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Abstract: Machine learning (ML) models are commonly used in solar modeling due to their high
predictive accuracy. However, the predictions of these models are difficult to explain and trust. This
paper aims to demonstrate the utility of two interpretation techniques to explain and improve the
predictions of ML models. We compared first the predictive performance of Light Gradient Boosting
(LightGBM) with three benchmark models, including multilayer perceptron (MLP), multiple linear
regression (MLR), and support-vector regression (SVR), for estimating the global solar radiation (H)
in the city of Fez, Morocco. Then, the predictions of the most accurate model were explained by two
model-agnostic explanation techniques: permutation feature importance (PFI) and Shapley additive
explanations (SHAP). The results indicated that LightGBM (R2 = 0.9377, RMSE = 0.4827 kWh/m2,
MAE = 0.3614 kWh/m2) provides similar predictive accuracy as SVR, and outperformed MLP
and MLR in the testing stage. Both PFI and SHAP methods showed that extraterrestrial solar
radiation (H0) and sunshine duration fraction (SF) are the two most important parameters that affect
H estimation. Moreover, the SHAP method established how each feature influences the LightGBM
estimations. The predictive accuracy of the LightGBM model was further improved slightly after
re-examination of features, where the model combining H0, SF, and RH was better than the model
with all features.

Keywords: solar radiation; support-vector regression; light gradient boosting; multilayer perceptron;
permutation feature importance; Shapley additive explanations

1. Introduction

Renewable energy transition will enormously benefit African countries by creating
employment opportunities, protecting the environment, and promoting energy security [1].
Morocco is regarded as one of the leading African countries in renewable energy, thanks to
its policies encouraging investments in renewable energies. These sources of energy are
expected to generate 52% of the country’s electricity by 2030 [2]. Moreover, the Moroccan
government has established a new climate strategy by ratifying the Paris Agreement, and
holding the United Nations Conference of Parties (COP22) in Marrakesh in 2016 [3].

Solar energy is a sustainable energy source used widely for a variety of applica-
tions, including electricity generation, water pumping, air or water heating, and water
desalination [4,5]. Global solar radiation information is critical for such applications. The
most precise method of acquiring this information consists of using a radiometric measure-
ment station running continuously for an extended period. However, in most countries,
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particularly in Morocco, these measurements are not easily accessible due to economic
and technological constraints [6]. Consequently, numerous models have been developed
to estimate global solar radiation, such as empirical models [7], reanalysis models [8,9],
satellite-based models [10], interpolation models [11,12], and machine learning models.

Empirical models use linear or nonlinear correlations between H and other readily
available meteorological data. These models are simple to implement. However, they
are location-dependent, and have limited prediction accuracy [13]. Reanalysis methods
estimate H by running numerical weather prediction (NWP) models using historical
observations. These models generate global solar radiation time series with global coverage.
Nevertheless, they have a low spatial resolution and a medium prediction ability [14].
Satellite-based models utilize images of reflected radiation to predict H. They enable
continuous monitoring of solar radiation changes, but must be validated against ground-
based measurements [14,15]. Finally, interpolation techniques are used to create continuous
estimates for unmeasured regions using ground point observations of global solar radiation.
The quality of these models is highly dependent on the number of measurements [14].

Machine learning refers to a collection of algorithms that enable systems to learn from
experience and data, rather than being explicitly programmed [16,17]. The availability of
massive data, the improvement in algorithms, and the increase in computer power have
driven an explosion of applications of ML in a range of areas [18], and especially in solar
modeling. Studies employing ML models to estimate H emerged in 2003, have increased
significantly since 2014, and reached a peak in 2019 [19]. Several ML models have been
adopted in these studies, namely artificial neural network-based models, kernel-based
algorithms, tree-based models, and fuzzy techniques [19,20].

Artificial neural network-based models are inspired by the learning procedure of
biological neural systems, which consist of interconnected information-processing units
called neurons [19]. These models are the most popular ML methods adopted for global
solar radiation simulation [21]. Wang et al. [22] compared three artificial neural networks
(ANN) models (MLP, Radial basis function (RBF), and generalized regression neural
network (GRNN)), and an empirical model, for daily H estimation at 12 sites across China.
They found that the MLP and RBF were the most accurate for all stations. The best results
(R2 = 0.8600, RMSE = 0.5388 kWh/m2, MAE = 0.4250 kWh/m2) were achieved with an
MLP model. Kaba et al. [23] developed a deep neural network (DNN) to estimate the global
solar radiation at 30 stations in Turkey. The results of comparison with four empirical
models demonstrated the robustness of the DNN model with an overall R2 = 0.9800,
RMSE = 0.2166 kWh/m2, and MAE = 0.1694 kWh/m2.

The kernel-based models include support-vector machines and Gaussian process
regression (GPR) [19]. SVR models have been extensively used for H estimation, due to
their good prediction accuracy and excellent stability. However, GPR models were scarcely
applied in global solar radiation studies. Piri et al. [24] compared the SVR algorithms
with conventional empirical methods to predict H at two sites in Iran. The findings of
this research highlighted that SVR models were the most suitable for H prediction. The
obtained results of statistical indicators for the first site were RMSE = 0.4515 kWh/m2

and R2 = 0.9330. On the other hand, they were RMSE = 1.1180 kWh/m2 and R2 = 0.5967
for the second site. Quej et al. [25] evaluated the potential of SVR, neuro-fuzzy inference
system (ANFIS), and MLP models to predict daily global solar radiation in the Yucatán
Peninsula, Mexico. The researchers achieved the best performance by the SVR algorithm
with R2 = 0.6890, RMSE = 2.4820 kWh/m2, and MAE = 1.9180 kWh/m2. Chen et al. [26]
tested seven SVR models at three sites in China. The researchers found that all the SVR
models provided a better accuracy than the empirical models with an average RMSE of
0.5816 kWh/m2. Guermoui et al. [27] estimated daily H with the GPR model in Ghardaïa,
Algeria. It was concluded that the GPR model outperformed the MLP and RBF models.
The obtained results in terms of the mean bias error (MBE), RMSE, normalized root mean
square error (nRMSE), and correlation coefficient (r) were 0.1861 kWh/m2, 0.3194 kWh/m2,
5.2%, and 0.9842, respectively.



Energies 2021, 14, 7367 3 of 19

Tree-based models are ML techniques that use decision trees as a base model [19].
These methods have been successfully applied in many solar radiation related studies.
Benouna et al. [28] compared 3 tree-based models (boosted trees, bagged trees, and random
forest (RF)), 22 empirical models, and an MLP model, for estimating H in five locations
in Morocco. Their results revealed the superiority of the (RF) model in terms of r, normal-
ized mean absolute error (nMAE), and (nRMSE) that were in the range of 0.8753–0.9620,
5.84–11.81%, and 7.85–15.33%, respectively. Fan et al. [21] compared the XGBoost model
with the SVR technique for predicting daily H in humid subtropical China. The authors
reported that XGBoost (R2 = 0.7530, RMSE = 0.9238 kWh/m2, MAE = 0.6925 kWh/m2)
exhibited a similar performance to SVR while outperforming the empirical models.

Fuzzy logic techniques take into account the uncertainty associated with weather
conditions to estimate H [29]. Boata et al. [30] proposed a functional fuzzy approach to
forecast daily global solar radiation at 12 European stations. The results of RMSE and MAE
were between 1.04–1.69 kWh/m2 and 0.66–1.16 kWh/m2., respectively. Rizwan et al. [29]
used a fuzzy logic approach to estimate monthly mean H in four Indian stations. They
concluded that the proposed model provided a good predictive performance compared to
a clear sky and MLP models, with an overall mean absolute percentage error (MAPE) of
5% across all stations.

In 2017, Ke et al. [31] developed a novel tree-based ensemble method named Light-
GBM, which is a new variant of gradient boosting with a faster training time and higher
prediction capability. This model has been successfully applied in many fields to predict the
energy yield of photovoltaic systems [32], protein–ATP binding residues [33], peer-to-peer
network loan default [34], and reference evapotranspiration [35]. However, LightGBM was
rarely used in global solar radiation estimation. To the best of the authors’ knowledge, only
Park et al. [36] used the LightGBM algorithm to predict multistep-ahead solar radiation,
using data from two regions in South Korea. The findings of this research indicated that the
LightGBM algorithm was more efficient than the tree-based ensemble and deep learning
methods. A list of representative literature related to the comparison ML models for H
prediction is depicted in Table 1.

Table 1. List of some studies related to the global solar radiation estimation in the literature using ML models.

Location Methods Best Model Best Performance Ref

12 Sites (China) MLP, RBF, GRNN, Empirical MLP
R2 = 0.8600

RMSE = 0.5388 kWh/m2

MAE = 0.4250 kWh/m2
[22]

30 Stations (Turkey) DNN and four empirical models DNN
R2 = 0.9920

RMSE = 0.1444 kWh/m2

MAE = 0.1111 kWh/m2
[23]

2 Sites (Iran) SVR, Empirical SVR R2 = 0.9330
RMSE = 0.4515 kWh/m2 [24]

6 Stations (Yucatán
Peninsula, México) SVR, ANFIS, MLP SVR

R2 = 0.6890
RMSE = 2.4820 kW/m2

MAE = 1.9180 kW/m2
[25]

3 Sites (China) SVR, Empirical SVR RMSE = 0.5002 kWh/m2

nRMSE = 13.14%
[26]

Ghardaïa (Algeria) GPR, MLP, RBF GPR

r = 0.9842
MBE = 0.1861 kWh/m2

RMSE = 0.3194 kWh/m2

nRMSE = 5.2%

[27]

5 Stations (Morocco) Boosted trees, bagged trees, RF,
MLP, Empirical RF

r = 0.9620
nMAE = 5.84%
nRMSE = 7.85%

[28]
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Table 1. Cont.

Location Methods Best Model Best Performance Ref

3 Sites (China) XGBoost, SVR, Empirical SVR
R2 = 0.7760

RMSE = 1.002 kWh/m2

MAE = 0.7291 kWh/m2
[21]

4 Sites (India) Fuzzy, clear sky, MLP MLP MAPE = 4.81% [29]

As the reviewed literature shows, ML models are powerful tools for global solar
radiation estimation. However, most of them are considered black-box models. This means
that the user will have difficulty comprehending the internal logic of these models [37]
To overcome these limitations, many strategies for interpretable ML have been recently
developed, including partial dependence plot (PDP), local interpretable model-agnostic
Explanations (LIME), accumulated local effects (ALE), permutation feature importance
(PFI), and Shapley additive explanations (SHAP) [38]. These methods can be used to explain
model predictions, extract knowledge, and enhance predictive ability [39]. The explanation
techniques can be classified into model-agnostic and model-specific. Model-agnostic can
be applied to any ML algorithm (e.g., PFI, PDP, SHAP), while model-specific is limited to
specific model classes [37]. For instance, the interpretation of regression weights in a linear
model is model-specific, and does not apply to any other model [40]. Alternatively, these
techniques might be classified by whether they produce global or local interpretations.
Global interpretation refers to understanding the overall relationship between features
and the target based on the entire model (e.g., PFI), whereas local interpretations focus on
explaining the prediction of a single or a subset of instances (e.g., LIME) [38].

In solar modeling, the most popular approach for explaining predictive ML algo-
rithms is feature importance. This strategy aims at identifying the most relevant features
for global solar radiation estimation. Alsina et al. [41] used the automatic relevance de-
termination method (ARD) to identify the most significant attributes for an ANN model
developed to predict the monthly solar radiation in Italy. The group achieved the best
results (mean absolute percentage error (MAPE) equal to 1.67%, an nRMSE of 1.01%, and a
mean percentage bias error (MPBE) of 0.03%) with seven inputs, namely top of atmosphere
radiation, day length, number of rainy days, rainfall, latitude, period of time, and altitude.
Shamshirband et al. [42] conducted a sensitivity analysis for an extreme learning machine
(ELM) algorithm to find the most influential input on H estimation. The results indicated
that the most critical single input parameter is the relative sunshine duration, and that the
optimal combination of two inputs is the sunshine duration and the difference between the
maximum and minimum temperatures. Rohani et al. [43] showed, using the GPR model,
that sunshine fraction duration, mean temperature, relative humidity, and extraterrestrial
radiation are the most important features for daily and monthly H prediction in Mashhad,
Iran. Using the random forest (RF) model, Zeng et al. [44] demonstrated that daily sun-
shine duration, daily maximum land surface temperature, and day of the year are the most
effective input variables for H estimating across China.

PFI is a new global model-agnostic explanation technique that was recently used to
identify the most relevant features in many fields, such as medicine [45], agriculture [46],
and engineering [47]. Similarly, the SHAP method has been applied successfully to interpret
local and global ML predictions in several studies in order to predict the risk of water
erosion [48], estimate pairwise acquisition [49], investigate the factors that contribute to
freight truck-related crashes [50], estimate the occurrence of benthic macroinvertebrate
species [51], and predict the fuel properties of the chars [52].

As this brief review indicates, the application of LightGBM for global solar radiation
prediction remains limited. In addition, PFI and SHAP methods have not yet been applied
in H modeling to the knowledge of the authors. For this reason, this study aims:

(1) To compare the performances of the newly LightGBM model to three benchmark
machine learning algorithms, namely MLP, MLR, and SVR.
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(2) To explain the predictions of the best algorithm with PFI and SHAP techniques by
quantifying the relevance of inputs, elucidating their impacts on each individual
estimation, and highlighting their interaction.

(3) To evaluate the efficacy of the two explanation techniques by feature re-examination
of the most accurate model.

The remaining of this paper is structured as follows: Section 2 presents an overview
of the different models and techniques used in this paper. It also describes the study area,
data collection, partitioning process, and statistical indicators. The results are presented
and discussed in Section 3. Finally, Section 4 provides the main conclusions.

2. Materials and Methods
2.1. Predictive and Explanation Techniques
2.1.1. Support-Vector Regression (SVR)

SVRs are kernel ML techniques based on statistical learning theory and the structural
risk minimization principle. The fundamental idea behind SVRs is to convert the non-linear
relationship between features and the target in the original space into a linear regression in
a new higher dimensional space, using a process called the kernel trick [53]. More details
about the SVR model can be found in [54]. The SVR model includes hyperparameters
that can be tuned to reduce model overfitting and improve prediction efficiency. The
hyperparameters considered in this study are (1) (C): the regularization parameter, and
(2) (epsilon): the width of the tube around the estimated function.

2.1.2. Multilayer Perceptron (MLP)

MLP models are a subclass of feedforward ANNs that consist of an input layer, an
output layer, and one or several hidden layers. The model first propagates the signal
forward from the input layer to the hidden layer and finally to the output layer. Further,
the error signal is backpropagated to the input layer. A learning algorithm adjusts the
network’s weights and bias until the error reaches an acceptable level. More details about
this model can be found in [55]. For an MLP model with one hidden layer, the optimized
hyperparameters include (1) (activation): the activation function for the hidden layer,
(2) (solver): the learning algorithm, and (3) (hidden_layers_sizes): the number of neurons
in the hidden layer.

2.1.3. Multiple Linear Regression (MLR)

MLR model is based on a linear relationship between the features, xi, and the output
variable, Y, given as [56]:

Y = β0 + β1x1 + β2x2 + . . . + βMxM (1)

where β0 is the intercept, β1, β2 . . . βM are regression coefficients, and M is the number
of features.

2.1.4. Light Gradient Boosting (LightGBM)

LightGBM is a variant of gradient boosting proposed by Ke et al. [31] in 2017. Gradient
boosting refers to an ensemble model based on a decision tree as a weak learner. The
predictive ability and the computational cost of this algorithm deteriorate when a large
amount of data is available, or the attribute dimension is high. The LightGBM model
can overcome these limitations by using gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB) techniques [57]. Furthermore, the LightGBM model grows
its trees using the leaf-wise strategy, rather than the level-wise tree technique. This strategy
grows the trees vertically, whereas other algorithms grow them horizontally. Figure 1
illustrates the two tree growth strategies.
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Due to its high sensitivity to overfitting, the LightGBM’s hyperparameters should be
optimized. The main hyperparameters of this model are (1) (num_leaves): the number
of leaves per tree, (2) (learning_rate): the parameter that controls the speed of iteration,
and (3) (max_depth): the maximum depth of the tree. More details about the LightGBM
algorithm can be found in [31].

2.1.5. Permutation Feature Importance (PFI)

PFI was proposed by Breiman for random forests, and extended for all ML models by
Fisher et al. in 2018 [58]. The basic idea is to permute the values of a variable i, and calculate
how much the prediction error increases because of this permutation. The computation
of the PFI score comprises the following four steps: (1) estimation of the original model
error eorig , (2) permutation of the values of the predictor variable i , (3) calculation of
the new error eperm, and (4) determination of the permutation feature importance score
PFI = eperm − eorig [38]. The error used in this paper is the mean absolute error (MAE)
defined by Equation (10).

2.1.6. Shapley Additive Explanations (SHAP)

SHAP is an explanation technique introduced by Lundberg and Lee in 2017, based
on cooperative game theory [59]. It calculates the individual contribution of each feature
using Shapley values [60], where the Shapley value corresponds to the average marginal
impact of a feature value on the predictions over all feasible coalitions [59].

Let f the ML model that needs to be explained, g, is the explanatory model, and x
and x′ denote the input variable and the simplified input, respectively. To interpret the
output of the ML model, SHAP utilizes an additive feature attribution [61] as:

f (x) = g
(
x′
)
= ∅0 +

M

∑
i=1

∅ix′i (2)

where M is the number of attributes, ∅i is the SHAP value of a feature i, and ∅0 represents
the constant value when all input variables are missing.

SHAP can be used for both local and global explanations. The local explanations
are aggregated to generate the global explanation by averaging the absolute Shapley
values per feature across the data. The SHAP method is also able to identify how each
feature influences the estimations (positively or negatively), and to quantify the interaction
between two variables, i and j [59,61].
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2.2. Study Area and Data Processing
2.2.1. Case Study and Data Collection

The present study used daily global solar radiation (H), sunshine duration (N),
average temperature (T), atmospheric pressure (P), relative humidity (RH), precipitation
(Pr), and wind speed (v). These data were collected from a meteorological station in Fez
(latitude 33◦55′58′′ N, longitude 4◦58′30′′ W, altitude 571.3 m) between 2016 and 2017.
Figure 2 shows the location of the meteorological station. The daily extraterrestrial solar
radiation (H0) and the daily sunshine duration fraction (SF) were added to the database
as a part of the feature engineering process. The daily extraterrestrial solar radiation on a
horizontal surface H0. is computed as [62]:

H0 =
24 ∗ 3600 ∗ Gsc

π

[
1 + 0.033 cos

(360nday

365

)]
∗
(

cosϕcosδsinωs +
πωs

180
sinϕsinδ

)
(3)

where Gsc is the solar constant, assumed equal to 1367 W/m2, ϕ is the latitude, nday is the
day number, δ is the declination angle, and ωs is sunset hour angle.

Energies 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

used in this study, we detected five days with missing ܪ values, and four days with ܵܨ 
incorrect values. 

Figure 3 illustrates the triangular correlation heatmap showing the Pearson correla-
tion coefficient r between two variables. We can see from this figure the existence of a 
strong positive linear correlation between ܪ଴ and ܪ, and a moderate positive linear cor-
relation between both features ܶ and ܵܨ, and ܪ. On the other hand, there is a weak neg-
ative linear association between ܲ and ܪ, a low negative linear relationship between ௥ܲ 
and ܪ, and a moderate negative linear correlation between ܴܪ and ܪ. There is no linear 
relationship between ݒ and ܪ. 

 
Figure 2. The location of the studied station. 

 
Figure 3. Triangular correlation heatmap of the studied variables. 

  

Figure 2. The location of the studied station.

δ and ωs are calculated as following:

δ = 23.45 sin


(

nday + 284
)

360

365

 (4)

ωs = cos−1(−tanϕtanδ) (5)

The sunshine duration fraction SF is expressed as:

SF = N/N0 (6)
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where N and N0 represent measured and calculated sunshine duration, respectively. The
theoretical sunshine duration is given as:

N0 =
2

15
(−tanϕtanδ) (7)

The dataset contains some incorrect and missing values that must be removed. To
ensure that the developed models are highly accurate, each observation must satisfy the
following conditions: the daily clearness index (Kt =

H
H0

) and SF should be in the ranges of
0.015 < Kt < 1 and 0 ≤ SF ≤ 1 , respectively [25,62]. Among the 731 daily data used in this
study, we detected five days with missing H values, and four days with SF incorrect values.

Figure 3 illustrates the triangular correlation heatmap showing the Pearson correlation
coefficient r between two variables. We can see from this figure the existence of a strong
positive linear correlation between H0 and H, and a moderate positive linear correlation
between both features T and SF, and H. On the other hand, there is a weak negative linear
association between P and H, a low negative linear relationship between Pr and H, and a
moderate negative linear correlation between RH and H. There is no linear relationship
between v and H.

Energies 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

used in this study, we detected five days with missing ܪ values, and four days with ܵܨ 
incorrect values. 

Figure 3 illustrates the triangular correlation heatmap showing the Pearson correla-
tion coefficient r between two variables. We can see from this figure the existence of a 
strong positive linear correlation between ܪ଴ and ܪ, and a moderate positive linear cor-
relation between both features ܶ and ܵܨ, and ܪ. On the other hand, there is a weak neg-
ative linear association between ܲ and ܪ, a low negative linear relationship between ௥ܲ 
and ܪ, and a moderate negative linear correlation between ܴܪ and ܪ. There is no linear 
relationship between ݒ and ܪ. 

 
Figure 2. The location of the studied station. 

 
Figure 3. Triangular correlation heatmap of the studied variables. 

  

Figure 3. Triangular correlation heatmap of the studied variables.

2.2.2. Data Preprocessing and Performance Criteria

To develop the ML models, the dataset was randomly divided into two subsamples:
60% for training, and 40% for testing. LightGBM does not require data normalization.
However, the data used for MLP, MLR, and SVR must be pre-processed. The normalization
formula is given as [63]:

Xnorm =
Xi − Xi,min

Xi,max − Xi,min
(8)

where Xnorm, Xi, Xi,min, Xi,max represent the normalized value, the real value, the maximum,
and the minimum values, respectively.

The Bayesian optimization (BO) approach was used to find the optimal hyperpa-
rameters for SVR, MLP, and LightGBM machine learning models. After obtaining the
hyperparameter values by running the BO algorithm 30 times, a final model was trained
and tested. SVR, MLP, MLR, and PFI were developed using scikit-learn 0.24.2, LightGBM
was developed using LightGBM 3.2.1.99, SHAP was implemented using SHAP, and the
Bayesian optimization was implemented using scikit-optimize libraries in Python 3.8.9.
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Three statistical indicators were selected to evaluate the robustness of the developed
models, namely root mean square error (RMSE), mean absolute error (MAE), and the
coefficient of determination (R2) defined as [64]:

RMSE =

√
∑n

i=1(Hi,c − Hi,m)
2

n
(9)

MAE =
1
n ∑n

i=1|Hi,c − Hi,m| (10)

R2 = 1− ∑n
i=1(Hi,c − Hi,m)

2

∑n
i=1
(

Hi,m − Hm,avg
)2 (11)

where n is the number of observations, Hi,c denotes the calculated solar radiation, Hi,m
represents the measured solar radiation, and Hm,avg is the mean of the measured solar
radiation values.

A model achieves high predictive accuracy when RMSE and MAE are close to 0 and
R2 is close to 1. The methodology used in this study is illustrated in Figure 4.
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3. Results and Discussion

In the next section, we tuned the hyperparameters of the three algorithms, SVR, MLP,
and LightGBM, using the Bayesian optimization approach. Then, we compared SVR, MLP,
MLR, and LightGBM to choose the most accurate of them.

3.1. Predictive Performance of the ML Models

Table 2 summarizes the optimal hyperparameters for the SVR, MLP, and LightGBM
models. The values of the statistical indicators obtained by SVR, MLP, MLR, and LightGBM
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models during the training and testing stages are depicted in Table 3. According to this
table, the performances obtained by LightGBM (R2 = 0.9871, RMSE = 0.2229 kWh/m2,
MAE = 0.1638 kWh/m2) in the training phase were significantly better than those of MLR
(R2 = 0.9275, RMSE = 0.5290 kWh/m2, MAE = 0.3955 kWh/m2), and superior than those of
SVR (R2 = 0.9567, RMSE = 0.4089 kWh/m2, MAE = 0.2697 kWh/m2) and MLP (R2 = 0.9772,
RMSE = 0.2968 kWh/m2, MAE = 0.2208 kWh/m2) models. In the testing phase, LightGBM
(R2 = 0.9377, RMSE = 0.4827 kWh/m2, MAE = 0.3614 kWh/m2) exhibited comparable predic-
tion performance with SVR (R2 = 0.9370, RMSE = 0.4855 kWh/m2, MAE = 0.3639 kWh/m2),
and outperformed the MLP (R2 = 0.9294, RMSE = 0.5140 kWh/m2, MAE = 0.3924 kWh/m2)
and MLR (R2 = 0.9208 RMSE = 0.5443 kWh/m2, MAE = 0.4023 kWh/m2) models.

Table 2. Optimal hyperparameters of SVR, MLP, and LightGBM models.

Models Range of Hyperparameters Optimal Value

SVR C = 1–100
epsilon = 0.0001–10

C = 1.66
epsilon = 0.03

MLP
hidden_layer_sizes = 2–50

activation = relu,tanh,logistic
solver = adam,lbfgs,sgd

hidden_layer_sizes = 38
activation = tanh

solver = lbfgs

LightGBM
num_leaves = 60–70

learning_rate = 0.0001–0.5
max_depth = 8–29

num_leaves = 65
learning_rate = 0.039

max_depth = 12

Table 3. Statistical indicators for SVR, MLP, MLR, and LightGBM models.

Models
R2 RMSE (kWh/m2) MAE (kWh/m2)

Training Test Training Test Training Test

SVR 0.9567 0.9370 0.4089 0.4855 0.2697 0.3639

MLP 0.9772 0.9294 0.2968 0.5140 0.2208 0.3924

MLR 0.9275 0.9208 0.5290 0.5443 0.3955 0.4023

LightGBM 0.9871 0.9377 0.2229 0.4827 0.1638 0.3614

Figure 5 presents the scatter plots of the predicted daily global solar radiation values
using the three ML models against the measured values during training and testing phases.
As shown in this figure, the plotted data points in the training stage are generally located
near the 1:1 line for MLP and LightGBM algorithms, while they are more scattered in the
case of MLR. In the testing stage, the four techniques yielded more scattered estimates,
particularly the MLR model.

Since LightGBM was the most accurate model, the analysis with PFI and SHAP
approaches was restricted to this algorithm. Based on the results of these two techniques, a
re-examination of the LightGBM model’s features was conducted to enhance its predictive
performance.

3.2. Feature Importance Using PFI

In this section, we used the PFI technique to determine the importance of each feature
for H estimation, and to identify the most effective of them. Figure 6 represents the PFI
scores of the seven investigated predictors. Among all features, H0 and SF were the most
important, with PFI scores of 4 and 2.39, respectively. These two variables are widely
used in solar modeling, since H0 and N0 are deterministic parameters calculated using
sun geometry equations, and sunshine duration data are available in most meteorological
stations worldwide [65]. Traditionally, these two quantities represented the components of
the linear or nonlinear Angström–Prescott models, where SF is used as an independent
variable, and H0 is part of the clearness index ratio [66]. The next three relevant parameters
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RH, T, and P had low PFI scores with values of 0.046, 0.019 and 0.01, respectively. The
remaining attributes had insignificant PFI scores.
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3.3. Local and Global Explanations Using SHAP

The PFI method offers global explanations by identifying the most important attributes.
In contrast, the SHAP method can provide both local and global explanations. SHAP
explains the outcomes of individual observations, quantifies the relative importance of
features, and elucidates their influence on model prediction. Figure 7 shows the explanation
generated by the SHAP method for an instance chosen randomly from the testing dataset.
The base value (5.097) represents the mean model prediction over the testing dataset.
Predictors that move the estimation higher than the base value (to the right) are in red, while
those moving it lower are in blue. Table 4 shows the feature values for this observation, as
well as the contribution of features to the LightGBM model’s output value of 7.20.
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Table 4. Optimal hyperparameters of SVR and LightGBM models.

Features Values Contribution

H0 (kWh/m2) 11.53 2.02

SF 0.7 0.05

RH (%) 63.33 0.04

T (°C) 20.5 0.12

P (hPa) 947.66 −0.09

Pr (mm) 1.5 −0.07

v (m/s) 5.33 0.03

It can be seen from Figure 8 and Table 4 that H0 demonstrated the highest contribution,
whereas v showed the lowest one. Moreover, H0, SF, RH, T, and v pushed the prediction to
the right with values of 2.02, 0.05, 0.04, 0.12, and 0.03 respectively. On the other side, P and
Pr pushed the prediction to the left by −0.09 and −0.07, respectively. As a result, the
estimated output value was given as follows:

5.97 + 2.02 + 0.05 + 0.04 + 0.12− 0.09− 0.07 + 0.03 ≈ 7.20 (12)
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To generate a global interpretation of the LightGBM predictions, the local interpreta-
tions were aggregated by averaging the absolute Shapley values per attribute across the
data. Figure 8 represents the SHAP feature importance plot which shows the global effect
of each feature on H estimation. The SHAP method confirmed that H0 and SF are the most
important features, and that v is the least effective feature. This method also confirmed the
order of importance of the five features H0, SF, RH, Pr, and v. However, it reversed the
order of P and T.

We used the SHAP summary plot (Figure 9) to determine the magnitude and direction
of each attribute’s impact at global and local scales. This plot contains many points, where
the y-axis indicates the feature names in decreasing order of relevance, and the x-axis
indicates the SHAP values for each input predictor. Red points correspond to higher values
of the feature, while blue points to lower ones.
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We can observe from this plot that H0 and SF showed a high positive association
with H estimation. This is consistent with the scientific knowledge and the results of
Section 2.2.1, which indicate the existence of a direct correlation between these two quanti-
ties and H: the solar radiation reaching the ground is the fraction of H0 that is transmitted
through the atmosphere, and SF is an indirect index of the sky’s state, where higher values
of SF correspond to clear days and lower values correspond to overcast days [65]. This
figure also revealed that the highest values of H0 had the maximum positive impact on
H prediction. On the other hand, the lowest values of SF had the highest negative impact.

RH was inversely related to H prediction for the majority of examples, with higher
values of this feature leading to lower SHAP values and vice versa. P and T had comparable
influences on H estimation, and exhibited a mixed pattern, where different values of these
attributes are associated with both high and low impacts on the predictions. Insignificant
positive SHAP values were recorded for low values of Pr, and a small negative impact on
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H prediction was produced when Pr increased. The wind speed was the least relevant
feature, with no significant effect on H prediction.

3.4. Feature Dependency Analysis

To get more insight into the LightGBM’s behavior when predicting H, we used the
SHAP partial dependence plots for the seven predictor variables (Figure 10). Each plot
illustrates how the values of a feature (x-axis) affect the prediction (y-axis) of each instance
in the dataset [67]. The plots also include another feature that the selected variable interacts
most with.
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We can see from this figure that H0 had the highest interaction with all other fea-
tures, with the exception of P which interacted strongly with RH. We can also see from
Figure 10a,b the existence of a positive trend between the features H0 and SF, and H es-
timation. These two features had the highest interaction between them, and generated a
positive impact on H prediction when H0 > 8.34 kWh/m2 or SF > 0.64, and vice versa. The
feature interaction caused the spread of SHAP values for these attributes where a larger
negative influence was produced when H0 or SF was smaller, whereas the other predictor
was larger, and a high positive impact was generated when these two features varied in
the same direction.

Figure 10c depicts the relationship between SHAP values and relative humidity.
According to this figure, SHAP values were generally positive when RH < 57%, and
became completely negative when RH exceeded 65.4%, with the maximum negative
impact observed when RH is in the range 70–80% and H0 > 8 kWh/m2.

The influences of P and T on LightGBM predictions are shown in Figure 10d,e. As can
be seen from these figures, no obvious relationship exists between P and T and the SHAP
values. On the other hand, when P < 943 hPa or 951 hPa < P < 957.2 hPa, a purely positive
impact on H estimation was produced, while a purely negative influence was generated
when P > 961 hPa. The average temperature had a purely positive impact on global solar
radiation estimation when 13.4 ◦C < T < 19.8 °C, and a mixed impact for the other values.

Figure 10f indicates that, for low values of precipitation (Pr ≈ 0), a small positive
effect on global solar radiation estimation was produced; this effect peaked at medium
values of H0. When Pr was above zero, the effect became negative.

Figure 10g shows that wind speed engendered a minor purely negative impact on H
estimation when v < 2.33 m/s or v > 6.7 m/s. In contrast, a minor purely positive influence
was recorded when 3.2 m/s < v < 4.9 m/s or 5.2 m/s < v < 6.4 m/s.

3.5. Feature Re-Examination of LigtGBM

The two techniques, PFI and SHAP, showed that the input variables had different
impacts on H estimation, and that some of them were redundant. Besides, the SHAP
method quantified the interaction between the features. To assess the effectiveness of
these two explanation techniques, we compared the LightGBM model with all inputs to
seven LightGBM models using the top three most relevant features. Table 5 shows the
obtained results during the testing phase. According to this table, H0 was the best single
input, followed by SF, and then RH. This ranking agrees with the results obtained by PFI
and SHAP methods. The model integrating H0 and SF as predictors showed close results
(R2 = 0.9336, RMSE = 0.4984 kWh/m2, MAE = 0.3700 kWh/m2) to the model with complete
features, and performed significantly better than both models combining the two features
(H0, RH) or (SF, RH). These results confirmed that H0 and SF are the most interactive and
the most important for H estimation. The model associating H0, SF, and RH (R2 = 0.9382,
RMSE = 0.4806 kWh/m2, MAE = 0.3602 kWh/m2) slightly outperformed the model with
all variables. This model achieved a reasonable prediction accuracy compared to the results
reported in the literature (Table 1). For instance, the performances are comparable or
better than those obtained in [21,22,24–26]. On the other hand, they are worse than those
reported in [23,27].

These findings proved the benefits of the interpretation techniques, particularly the
SHAP method, for understanding the inner working of ML models and boosting their
predictive capability. Nonetheless, some limitations to our study should be acknowledged,
such as the small sample size of the dataset, and its restriction to one geographical location.
Thus, further research should be conducted using more data collected over different locations.
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Table 5. Statistical results for eight LightGBM models during the testing phase (bold represents
best results).

Input Variables R2 RMSE (kWh/m2) MAE (kWh/m2)

H0 0.5086 1.3559 1.0360

SF 0.4581 1.4238 1.1379

RH 0.3478 1.5620 1.2905

H0, SF 0.9336 0.4984 0.3700

H0, RH 0.6926 1.0724 0.8306

SF, RH 0.5602 1.2828 1.0230

H0, SF, RH 0.9382 0.4806 0.3602

All 0.9377 0.4827 0.3614

4. Conclusions

In this paper, we started by comparing four ML models for predicting global solar
radiation in Fez, Morocco. The results revealed that the LightGBM had comparable per-
formances with SVR, and outperformed the MLP and MLR models. The LightGBM’s
predictions were then explained by two model-agnostic interpretation techniques. Both the
PFI and SHAP methods showed that H0 and SF are the most important features for esti-
mating global solar radiation. Moreover, the SHAP model was able to highlight the effect
of each attribute on H estimation, and to provide local explanations. The predictive ability
of the LightGBM model was further slightly improved by feature re-examination based on
the results of the two explanation techniques. The findings of this paper proved the utility
of using interpretation strategies to explain and enhance the predictive performance of
ML models. Additional assessment is required on the applicability of these interpretation
approaches to explain the estimations of other predictive ML models, as well as the use
of other interpretation strategies, such as local interpretable model-agnostic explanations
(LIME), accumulated local effects (ALE), and partial dependence plots (PDP).
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