolving it [32] due to some intrinsic differences,
such as the gate threshold voltage (Vth), input capacitance (Ciss), and transconductance (g f s),
resulting in different transient time intervals [31]. The second protection approach is based
on the device current rate of change (di/dt) by sensing the Kelvin inductor voltage [33,34].
This approach has fast response in fault detection condition and is just suitable for the
packages with visible Kelvin inductances. The third approach directly senses the collector
current using shunts or current sensors [14,35]. In this approach, the observed current is
filtered to avoid detection circuit malfunctioning subject to the noise and existing leakage
inductance of the path, where the delay is unavoidable.

Overall, the existing protection strategies do not consider IGBTs failure modes during
SCF condition and introduce delay. By limiting the SCF current, temporary SCF conditions
like vacuum arcs can be omitted [6,7] in less than several µs if the SCF current is accurately
limited. The IGBT, however, must be turned off, and after fault removal and protection
resetting, IGBT is turned on again for normal operation after a comparatively long period.

Using the SCF current limitation, this paper proposes a novel strategy for avoiding the
failure modes under SCF conditions. When the SCF conditions occur, the IGBT peak current
is restricted by a small value resistance. The SCF current amplitude is then controlled to
a value much less than the maximum value reported in the IGBT datasheet. If the SCF
is maintained for a longer period than is allowed, the IGBT is smoothly turned off. Our
approach has the following advantages:

• The junction temperature rise is much less than the case without current limiting.
• The converter operation is not interrupted due to the temporary faults.
• The IGBT failure modes in SCF relevant to the peak current can be more easily handled.

The first advantage is useful for the IGBTs with a small die where their junction
temperature may considerably increase in SCF condition, and the failure in the turn-off
state can be avoided by the proposed approach. The second advantage is applicable for
mission-critical applications where the converter must be available seamlessly without any
downtime for handling temporary faults. The third advantage can be used for all classes
of IGBTs with different die structures and power ratings. The failure modes related to
the IGBT SCF current, such as gate-oscillation, NDR, MOSFET mode, and self-turn off,
can be easily managed. Our focus here is the temperature rise during the SCF, and the
improvement in other failure modes is not the interest of this paper.

The rest of the paper is organized as follows: the proposed method is introduced
in Section 2 where the operating principle, stability analysis, and improvements are de-
scribed. The PSPICE simulations, finite element analysis are provided in Section 3, and
finally, Section 4 provides the experimental results to validate the performance of the
proposed method.
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2. Proposed Method

We describe our proposed method in two phases: (1) the SCF peak current value of
the IGBT is limited by a small value resistor in the device emitter connection, and (2) the
limited SCF current is controlled by changing the gate-emitter voltage. When the method
is applied, the short circuit (SC) energy is restricted, the SCF time interval is extended and
a lower range drastic junction temperature rise is achieved. The following sub-sections
describe the different phases:

2.1. Limiting SCF Current

In this phase, we determine the maximum level of the SCF current by a small value
resistance in the device emitter. The IGBT short-circuit current (ISC) is described as (1) [36].

ISC = (1 + βPNP)
µnsCoxZ

2LCH
(VGE − Vth)

2 (1)

where µns is the average electron mobility in the channel, Cox is oxide capacitance per unit
area, Z is the channel width, LCH is the channel length, and VGE is the gate-emitter voltage
level. ISC in (1) can be linearized as (2) using the method suggested in [15].

ISC = g f s(VGE − Vth) (2)

g f s =
∂ISC
∂VGE

=
1

1 − αPNP

µnsCoxZ
2LCH

(VGE − Vth) (3)

Insertion of a small value resistance at the IGBT emitter limits the short-circuit current
(ISC) to limited short-circuit current named ISC−L. According to (2) and Figure 1, the
short-circuit current of IGBT (ISC−L) is described as (4) and (5).

ISC−L = g f s(VDD − Vth − RS ISC−L) (4)

ISC−L = g f s
VDD − Vth
1 + g f sRS

(5)

where VDD is the output voltage of the IGBT driver in the turn-on state, and RS is the
resistance value of the resistor in the emitter of the device. Considering Equation (5),
RS decreases the gate-emitter voltage of the IGBT in the SCF condition; hence, it can
considerably decrease the IGBT saturated current. Note that the inclusion of RS in the
proposed method is different from the well-known approach in which the fault current
limiting resistor is directly placed in the power path. The value of RS in the proposed
method is insignificant to effect the SCF current limiting without the IGBT. In fact, RS value
is chosen such that it has negligible effect in the IGBT normal operation. However, the
power loss of RS is not desired in high-power applications.

To clarify the effect of RS on the short circuit current limiting and the rising power
loss, a case study is introduced (see Table 1). Figure 2 depicts the ratio of the limited SC
current (ISC−L) and SC current without applying RS (ISC), as well as the ratio of power loss
of RS (Ploss) and converter power (Pout) as functions of Rs. It is noteworthy to mention that
Pout is the converter output power value without RS. As expected, by increasing the value
of RS the efficiency is slightly affected (see Figure 2a). Regarding Figure 2b, for RS values
more than 0.05 Ω, the value of ISC−L is considerably lower than ISC. As mentioned, to limit
SCF current using RS is desirable for applications with low average power ratings, e.g.,
pulsed power supplies. However, in high or average power applications, the power loss is
not insignificant; we need to apply the control method suggested in the second phase of
our method, and described in Section 2.2.
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Figure 1. The schematic of the proposed method for limiting IGBT peak current.

(a)

(b)

Figure 2. (a) The ratio of Ploss to Pout, and (b) the ratio of ISC−L to ISC as the functions of RS.
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Table 1. The specifications of the considered case for current limiting.

Parameter Value

IGBT Part Number IKW40N120H3
Nominal Current 30 A

g f s 20 S
Vth 5.5 V

VDD 15 V
Maximum SC Current 160 A

Pout 1000 W

2.2. Controlling SCF Current

As pointed out, limiting the SCF current directly by RS is not practical for high and
average power applications. Therefore, we propose a control method for SCF current
which works based on controlling the gate-emitter voltage of the IGBT under SCFs (see
Equation (2)). The method is described in Figure 3 where the control unit tunes the supply
voltage level of the driver (VDD) to set the SCF current to a predetermined value.

Figure 3. The schematic overview of the SCF current controlling method.

The important signals of the proposed method in normal and SCF condition are
provided in Figure 4. Accordingly, in the normal operation, the current reference (Cu. Ref.
signal in Figure 3) is higher than IGBT current (Vsamp signal in Figure 3). Therefore, the
operational amplifier (OpAmp) sets the PNP transistor (S1 in Figure 3) to the turn-on state,
and as a result, VDD reaches the maximum level, and the driver provides a +15 V voltage
level for the IGBT gate-emitter. In the SCF condition, IGBT current exceeds the current
reference. Meanwhile, the controller sets S1 in the active region. Afterwards, voltage of
S1 increases, as depicted in Figure 4. Therefore, an appropriate value of the gate-emitter
voltage is applied to the IGBT to control the SCF current. According to Figure 4, the
proposed method is de-active in the normal condition. Thus, it does not negatively affect
the IGBT transient times in turning-on/off processes which are seriously influenced by
prior active gate control strategies [37,38].

However, the SCF current limiting unit reacts with some delays due to the limited
bandwidth of the Op-Amp and S1. Therefore, in the delay interval, SCF current jumps to
the limiting level determined by RS, and the control unit can now limit the SCF current
(see the SCF current profile in Figure 5). In a hard SCF condition, where the IGBT enters to
faulty condition abruptly from the normal condition, there is another current jump due to
the resonance of the circuit inductance and the device capacitance elements. As described
in [7], this current jump has a negligible energy and duration and can be ignored.
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Figure 4. The control signals of the proposed method in normal and SCF conditions.

Figure 5. IGBT current profile using the proposed method.

2.3. Stability Analysis

Our proposed method for controlling the SCF current is a closed-loop control and
we need to ensure its stable steady-state operation (see the block diagram in Figure 6).
Considering the IGBT model in Figure 7, the relation between the IGBT current (ISC) and
the Gate-Emitter voltage (VGE) can be written as (6) [37]:

ISC(s)
VGE(s)

=
a3s3 + a2s2 + a1s1 + a0

b4s4 + b3s3 + b2s2 + b1s1 + b0
(6)
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a0 = g f sRO,

a1 = −CCGRO,

a2 = −LE(CCE + CGE + g f sCGCRO),

a3 = −LERO(CGCCGE + CGECCE + CCGCCE),

b0 = RO,

b1 = LC + RGRO(CGE + CGC) + LE(1 + g f sRO),

b2 = Rgint(CGE + CGC(1 + g f sRO))(LC + LE) + RO(CGE(LE + Lg))

+ CGC(LC + Lg) + CCE(LC + LE),

b3 = RORgint(CGCCGE + CGECCE + CGCCCE)(LC + LE)

+ (LELC + LgLE + LgLC)(CGE + CGC(1 + g f sRO)),

b4 = RO(LELC + LgLE + LgLC)(CGCCGE + CGCCE + CGCCCE),

(7)

where s is the complex frequency, and all the coefficients of (6) are defined in [37]. In
addition, for the low-voltage and low-power PNP device (S1), the relation between the
device collector-emitter (VCE) and base-emitter (VBE) can be written as (8).

VGE(s)
VBE(s)

=
c3s3 + c2s2 + c1s1 + c0

d3s3 + d2s2 + d1s1 + d0
(8)

where the coefficients of (8) could be found in [38]. However, the S1 transfer function has
a wide-band frequency response since it is a low-power device. The controller transfer
function is assumed to be a PI controller as defined in (9).

GC(s) = Kp +
K1

s
(9)

Figure 6. Schematic overview of the proposed method.

Figure 7. The simplified IGBT model valid in active region.

Using MATLAB tools, the PI controller can be designed with the desired bandwidth
and phase margin. The required parameters for determination of the coefficients in (6) are
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summarized in Table 2. For a 1 MHz bandwidth and a 60° phase margin, which equals
to 300 ns settling time, the controller gain are designed as Kp = 18 and KI = 4.1 × 106.
The closed-loop bode diagram of the SCF current controlling loop is shown in Figure 8,
which approves that the controller is in the stable margin. The PI controller can be tuned
by changing the values of R1, R2, R f , and C f in Figure 3.

Table 2. The required parameters for the stability analysis.

Parameter Value

g f s 20 S
RS 0.05 Ω

CCE 55 pF
CCG 72 pF
CGE 3.8 pF
Rgint 15 Ω
RO 55 Ω
Lg 30 nH
LC 20 nH
LE 15 nH

Figure 8. The Bode diagram of the SCF current controller.

2.4. Short Circuit Energy

The main goal of the proposed method is to reduce short circuit energy during the SCF
condition. Regarding the description of the proposed method, two intervals are specified
during SCF condition:

• the first interval is called delay interval (tD), during which the SCF current is limited
to ISC−L,

• the second interval is the time duration in which the SCF current is controlled to the
value of SCF current controller (ISC−re f ).

As a result, the short circuit energy of the IGBT (ESC) is described as:

ESC = Vbus(ISC−LtD + ISC−re f (tSC − tD)) (10)

where tSC is the SCF time interval, and Vbus is the DC bus voltage applied to the device in
SCF condition. tD strictly depends on the parasitic elements of the IGBT and the controller
loop bandwidth, and is subject to small changes. However, ISC−L, and ISC−re f can be
determined in the design phase. The parameters RS, and Cu. Ref. are determined for
particular limited and controlled SCF currents respectively. For the cases in which the risk
of the temporary SCFs is high, the limited and controlled SCF currents are chosen to values
near the load nominal current to extend the permissible SCF condition. In contrast, for the
cases with high level of average power, the limited SCF current cannot be very low near
the load nominal current due to the power (see Figure 2). Therefore, using the proposed
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method, SCF energy is decreased, which leads to a lower temperature rise and lower risk
of failure due to the peak SCF current.

3. Simulation Results
3.1. PSPICE Simulation

To verify the performance of the proposed method in simulation, a study in PSPICE
is provided in this section (See the specifications in Table 3). According to (5) and Table 3,
the value of the limited SCF current (ISC−L) equals to 95 A, and the reference of the SCF
current is set to 45 A, which is almost twice the load nominal current. Hence, during
the SCF condition and after the delay interval, it is expected that the proposed method
limits the SCF current to near 45 A. Figure 9 presents the IGBT waveforms in a temporary
SCF. As seen, in the normal condition (during the pre-SCF and post-SCF time intervals)
the IGBT current equals 22 A. As seen in the Figure 9a, in the temporary SCF condition
(during the delay interval of the control loop) the SCF current is limited to near 90 A. After
this time interval, the IGBT gate-emitter voltage is reduced to an appropriate value for
controlling the SCF current to 45 A level (see Figure 9b). For the sustained SCF condition,
the performance of the method is also examined where the temperature rise may violate
the permissible value. In this case, the IGBT should be turned off after a predetermined
time. Figure 10 shows the IGBTs waveform in a sustained SCF condition. As noticed, after
8 µs, the IGBT is turned off to avoid thermal run-away. The main advantage here is that
the IGBT reaches a 45 A SCF current, which is considerably less than the maximum SCF
current in the device datasheet (160 A [39]). Therefore, the failure modes related to the
turn-off process and high SC current value will be prevented.

(a)

(b)

Figure 9. IGBTs waveforms for a temporary SCF, (a) IGBT current, and (b) IGBT gate-emitter voltage.
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Figure 10. IGBT ISC and VGE waveforms for a sustained SCF condition.

Table 3. The specifications of the considered case for simulation.

IGBT part number IKW40N120H3
Gate driver IC LM5111
Op. Amp IC LM7171

Nominal Current 22 A
Blocking Voltage 600 V

VDDmax 15 V
RS 0.05 Ω

3.2. FEM Simulation

In this section, Finite Element Method (FEM) is employed to investigate the behavioral
differences of junction temperature profile during the SCFs. The 3D simulation model (see
Figure 11) is developed in COMSOL Multiphysics based on the case study switch [39].
To improve simulation speed, the three metal external terminal pins of the switch are
not simulated. Considering this simplification, the mesh size of the FEM model (see
Figure 12) is more efficiently built. With the curvature factor of 0.5, values of 0.65 mm and
0.08 mm are considered as the maximum and minimum element size of the assigned mesh.
The materials’ specifications of the simulated structure are shown in Table 4. The main
employed boundary conditions are:

• Boundary Heat Source: The chip area of the switch is considered as a heat source in
short circuit condition (see Figure 13a). The value of the heat source is based on short
circuit instantaneous power value (Pins).

• Heat flux: The simulated heat-sink on the bottom area of the switch is considered as
the area from which the produced heat can be dissipated to the environment (see
Figure 13b). Considering the employed heatsink in experimental implementation, the
convective heat flux with heat transfer coefficient of 10,000 W/(m2 · K) is considered
for the heatsink.

• Initial Values: The initial temperature value of the IGBT is considered 75 ◦C. This is the
normal operation temperature of the IGBT in the pre-fault condition.
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(a)

(b)

Figure 11. 3D simulated structure of case study IGBT switch in COMSOL; (a) overall structure with
packaging, and (b) internal structure of the switch with layered structure.

Figure 12. Assigned mesh for the 3D structure of the switch in FEM solutions.

Table 4. Material specifications in the developed simulation model of IGBT.

Material Thermal Conductivity Heat Capacity Density
[W/(m · K)] [J/(kg · K)] [kg/m3]

Aluminium (Al) 239 910 2699
Copper (Cu) 385 380 180
Silicon (Si) 131 700 2330

Solder (SnAgCu) 60 160 7400
Ceramic (Al2O3) 27 776 3900

Epoxy Mold 0.3 900 1250
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(a)

(b)

Figure 13. (a) Heat source in the chip area (red color), and (b) heat flux on the bottom area of the
heatsink (blue area), as the main considered boundary conditions.

Using the above-explained developed simulation tool, the junction temperature of the
switch is obtained in two conditions:

Condition 1: In this mode, no specific attempt is made for controlling the short circuit
fault, and a 7 µs SC fault with Pins = 96 kW (regarding the device data-sheet [39]) is applied
to the chip area.

Condition 2: In this mode, the proposed method is employed for controlling ISC. From
t = 0 s to t = 200 ns, Pins = 27 kW is applied to the IGBT chip area, and from t = 200 ns to
t = 7 µs, Pins = 57 kW is applied.

In Figure 14, the IGBT short circuit power waveforms for the two conditions are shown
based on short circuit time. The simulation values in condition 1 and condition 2 are based
on Table 5. In Figure 15, the FEM results for these two conditions are shown. It can be seen
that the average junction temperature of the switch in condition 1 reaches to 198 ◦C, while
in condition 2, the average junction temperature value is obtained 116 ◦C. According to the
case study switch datasheet [39], the maximum junction temperature of the switch is 175 ◦C,
meaning that the switch will be damaged during operation in condition 1. However, using
the proposed method, the switch temperature is limited to 116 ◦C, considerably smaller
than the maximum allowable junction temperature. It is noteworthy that the junction
temperature change after the SCF is lowered to one-third by our method. Therefore, in
applications with considerable delayed protection for availability purposes, the proposed
method is promising.
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Figure 14. The SCF power using the proposed method and the case without any attempt to limit
SCF current.

Figure 15. Thermal distribution of case study IGBT in condition 1 at (a) t = 1 µs, (b) t = 4 µs, (c) t = 7 µs,
and for condition 2 at (d) t = 1 µs, (e) t = 4 µs, (f) t = 7 µs.
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Table 5. Parameters of the studied case study SC condition for FEM simulation.

Parameter Value

tD 200 ns
Vbus 600 V
ISC 160 A

ISC−L 95 A
ISC−re f 45 A

tSC 7 µs

4. Experimental Results

An experimental prototype is implemented to examine the proposed method. The
considered case for the experimental evaluation has the same specifications as the simu-
lation analysis (see Table 3). In the tests, the IGBT is turned on in the SC condition. The
block diagram of the experimental setup is provided in Figure 16a. The overview of the
experimental setup is presented in Figure 16b. The SCF current is monitored by measuring
the voltage drop across RS. At the first step, the SCF current is observed without the
proposed method. To this end, the driver voltage is fixed to 15 V, and the SCF current
is observed using a current transformer. In this condition, the SCF current is presented
in Figure 17a. As seen, the SCF current amplitude equals 130 A without no attempt for
limiting the current. In the second step, the limiting resistor as well as the control unit are
added to the structure. The SCF current, when the SCF reference equals 50 A, is presented
in Figure 17b, in which it can be observed that after the delay interval, the SCF current
is properly controlled to a value equal 50 A. To validate the SCF current controller, SCF
reference is slightly increased to 65 A (see Figure 17c).

Figure 16. (a) The block diagram and (b) the photo of the experimental setup.

Looking at Figure 17b,c, the SCF current can be controlled to values much less than
the potential SCF current (130 A), which can limit the temperature rise in SCF conditions.
Accordingly, the SCF current can be effectively limited to a value equal to twice the
load nominal current by the proposed method. Figure 17d presents the gate-emitter and
collector-emitter voltages of the IGBT under SCF condition, when the SCF is limited and
controlled by the proposed method. Since the IGBT is turned on under the SCF condition,
its collector-emitter voltage does not change from the turn-off state to the saturated region.
The gate-emitter voltage, however, is decreased by the control unit to decrease the SCF
current. As mentioned earlier, the proposed method does not slow down the device in the
normal operation. Accordingly, Figure 18 shows the waveforms of the device in the normal
operation. Regarding Figure 18, in the normal operation, the transient time intervals of
the device with the proposed method (Figure 18a) and without the proposed method
(Figure 18b) are approximately the same. Thus, it can be concluded that the proposed
method does not affect the normal operation of the device. Considering Figure 18, the only
difference is related to the high-level voltage of the IGBT’s gate-emitter where using the
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proposed method, this value is 0.5 V less than that of the condition without the proposed
method.

Figure 17. The experimental waveforms of (a) SCF current without applying the proposed method,
(b) SCF current using the proposed method when SCF reference equals 50 A, (c) SCF current using
the proposed method when SCF reference equals 65 A, and (d) gate-emitter and collector-emitter
voltages of the IGBT.

Figure 18. The transient time intervals of the device (a) with the proposed method and (b) without
the proposed method.

In the experimental prototype, the switching frequency is 10 kHz, duty cycle is 7%,
VBus equals 700 V, and load current has a 10 A peak value. Thus, the average power
approximately equals 490 W. The value of RS is 0.05, and its dissipating power equals
0.35 W, which is far less than the converter output power.

Finally, Table 6 compares the proposed method with extant methods. As can be
seen, the proposed method has some advantages such as acceptable operation delayed
operation, current controlling capability, and also does not have major effect on switch
normal operation.
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Table 6. Material specifications in the developed FEM model of SiC MOSFET power module.

Feature/Item [15] [30,31] [33,34] [6] [7] Proposed Method

Delay 200 ns 1∼5 µs Less than 100 ns 200 ns 300 ns 200 ns
SC Current limiting Yes No No Yes Yes Yes

SC Current controlling No No No No Yes Yes
Effects on normal operation No No No No Yes No

5. Conclusions

This paper proposed a novel SCF current limiting technique to enhance the IGBT
reliability and maintain its seamless operation especially in applications where the risk
of temporary SCFs is high. Using the proposed method, the SCF energy and the sudden
temperature rise after the SCF condition are controlled by firstly limiting the SCF current
using a small-value resistance in the device emitter, and secondly, controlling the SCF
current to a predetermined SCF current using a simple PI control loop. The main advantage
of the proposed control method is maintaining the normal IGBT operation with acceptable
transient responses in turning on and turning off pulses. Our method substantially reduces
the risk of IGBT failures due to the SCF energy and SCF peak current, which is normally
the case in many applications. The performance of the method is validated via simulation,
and FEM studies as well as the experimental setup results.
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