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Abstract: Short-Term Load Forecasting is critical for reliable power system operation, and the search
for enhanced methodologies has been a constant field of investigation, particularly in an increasingly
competitive environment where the market operator and its participants need to better inform
their decisions. Hence, it is important to continue advancing in terms of forecasting accuracy and
consistency. This paper presents a new deep learning-based ensemble methodology for 24 h ahead
load forecasting, where an automatic framework is proposed to select the best Box-Jenkins models
(ARIMA Forecasters), from a wide-range of combinations. The method is distinct in its parameters
but more importantly in considering different batches of historical (training) data, thus benefiting
from prediction models focused on recent and longer load trends. Afterwards, these accurate
predictions, mainly the linear components of the load time-series, are fed to the ensemble Deep
Forward Neural Network. This flexible type of network architecture not only functions as a combiner
but also receives additional historical and auxiliary data to further its generalization capabilities.
Numerical testing using New England market data validated the proposed ensemble approach with
diverse base forecasters, achieving promising results in comparison with other state-of-the-art methods.

Keywords: ARIMA models; correlation analysis; deep learning; deep neural networks; ensemble
methods; ISO New England; load forecasting; short-term load forecasting

1. Introduction

The large-scale and complex nature of Power Systems Operation in a constantly
changing environment poses a series of challenges for policy makers, regulators, market
operators and participants (both the generation and demand sides) and transmission and
distribution operators, among others [1]. One of these challenges is the task of electrical
power load forecasting. This is crucial for the smooth operation of the power grid—which
runs on a set of tight tolerance requirements—and the decision-making policies of utility
companies, i.e., influencing the purchase and generation of electric power in the power
market and consequently affecting operation costs, energy efficiency, load switching and
infrastructural development [2]. In this regard, the increased level of variable renewable
energy sources directly rises the required spinning reserve volume to offset the fluctuation
of renewable generation [3]. Factors such as an expanded network of distributed energy
resources and a higher share of demand-side management further add to the complexity of
this prediction task [4], which is already influenced by several uncertain factors including
climate and seasonal factors [5,6].

Given that a large part of market decisions and utilities operations have an hourly,
daily or weekly basis, these types of forecasting lead times (from 1 h to 168 h) are of most
interest. An interval that is well categorized in the electric power system literature is the
“Short-Term Load Forecast (STLF)” [7], which has long been a very active field of research,
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and which is the object of renewed interest given the advent of smart grids and micro-
grids [8]. This has led researchers to continuously follow and adapt the developments in
data filtering, clustering and modeling in order to propose load forecasting methodologies
able to support the decision-making process regarding crucial operation, maintenance and
planning tasks. Typically, an underestimation of load demand results in unreliable supply,
with penalty costs or even shortage of supply to customers, while an overestimation causes
economic waste and results in curtailment periods [9].

Various methodologies have been used for the STLF problem, with the two main
groups being statistical methods and machine learning methods. The former comprises
methods specially tailored to handle the inherent linear correlation between the load and
its lagged values, as well as weather and temporal variables. Among the many statistical
methods, one can highlight the well-regarded autoregressive integrated moving average
(ARIMA) models, exponential smoothing and generalized autoregressive conditional
hetero-scedasticity (GARCH) models, among others [10].

An alternative path that has been widely adopted in recent years is using machine
learning (ML) and deep learning (DL) given their ability to extrapolate and learn hard non-
linear relationships through complex and dynamic structures [11], which are exactly the
difficult aspects for statistical methods. Among the broad spectrum of methods, recurring
options include Artificial Neural Networks [10] and Multi-Layer Perceptron (MLP), random
forests [11], fuzzy systems (ANFIS) [12], support vector machines (SVMs) [13], recurrent
neural networks (RNN) [14] and its modified counterparts, Long Short-Term Memory
Networks (LSTM) [15,16] and gated recurrent units (GRU) [17], extreme learning machine
(ELM) [18], deep belief networks (DBN) [19], echo state networks [20], convolutional neural
networks (CNN) [21] and more recently deep stack of fully connected layers connected
with forward and backward residual links (N-BEATS) [22].

In addition to the issue of the chosen forecaster (prediction method), critical aspects
in STLF include selecting the proper input data and preprocessing (i.e., deciding which
sets of variables to include in the model and its treatment). To illustrate this point, the
authors in [23] analyzed the impact of the selection of exogenous variables on an ANFIS
forecaster’s prediction of load in the Polish power system (using the Hellwig method).
In turn, the authors in [24] reinforced the importance of data preprocessing methods,
specifically by employing the Variational Mode Decomposition (VMD) method. Other
common options include empirical mode decomposition [12], wavelet transform [10] and
principal component analysis among others.

A common approach in recent studies is to employ hybrid or ensemble approaches
that combine several methods, extracting the best prediction accuracy from each one by
primarily merging methods that model both linear and nonlinear components of the time-
series [25]. For instance, a combined MLP-ANN with ANFIS was used for simultaneous
load and price forecasting in [26]. In [27], a hybrid method was presented, where an ARIMA
model was combined with SVMs. This generic approach of hybridizing an ARIMA-ANN
method has been validated for time-series forecasting in [28].

Recognizing the growing role of ML methods with respect to solving the STLF task, a
fusion algorithm was presented in [29] where SVM, Random Forest and LSTM forecasters
were used to produce an enhanced prediction. Similarly, an ensemble approach was
published in [30] using VMD to decompose the load data and 2D-CNN to extract the
features that fed the Temporal Convolutional Network working as forecaster. Using
another ensemble concept, a method combining three models, namely, Light Gradient
Boosting Machine, eXtreme Gradient Boosting machine (XGB) and MLP was presented
in [31]. Lastly, a recent approach made use of stacked boosters (forecasters) with different
horizons coupled with a deep neural network to perform the STLF [32].

Given these works and their merits, an ensemble approach will be introduced in this
paper where a new enhanced method to accurately forecast the one-day ahead loads of
national or sizable regional (as is the case of New England in the US) electric grids is
proposed. We address the need to further develop data-driven forecasting techniques that
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are compact in terms of user-dependence and computationally cost-efficient. To fulfill
this objective, we chose an ensemble method based on a deep neural network, which
due to its scalable and non-linearity traits is a great tool for enhancing feature extraction
and better mapping the input space [33]. Thus, an ensemble approach has the potential
to improve generalization and increase model stability (less output variance). In turn,
different ARIMA models contribute to increasing input diversity through a stacked gener-
alization framework. The straightforward formulation and the relatively small number of
hyperparameters favors its robustness to model time-series based on the autocorrelation
between past samples (only requires prior data), making it one of the preferred methods to
benchmark proposed STLF models.

A brief description of the several methodological stages and its testing is listed: (i) a
data selection process is used to assemble batches of training data with different sizes,
ranging from recent to longer-term trends; (ii) a unit-root test is used to determine the need
to include integration (number of time-series differences) in the ARIMA model parameters;
(iii) after using the Box-Jenkins method, i.e., correlation analysis, a number of different
seasonal and non-seasonal ARIMA models are fitted to the training data; (iv) the most
promising models are hand-picked based on the Bayesian Information Criteria; (v) this
process occurs automatically, a windowing technique is applied and the ARIMA model is
rolled (updated) with the recently tested data; (vi) these models, which are able to capture
most of the linear components in the time-series, work as diversified forecasters fed to the
ensemble method in a stacking manner; (vii) the deep neural network is trained offline
with not only the forecasters but also with additional load and exogenous variables with
significant levels of Pearson correlation; (viii) the proposed methodology was tested using
the well known aggregated load data from the New England region; (ix) the numerical
results showed the validity of the proposed ensemble methodology, outperforming the
standalone shallow neural network without and with the ARIMA forecasters and the
exogenous inputs, and the standalone (different base learners) ARIMA models.

The content of this paper is summarized below. The most relevant theoretical back-
ground and formulation regarding the ARIMA models (forecasters) and the deep neural
network architecture (assembler), including its non-linear computations, are given in
Section 2; a detailed explanation of the different stages of the proposed methodology, as
well as the considered parameter selection, is provided in Section 3; Section 4 introduces
the case study and the underlying key statistics, which supported not only the design of
the proposed methodology but also the analysis of results; Section 5 presents the most
relevant numerical results and their interpretation, which includes a graphical analysis.
Lastly, a summary of the main conclusions of this work is presented in Section 6.

2. Background

This section introduces the theoretical fundamentals behind each stage and building
block considered in the proposed methodology.

2.1. Box-Jenkins Method

To study and model a generic time-series data X with a total of nlength sequentially
spaced time observations, such as X = (χ1, χ2, . . . , χnt−1, χnt), a simple and common
choice is to use the Box-Jenkins method to identify and fit the most suitable Autoregres-
sive Integrated Moving Average (ARIMA) time-series models. These statistical models
constitute a good approach to tackle the forecasting task, as mentioned in the Introduction.

These models translate a linear relationship with the observed output data and rely on
the assumption that future observations can be approximated based on past observations.
Models that can be written using a single equation as expressed in Equation (1), with an
autoregressive term, AR(p), where p is the autoregressive polynomial order and a moving
average term, MA(q), where q is the moving average polynomial order, hence translating a
linear combination of the preceding error terms up to lag q. Thus, the polynomial orders or
degrees, p, q ∈ Z+, represent the maximum value for the AR and MA terms, respectively.
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In turn, the integrated part is commonly represented by the letter d, which stands
for the differencing order. In the case of d = 0, the ARIMA model is simply an ARMA
model [34]:

χt = µ + εt +
p

∑
i=1

ϕi χt−i +
q

∑
j=1

θi εt−j, (1)

where µ denotes the constant term (vertical translation), χt−i denotes the lagged (past)
time-series (independent variable) and εt−j represents the unknown lagged error terms,
i.e., the random error term that accounts for the difference between the actual observation
and the theoretical value given by the regression-based model, often referred as white
Gaussian noise. Therefore, the actual observation, χt, is influenced by factors beyond
the independent variable. In turn, the autoregressive and moving average coefficients
are denoted by ϕi and θi, respectively. Typically, when using the Box–Jenkins notation, a
backshift operator, B, is used to represent the lagged terms such that B χt = χt−1. Thus,
the model in Equation (1) is re-written as demonstrated in Equation (2).

ϕp(B)χt = µ + θq(B)εt ⇔(
1− ϕ1B− . . . .− ϕpBp) χt = µ +

(
1− θ1B− . . . .− θqBq)εt

, (2)

In addition, most of the time-series encountered in engineering problems, including
traditional energy load forecasting, reveal nonstationary characteristics, meaning that
the unconditional joint probability distribution changes with time (a non-constant mean
and variance across observations). These traits in the time-series reveal the presence of
trends and/or seasonal variations. Consequently, since the Box-Jenkins models assume
stationarity, one approach is to obtain the first differences of the time-series, i.e., χt−χt−1 =
(1− B)χt, which results in a general version of the ARIMA(p, d, q) model with an added
generic difference term, as shown in Equation (3).

ϕp(B)(1− B)dχt = µ + θq(B)εt ⇔(
1− ϕ1B− . . . .− ϕpBp) (ϕ1B + . . . . + ϕpBp)d

χt = µ +
(
1− θ1B− . . . .− θqBq)εt

, (3)

To determine the order at which the original time-series must be integrated to acquire
stationarity, authors often resort to unit root tests to assess the stationarity hypothesis. For
the vast range of time-series, when the unit root test determines that the data needs to be
integrated, due to variance in the time-series, the first and second differences are usually
ruled sufficient for removing the trends [10]. In this scenario, where the time-series reveals
clear features of seasonality, e.g., daily, monthly and semesterly cycles, among others, it
is advantageous to use a seasonal ARIMA(p, d, q)× (P, D, Q) (SARIMA) model [35]. The
same letters but capitalized, P, D and Q, describe the seasonal orders of the autoregressive,
moving average and differentiation terms; conversely, the lower-case letters represent the
non-seasonal term orders. As such, the generic abbreviated form of the multiplicative
model can be written as follows Equation (4):

ϕp(B)ΦP(Bs)(1− B)d(1− Bs)Dχt = µ + θq(B)ΘQ(Bs)εt, (4)

where the superscript s distinguishes the seasonal terms from the non-seasonal, whereas
the seasonal autoregressive and moving average coefficients are denoted by ΦP and ΘQ,
respectively. All the remaining parameters were already defined in Equations (1) and (2).

These statistical models are especially tailored to handle linear problems, but the
same cannot be said about hard non-linear problems, i.e., they do not follow the normal
distribution assumption [36].

With the groundwork notation introduced, the next step concerns the question of how
to identify ARIMA(p, d, q) order levels. To this end, the typical choice is to apply the well
known Box and Jenkins method, which relies on the autocorrelation function (ACF), a
measure of the mutual dependence between distinct lags, and the partial autocorrelation
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function (PACF) to draw inferences about an adequate model [25]. This last function is
a measure of the relationship between the current observation and its lags excluding the
effects of intermediate observations, which is useful to specify AR terms.

2.2. Deep Neural Networks

A Deep Neural Network (DNN) is a type of machine learning approach, with the
particularity of having multiple (hidden) layers between the input and output layers
(at least two). The term “deep” is used to symbolize the more complex structure of
layers and nodes, which significantly increases the number of weights and bias terms,
deriving a more abstract and high-dimensional feature mapping from the provided input
and output data [37,38]. In the same fashion as its classic shallow ANN counterpart, it
draws inspiration from human brain functioning, particularly the information flow in
biological neurons [39]. Moreover, its ability to cope with non-linearities renders it a
suitable tool to handle a vast range of engineering problems from pattern recognition and
data classification to time-series modeling, etc.

A common architecture for the DNN is the Deep Feedforward Neural Network
(DFNN), forming a directed acyclic graph as represented in Figure 1 meaning that the flow
of information only proceeds forward, simplifying the backpropagation training process.
In each DFNN layer, every neuron output is evaluated by the activation function f j, with
a cost given by a biased weighted sum aj, which works as a threshold. Hence, one can
state that for any two consecutive layers l − 1 and l, the neuron (node) response can be
formulated as follows:

yj = f j
(
aj
)
= f j

(
n

∑
i=1

ωij xi + bj

)
, (5)

where j ∈ ]0, m] is an index representing an arbitrary neuron response in layer l; and the
i ∈ ]0, n] index denotes an arbitrary input node from the previous layer l − 1 (notice the
flexibility of this formulation where the previous layer can either be an input layer or an
adjacent hidden layer). Accordingly, n is the total number of neurons/input nodes in layer
l − 1, and m is the number of neurons in the connecting layer l, with n and m ∈ Z+. yj is
the output for neuron j; xi is the input signal from neuron i; bj is the respective neuron
bias; and lastly ωij is the weight of the synaptic connection between neurons i and j. This
output response (5) is then one of the inputs for all the nodes of the proceeding layer in
sequential form. Thus, one can compute the output response of all of the hidden layers in
a DFNN, with an arbitrary number of L hidden layers, as a composite function g of the
original input x (input layer), as denoted in Equation (6) [40]:

g(x) = g
[
a(L+1)

(
h(L)

(
a(L)

(
. . .
(
h(2)

(
a(2)

(
h(1)

(
a(1)(x)

)))))))]
, (6)

where h(l)(x) denotes the output of an arbitrary hidden layer l (superscript), and a(l)(x)
is an abbreviated form for the biased weighted sum for an arbitrary hidden layer l (pre-
activation cost).

Output layerInput layer Hidden layers

Figure 1. Deep Forward Neural Network (DFNN).
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In the considered training process, the DFNN weights are updated by using an offline
supervised strategy, where the weights are adjusted to minimize the error in the output
layer with known target samples. The scaled conjugate gradient backpropagation algorithm
was chosen to perform the training task given its balance between performance and speed,
which is particularly important for deep networks.

3. Proposed Methodology

This section presents a comprehensive description of the proposed load forecasting
methodology and discusses its implementation details. First, the proposed methodology
is guided by the ensemble methods (learning) concept, where an improved predictive
performance is expected when employing/combining multiple methods versus any of
the individual methods. More specifically, this work is centered on a stacking ensemble
type approach, which in a broad sense involves training a machine learning method to
merge the predictions of some other methods [41]. To reinforce this point, the literature in
the forecasting field documents report that when dealing with an unstable and varying
data pattern, it is convenient to use dissimilar models to improve time-series forecasting
accuracy [42]. Much of the reasoning behind the wide-adoption (as shown the Introduction
section) of ensemble methods resides in the increased diversity among the base classi-
fiers/forecasters. When using a stacking strategy, the meta-learning model (assembler) is
used to integrate the output of base models [43].

Following this line of thought, a stacking ensemble approach is proposed in this work
where a DFNN combines of the Box-Jenkins predictors. For better context and for learning
purposes, additional input data from the load time-series and relevant related exogenous
variables are also fed to the DFNN. An overview of the most relevant stages and main
blocks that constitute the proposed methodology is given in Figure 2. A more thorough
account of these stages and blocks is provided in the subsections below. Additionally, the
pseudo code of the main implementation stages is given in Appendix A.

EnsemblerPreprocessing

DNN

Data analysis

Partition of the

training samples

Box-Jenkins Models

Fit and evaluate

a wide-range of

Box-Jenkins

models

Best Individual

Predictors

Exogenous

variables

Historical

DataADF Test

Sliding Window

Input Variables

Time-series

Figure 2. Proposed methodology: overview.

3.1. Prediction Models: ARIMA Forecasters

Given this ensemble approach to perform STLF, ARIMA models were chosen to serve
as reference inputs for the combiner DFNN. This approach of coupling soft computing
methods with ARIMA model has proven to increase accuracy, as reported in [36,42]. While
ARMA models are unable to capture the non-linearity of the series, they can capture the
linear traits of the time-series, which is worthy information to be fed as inputs to the
assembler (non-linear) DFNN [44].

Before identifying and fitting the ARIMA models, a significant question concerns
the suitable number of observations to estimate the models. In this regard, a common-
sense rule is to have more observations than model parameters. This implies that, for
example, in a SARIMA model as defined in Equation (4), a number of p + d + q + P + D +
Q + 1 observations is required to estimate the model. However, when dealing with data



Energies 2021, 14, 7378 7 of 21

exhibiting substantial random variation, this minimum requirement is insufficient, and
observations must exceed the parameters several fold [45]. Hence, a hard rule can often
be misleading given the underlying variability of the data. As such, instead of following
a narrow approach, in this work, a conscious decision was made to assemble a pool of
ARIMA models.

These differed from each other not only in parameters but also in the training sample
window (number of observations used to fit the model). This procedure results in very
different ARIMA models, where some will better capture the most recent trends (when the
training window is shorter), while others with a longer training window (more samples)
will provide a fuller picture of the past time-series behavior. Hence, in this work, five
different training windows (in months) were selected, i.e., the number of past observations
(training samples) used to fit the model was given by a specific number of prior months
defined in the variable δ = [1, 2, 3, 6, 12].

For each selected training window, stationarity was evaluated through the Unit Root
hypothesis using the Augmented Dickey Fuller (ADF) test. Based on the test’s p-value, the
methodology decides the order of integration. In our case study, the first differences proved
to be sufficient, but with a 12-month training window, in some instances, the unit-root null
hypothesis was rejected in favor of the alternative hypothesis (ARMA model is suitable).
Having sorted the integration order d, the ACF and PACF functions were built, proceeding
far as 15 days prior, and a list of the most promising AR and MA terms was established.
With this task completed, all the parameter combinations were tested, and the respective
ARIMA models were assembled together with their mirroring SARIMA models, where the
seasonal P and Q orders depict daily and weekly seasonalities. This process of automatic
model selection, based on the information provided by Unit Root Tests and correlation
analysis, is frequently referred as “Automatic ARIMA” [46].

Having identified the several models identified, a Maximum likelihood estimation
(MLE) algorithm was used to estimate the model coefficients, i.e., the coefficients that
maximize the log-likelihood function. Subsequently, the Bayesian Information Criterion
(BIC) was used to select the three best models for each training window (for a total of
15 ARIMA forecasters), by determining the set of model parameters

[
ϕp, ΦP, µ, θq, Θq

]
that

minimize the BIC value, as expressed in Equation (7):

BIC = k ln
(

nlength

)
− 2 ln

(
RSS

nlength

)
, (7)

where k denotes the number of model parameters, nlength is the number of observations
and RSS is the residual sum of square, i.e., a measure of the variance in the error term of the
model [47]. Notice that while all combinations were tested, this does not imply that if, for
example, p = 24, all AR terms between 1 and p have non-null coefficients. On the contrary,
since the model complexity is penalized, as observed in Equation (7), this reinforces the
need to select models with strong correlations.

This offline process is performed iteratively in an automatic manner, and its different
stages are illustrated in Figure 3. The selected training window is only valid for testing
in the subsequent week, and the forecasting performance is stored upon test completion.
Thereafter, the most recent data (testing data) are added to the training window (batch),
while the oldest data are removed, similarly to a Last In First Out procedure. Therefore, it
ensures a training window (batch) with a fixed size. This windowing process is carried
out until all testing data are evaluated and the respective ARIMA Forecasters are stored.
The process concludes after analyzing all the training windows and their correspondent
prediction models, producing the key prediction inputs for the ensemble method.

This offline process was performed iteratively in an automatic manner, and its different
stages are illustrated in Figure 3. The selected training window is only valid for testing
in the subsequent week, and the forecasting performance is stored upon test completion.
Thereafter, the most recent data (testing data) were added to the training window (batch),
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while the oldest data were removed, as in a Last In First Out procedure. This ensures a
training window (batch) with a fixed size. This windowing process was carried out until
all the testing data were evaluated and the respective ARIMA Forecasters were stored.
The process concluded after analyzing all the training windows and their correspondent
prediction models, producing the key prediction inputs for the ensemble method.

Assemble the Box-

Jenkins model

(p,d,q) x (P,D,Q)

Estimate the model

coefficients using MLE

Perform and store

the 24h-ahead forecast

Perform and store

the 24h-ahead forecast

Analyze the time-series

ACF and PACF functions

List the possible

ARIMA model combos
Unit Root Test

(ADF Test)

Rolling ARIMA

Model

Select the training window

Figure 3. Predictions models: outline of the different stages from data selection to ARIMA Forecasters.

3.2. Ensembler DFNN

As previously discussed in the Introduction and Section 2.2, DNNs are a great solu-
tion for solving a wide range of problems given their ability to explore and model deep
nonlinear relationships.

With respect to the DFNN architecture, its input layer was built with 26 nodes that
account for the following: 15 ARIMA forecasters (three best forecasts for each of the five
training windows),

{
ŷ1t

δ1 , . . . , ŷ1t
δ5 , ŷ2t

δ1 , . . . , ŷ2t
δ5 , ŷ3t

δ1 , . . . , ŷ3t
δ5
}

, which are stacked
and fed to the ensemble method providing information about the expected linear trends;
the six past lagged values of the actual load data (xt−24, xt−25, xt−26, xt−32, xt−48, xt−168);
four date/time related exogenous variables, namely hour, weekday, binary holiday indica-
tor and season of the year; information about the time-sample of the 24 h ahead target load(

exogt
hour, exogt

weekday, exogt
holiday, exogt

season
)

; and finally, the lagged relative humidity

information was also fed to the DFNN
(

exogt−24
relHum

)
. The addition of exogenous vari-

ables to forecast the load in the ensemble method is of crucial importance since electricity
demand does not depend exclusively on the autocorrelation of its own data (endogenous).
In fact, a comprehensive assortment of exogenous factors has an impact on the load [44].

Concerning the hidden layer(s) configuration and after performing a few trial simula-
tions, it was found that a three hidden layer DFNN (meaning a total of five layers, including
the output and input layers), with 20, 10 and 5 neurons in each hidden layer, respectively,
was found to be a good fit. These hidden sizes ensured a good level of complexity and
abstraction without using too many neurons and, consequently, weights, which can often
result in overfitting. In this regard, note that an optimal paradigm for the definition of the
best model does not exist and likewise for the number of neurons in the hidden layer(s). As
such, the conventional path is to rely on past experiences and trial-and-error procedures.
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The hyperbolic tangent sigmoid transfer function, σ(x) = 2
1+exp(−2x) − 1, was chosen

as the activation function for the hidden layers. The DFNN flow ends in the output
layer, with a single neuron, producing the 24 h ahead forecasting, ŷt. In addition, a linear
transfer function, out(x) = αx, was used in this layer, which is a very common choice for
approximation and regression tasks.

With the architecture defined, the next stage was preprocessing (8) the input and target
data, ensuring that the data always fell within the range [−1, 1] by using the equation below:

xnorm = −1 + 2
(

x− xmin

xmax − xmin

)
, (8)

where xnorm is the preprocessed input sample; x is the original input sample; and xmin and
xmax are the minimum and maximum values of all input samples.

All the training samples are employed to form the learning batch; as such, a Batch
Gradient Descent paradigm is considered in this work. This implies that all samples
contribute to training and validation errors before updating DFNN weights and biases.
The input and target data spanned over the period of 1 year prior to the testing of the
trained ensemble methodology in the subsequent month. These datasets were divided
randomly into training set and validation set by using a typical 70% to 30% ratio in order
to improve the generalization capabilities.

This validation set provides a separate (unseen) set of representative data-samples
that are used to perform an unbiased evaluation of the model fit (validation error), different
from the training error, during the training phase (weights and biases update). When the
validation error starts to decouple from the training error, i.e., does not decrease for several
iterations, further continuation of the training process may invariably result in overfitting.
This decoupling, therefore, constituted the main stopping criterion for DNN training even
though a maximum number of learning iterations was also defined. Next, the essential
training process of the ensemble DFNN was carried out. The scaled conjugate gradient
(SCG) algorithm [48] was chosen to perform this supervised learning task given that no
critical user-dependent parameters are needed, making it a fully automated algorithm. In
addition, its step size scaling mechanism improves the speed of convergence by avoiding a
time-consuming line search per iteration, which is a common calculation of other second
order algorithms [10,49].

Furthermore, in order to improve generalization during the training process, a modi-
fied version was given by Equation (9), modPerfF, from the standard performance function
using the mean squared error (MSE), and it was chosen by adding the mean of the sum
of squares of the network weights and biases (MSW). This forces the network to have
smaller weights:

modPerfF = (1− η)MSE+η MSW = (1− η)
∑NS

i=1(yi − ŷi)
2

NS
+ η

∑NW
j=1 w2

j

NW
, (9)

where η is the generalization ratio (a good compromise was achieved with its value set to
0.3), NS is the number of training samples, Nw is the number of weights in the network, ŷi
is the DFNN output and yi is the desired (target) output response.

4. Case Study

In order to evaluate the proposed methodology’s forecasting accuracy, the well known
real case study from the New England region system is considered. This region in North-
eastern US spreads across six states, namely Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island and Vermont. The hourly system load samples are provided
by the New England Independent System Operator (ISO-NE) and are available in [50].
In this work, data from 2014 to 2015 were selected for training different forecasters. The
data from 2016 were applied to test the models, and Figure 4 illustrates its hourly and
monthly behavior.
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Figure 4. New England region (US) 2016 Load (MW).

A brief data analysis revealed a mean load value of 13.504 GW and significant amount
of standard deviation, 2.426 GW (∼18% of the mean value), with a moderately positively
skewed and Leptokurtic distribution (skewness = 0.779 and kurtosis = 3.870). This implies
a distribution with longer tail and more observations located to the right (higher) of the
mean value. In addition, as illustrated in Figure 4, the summer months registered not only
higher load values but also greater variabilities largely due to the cooling related loads.
By contrast, the spring months had a smaller mean and standard deviation. Accordingly,
the month of June had the highest mean and standard values, 16.700 GW and 2.9269 GW,
respectively, as well as the maximum recorded load value of 23.973 GW, which took place
on 3 June. The month of August recorded the lowest mean value of 11.480 GW and also
the minimum observed load value of 9.149 GW (7 August), while the minimum standard
deviation occurred in the spring month of April with a value of 1.3383 GW.

5. Results

In order to demonstrate the proposed methodology’s behavior in a representative
manner for the entire year, four different scenarios (out-of-sample scenarios) were con-
sidered, comprising four months corresponding to four different meteorological seasons,
including holidays (typically similar to weekends in terms of load profile).The following
months were selected to serve as testing data from the New England region: (i) winter
month (February 2016); (ii) spring month (April 2016); (iii) summer month (August 2016);
and (iv) fall month (October 2016). In order to ensure the consistency, the results of the
ensemble DFNN were the mean results of chosen error metrics over 50 simulations, thereby
avoiding skewed inferences based on specific random data divisions and random DFNN
weight initialization.

In order to gauge the forecasting accuracy of the 24 ahead predictions, the common
scale-invariant error metrics MAPE(%) (mean absolute percentage error) and RMSE (MW)
(root mean square error) were used, respectively, Equations (10) and (11), which are defined
as follows:

MAPE (%) =
100
Ntest

Ntest

∑
i=1

∣∣∣∣∣ loadi − ˆloadi
loadi

∣∣∣∣∣, (10)

RMSE = 2

√√√√ 100
Ntest

Ntest

∑
i=1

(
loadi − ˆloadi

)2
, (11)
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where Ntest is the number of testing samples (length of the target and forecast vector); and
loadi and ˆloadi are the actual and predicted load value at each time-step i, respectively.

The obtained load forecasting error metrics are displayed in Tables 1 and 2. Notably,
in terms of MAPE (%) (Table 1), the ensemble method was able to outperform the ARIMA
forecasters (input Predictions Models) for all the testing periods. This translates the sizeable
monthly accuracy gains of MAPE (%) in comparison with the mean accuracy of all the
ARIMA forecasters of ∼23%, ∼14%, ∼12% and ∼26% for the months of February, April,
August and October, respectively, and accuracy gains of ∼16%, ∼2%, ∼8% and ∼14%
when comparing the ensemble methodology versus the best ARIMA Forecaster in the
same testing months. Table 2 indicates a similar pattern for the RMSE, where one can
see monthly error improvements of ∼22%, ∼11%, ∼13% and ∼28% in comparison with
the mean accuracy of all the ARIMA forecasters and RMSE accuracy gains of 12%, ∼1%,
∼10% and ∼18%, respectively, for the four different testing months. In addition, we can
oberve that the methodology’s accuracy is not specifically dependent on the time-series
scale and variance characteristics, i.e., the largest MAPE and RMSE values took place in
the month of April, which as observed previously is not the month with the highest mean
or standard deviation.

Table 1. One day-ahead NE Load Forecasting results: MAPE (%).

Prediction Model/Test Month 16 February 16 April 16 August 16 October

ARIMA Forecaster 1 4.36 6.34 5.26 4.37

ARIMA Forecaster 2 4.79 7.28 5.25 5.37

ARIMA Forecaster 3 4.87 7.40 5.51 5.32

ARIMA Forecaster 4 4.93 7.49 5.73 5.20

ARIMA Forecaster 5 4.93 7.55 5.48 5.14

Ensemble DFNN 3.67 6.19 4.82 3.75

Table 2. One day-ahead NE Load Forecasting results: RMSE (MW).

Prediction Model/Test Month 16 February 16 April 16 August 16 October

ARIMA Forecaster 1 737.3 1266.6 983.7 774.5

ARIMA Forecaster 2 840.7 1443.5 978.6 937.7

ARIMA Forecaster 3 859.8 1446.4 1034.6 916.7

ARIMA Forecaster 4 857.6 1454.9 1067.2 891.7

ARIMA Forecaster 5 860.5 1454.6 1034.1 915.9

Ensemble DFNN 649.4 1254.1 883.3 634.7

Figure 5 illustrates the forecasting performance of the proposed ensemble methodol-
ogy in comparison with the selected ARIMA forecasters (inputs) for two indiscriminately
selected fortnights, i.e., the period from 1 to 14 February (winter) and the period from 14
to 27 August (summer). This figure also underlines the ensemble methodology’s good
performance in resembling the real load profile. More importantly, these examples reveal
the ability of DFNN to generalize beyond the provided ARIMA forecasters and extrapolate
further, thereby enabling the ensemble forecast tomatch the real load more closely. This
behavior is illustrated in the zoomed secondary axis in both plots, where one can clearly
observe the ensemble forecast outside of the region mapped by the 15 selected ARIMA
forecasters (input prediction models). In addition, it is also clear that, as expected, the
ARIMA forecasters are a suitable option to capture the linear components of the time-series
but struggle to reproduce the faster changing variations of the morning and evening peak
loads. This confirms the need for a stacking ensemble methodology where a deep network
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with nonlinear mapping abilities, fed with additional data, compensates this shortcoming
and provides relevant error accuracy gains.

Figure 5. Load forecasts vs. real load (New England region), where the ARIMA forecasters area in yellow represents the
region mapped by the forecasts of 15 different ARIMA models, the stacking ensemble forecast is illustrated in a dashed
magenta line and the real (target) load is illustrated in a solid blue line.

To complement these results, a comparative analysis was made against a common
shallow NN architecture with a single hidden layer with 35 nodes, also trained using
the SCG algorithm, for benchmarking purposes and also for evaluating the effect of the
added exogenous input variables in the input dataset (the same exogenous variables were
fed to the ensemble methodology). Ergo, two different input datasets are considered.
Likewise, a support vector machine regression with a Gaussian kernel function and input
standardization is used to map the input domain, building the decision boundaries to
achieve the hyperplane that allow us to predict continuous load outputs. The average
error metrics over the course of 50 runs are shown in Tables 3 and 4, highlighting not
only the superior performance of the the ensemble method for all the testing periods but
also the clear benefit of including related exogenous information in the input datasets
when we compare the errors between the two NNs. A brief statistical analysis reveals
gains in terms of RMSE between ∼1.9% to ∼17.5% versus the NN with exogenous inputs;
between ∼10.5% to ∼32.9% versus the NN without exogenous inputs; and between ∼3.4%
to ∼33.7% versus the Regression-SVM. An identical account is also depicted by the MAPE
(%) values, revealing considerable monthly accuracy improvements (between ∼11.5% to
∼33.8%) for all the months versus the other three forecasting approaches, with the exception
being the mean monthly MAPE (%) of August where the gain was more moderate (∼1.5%).

Table 3. Comparison of one day-ahead NE Load Forecasting results: MAPE (%).

Method/Test Month 16 February 16 April 16 August 16 October

R-SVM 4.71 8.15 5.39 5.67

NN wo/ Exog 4.87 6.96 5.85 5.16

NN w/ Exog 4.22 6.99 4.89 4.66

Ensemble DFNN 3.67 6.19 4.82 3.75
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Table 4. Comparison of one day-ahead NE Load Forecasting results: RMSE (MW).

Method/Test Month 16 February 16 April 16 August 16 October

R-SVM 769.5 1492.7 914.6 958.2

NN wo/ Exog 860.1 1400.5 1066.8 945.2

NN w/ Exog 717.8 1278.6 923.5 769.2

Ensemble DFNN 649.4 1254.1 883.3 634.7

Another important feature of the proposed methodology and its comparative NN
peers was the relatively low levels of standard variation across the 50 runs, as one can
notice in Figure 6, by the narrow range of the interquartile distribution in the box-plot and
the small number of outliers, both for the MAPE and RMSE error metrics. More specifically,
the ensemble methodology even with a large input dataset is in line with the NN with
exogenous inputs variance, and its median line “sits” lower in the box-plots for all four
testing months. In the months of February, April, August and October, the recorded values
of standard deviation were, respectively, 0.132%, 0.252%, 0.217% and 0.113% in terms
of MAPE (%) and 26.5 MW, 60.8 MW, 36.3 MW and 21.4 MW in terms of RMSE. These
numbers validate the robustness of the presented ensemble methodology with respect to
consistently performing STLF in an improved manner.
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Figure 6. Box-plots of the MAPE (%) and RMSE (MW) error distributions (NN without exogenous
inputs-blue, NN with exogenous inputs-green and the proposed ensemble methodology—magenta
over the course of 50 runs).

Last but not least, Figures 7 and 8 are presented to illustrate two different weeks (first
week of April and third week of October, respectively) of forecasting loads versus the real
load, as well as the individual hourly deviation (signed error) of each comparative method
and the proposed approach below (in the form of bar plots). These bars allow a better
understanding of the difference between predicted and real hourly loads, and the smaller
(better) magnitudes seen in the Ensemble DNN reinforce the inferences made by not only
analyzing the error tables but also the error distribution in Figure 6, with a slightly positive
bias in terms of error signal for all the considered methods.
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Figure 7. Predicted loads vs. real load and the respective mean deviation (signed error) of each
method: 1st week of April 2016.
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Figure 8. Predicted loads vs. real load and the respective mean deviation (signed error) of each
method: 3rd week of April 2016.

6. Conclusions

The task of short-term load forecasting plays a crucial part for a better functioning
electric power system, enabling better scheduling, lower generation costs, better planning
and better count of load flows. This task has received new attention, given the increas-
ing adoption of self-consumption and demand response mechanisms. A review of the
latest developments in the STLF problem revealed a broad field of study, with researchers
trying to explore the significant breakthroughs in ML and DL in order to reduce forecast-
ing error. An increasingly consolidated trend is the use of ensemble or fusion methods
(particularly black-box type models) in order to explore the different generalization capa-
bilities of dissimilar methods and to increase the diversity of solutions (among the base
classifiers/inputs).

By considering all these aspects, this study proposes a new stacking ensemble method-
ology that uses a pool of different ARIMA forecasters that not only differ in the orders of
autoregressive and moving average terms but also in terms of the batch (training) sizes in
which they are adjusted. These prediction models are fitted according to their stationarity
hypotheses in an automatic manner, and they are mainly tailored for modelling the linear
components of the load time-series; their information is fed as forecaster inputs to a DFNN
given its well-known ability to map hard non-linear relationshipsby using a gradient based
training algorithm. This deep black-box architecture was designed to include another
set of endogenous (lagged load data) and exogenous information in order to allow the
network to generalize beyond ARIMA forecasters. To improve the ANN learning process,
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an early stop mechanism is not only employed but a modified performance function is also
employed, which improves generalization.

This implementation philosophy will ensure a reduction in the high variance of single
NN based models and in generalization errors. The other focal point for researchers is
improvements in data selection, pre-processing and feature extraction techniques, which
are essential to “clean” the time-series from noisy data, including outliers or seasonal
events, or to precisely uncover some “hidden” features (e.g., high frequency behaviors). As
such, CA and different Box-Jenkins models were used to facilitate the modeling process, i.e.,
the extraction of hard (non-linear) relationships from the set of explanatory input variables.

The effectiveness of the proposed method was evaluated in the New England case
study by assessing the error in four different months (from different seasons of the year)
of 2016. The obtained error metrics revealed the ensemble methodology’s ability to
improve forecasting accuracy in comparison with the same error metrics for the input
prediction models, achieving error improvements on the order of 10% to 25% (mean terms)
in comparison with the base learners’ prediction accuracy. The RMSE underscores well the
effectiveness of the proposed methodology, since all the monthly RMSEs were lower than
the lowest monthly standard deviation in the time-series (which occurred in April 2016).

The comparative analysis validated the ensemble methodology by confirming the
improvements when using a DNN versus shallow NN, and it also allowed backing up the
decision to consider relevant exogenous variables, i.e., there are individual contributions
made to the ensemble approach by the different individual ARIMA forecasters that cou-
pled with a correlated input dataset for the DFNN, which has produced meaningful error
improvements. Moreover, the relatively small levels of variance between simulations of the
DFNN show the consistency of the architecture independently of some random parameters,
such as weight initialization and data division. These results attest the suitability of the de-
signed approach to create the intended input diversity in the base learners with the different
Box–Jenkins models. These models were assembled and evaluated from a pool of options
based on data and information-criteria, thus successfully tackling the common model
identification (hyperparameter decision) problem when using these statistical models, thus
corroborating the design approach of the proposed stacking ensemble methodology.

In terms of future works, the authors will be looking to extend the diversity of the
input forecasters (with different types of base learners), address the error bias and study
different combinations of dissimilar methods, as well as increasing the number of training
windows and its range, in order to gauge longer term trends with the forecasting models
and its effect in the overall combined load forecast.

Author Contributions: Conceptualization, P.M.R.B. and J.A.N.P.; methodology, P.M.R.B. and J.A.N.P.;
software, P.M.R.B.; validation, J.A.N.P., M.R.A.C. and S.J.P.S.M.; investigation, S.J.P.S.M., M.R.A.C.,
J.A.N.P. and P.M.R.B.; formal analysis, M.R.A.C. and S.J.P.S.M.; writing—original draft preparation,
P.M.R.B. and J.A.N.P.; writing—review and editing, S.J.P.S.M. and M.R.A.C.; visualization, P.M.R.B.
and M.R.A.C.; supervision, J.A.N.P., S.J.P.S.M. and M.R.A.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is funded by FCT/MCTES through national funds and, where applicable,
co-funded EU funds under the project UIDB/EEA/50008/2020.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/accessionnumber
(accessed on 4 November 2021).

Acknowledgments: P.M.R. Bento gives his special thanks to the Fundação para a Ciência e a Tecnolo-
gia (FCT), Portugal, for the Ph.D. Grant (SFRH/BD/140371/2018).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/accessionnumber


Energies 2021, 14, 7378 17 of 21

Nomenclature
The following abbreviations, acronyms and variables are used in this manuscript:

aj weighted sum in neuron j;
ACF Autocorrelation function;
ADF Augmented Dickey–Fuller test;
ANFIS Adaptive neuro-fuzzy inference system;
ARIMA Autoregressive integrated moving average;
ARMA Autoregressive moving average;
bj Bias connection in neuron j;
B Backshift operator;
BIC Bayesian information criterion;
CNN Convolutional neural network;
d Degree of nonseasonal integration;
D Degree of seasonal integration;
DBN Deep belief network;
DFNN Deep feedforward neural network;
DL Deep learning;
DNN Deep neural network;
exogvariable

t Exogenous (DNN) input variable at time-step t;
ELM Extreme learning machine;
f j Activation cost in neuron j;
g(x) Composite function illustrating the DNN cascaded nature;
GARCH Generalized autoregressive conditional heteroskedasticity;
GRU Gated recurrent unit (neural network);

h(l)x Output of an arbitrary hidden layer l receiving an input x;
ISO-NE New England indepedent system operator (regional transmission);
k Number of (ARIMA) model parameters;
l Arbitrary DNN hidden layer;
loadi Actual (real) load at time-step i;
LSTM Long short-term memory (neural network);

ˆloadi (Final) forecasted load at time-step i;
L Number of DNN hidden layers;
m Number of neurons in layer l;
MAPE Mean absolute percentage error;
ML Machine Learning;
MLP Multilayer perceptron (neural network);
ModPerfF Modified DNN performance error;
MSE Mean squared error;
MSW Mean squared weights;
n Number of neurons/inputs in layer l − 1;
nlength Number of time-series samples/observations;
NS Number of training samples;
Ntest Number of testing samples;
NW Number of DNN weights (total);
N-BEATS Neural basis expansion analysis for interpretable time series forecasting;
out(x) DNN output layer (linear) transfer function;
p Nonseasonal autoregressive polynomial degree;
P Seasonal autoregressive polynomial degree;
PACF Partial autocorrelation function;
q Nonseasonal moving average polynomial degree;
Q Seasonal moving average polynomial degree;
RMSE Root mean squared error;
RNN Recurrent neural network;
RSS Residual sum square error;
SARIMA Seasonal autoregressive integrated moving average;
SCG Scaled conjugate gradient algorithm;
STLF Short-term load forecast;
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SVM Support-vector machine;
VMD Variational mode decomposition;
xi Input signal from neuron i (to neuron j);
xmax Maximum input time-series value;
xmin Minimum input time-series value;
xnorm Pre-processed normalized input value;
X Generic time-series;
XGB Extreme gradient boosting;
yj Output response from an arbitrary neuron j;
ŷt Output forecast of the different forecasters j;
α Slope of the linear output transfer function out(x);
δ Set of training samples (in months) to model the forecasters;
εt Lagged error term at time-step t;
η Generalization ratio
θi Nonseasonal moving average coefficient at lag i;
Θi Seasonal moving average coefficient at lag i;
µ Constant (ARIMA model) term;
σ(x) Sigmoid transfer function;
φi Nonseasonal autoregressive coefficient at lag i;
Φi Seasonal autoregressive coefficient at lag i;
χt Generic time-series sample at time-step t;
ωij Connection weight between neurons/input iand j.

Appendix A

The pseudo-code of the overall proposed methodology detailed in Section 3 is pro-
vided below:

(1) INIT;

(2) GET and format the electric ISO-NE load data and relevant calendar and exogenous
variables;

(3) COMPUTE the load time-series analysis using ACF and PACF;

(4) LIST a series of suitable ARIMA and SARIMA models based on the correlation
analysis (with different thresholds) and known seasonalities;

(5) SET load datasets with different windowing (number of past observations), as ex-
pressed in variable δ;

(6) CALCULATE the ADF test to check for stationarity and decide upon the required
degree of time-series integration, d;

(7) FIT the different pool of Box-Jenkins models (base learners/forecasters) to the differ-
ent training windows of (endogenous) load samples;

(8) COMPUTE BIC, i.e., Equation (7), to select the 3 best Box-Jenkins models for each
training window;

(9) DETERMINE and store the 24 h-ahead STLF with the Box-Jenkins models selected in
the previous step (totaling 15 base learners) in a rolling (ARIMA or SARIMA) scheme;

(10) DEFINE the input dataset format, concatenating the ARIMA forecasts with the
ruled relevant exogenous and calendar variables, and its correspondent target value.
Forming a pair of training sample to desired output (24 h ahead);

(11) NORMALIZE the input data using Equation (8), the training, validation and testing
datasets (sets of input and target samples is prepared);

(12) DEFINE the different set of DFNN hyperparameters for a regression task:
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(i) Architecture: 3 hidden layers with sizes (number of neurons) [20,10,5], respec-
tively;

(ii) Optimizer (Learning Algorithm): SCG;

(iii) The training and validation performance is evaluated using modPerfF (Equation (9));

(iv) Train to Validation Ratio: 70% to 30%;

(v) Sigmoid transfer function in the hidden layers;

(vi) Linear transfer function in the (last) output layer;

(13) SET number of runs = 50;

(14) FOR each run out of number of runs;

(i) TRAIN the DFNN in an offline process with updated weights after each test
week is predicted;

(a) WHILE (iterations < 2500);
(I) IF (validation error stops decreasing and counter < 50);

(A) Counter += 1;
(II) ELSE IF (counter >= 50);

(A) BREAK loop;
(III) ELSE;

(A) Counter = 0;

(ii) COMPUTE the STLF using the trained DFNN in the testing dataset;

(iii) STORE the predicted loads and the respective forecasting;

(iv) UPDATE the training and validation input dataset to include the most recently
predicted data and return to (i);

(v) IF (no more test weeks to predict);

(a) BREAK loop;

(15) END
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