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Abstract: Due to the rapid changes in the energy situation on a global scale, the amount of RES
installed using clean renewable energy sources such as Photovoltaic (PV) and Wind-power Generators
(WGs) is rapidly increasing. As a result, there has been a great deal of research aimed at promoting
the adoption of renewable energy. Research on Demand-side Management (DSM) has also been
important in promoting the adoption of RES. However, the massive introduction of PV has changed
the shape of the demand curve for electricity, which significantly impacts the operational planning
of thermal generators. Therefore, this paper proposes an Advanced Direct Load Control (ADLC)
model to temporarily shutdown the electric connection between the power grid and Smart Houses
(SHs). The most important feature of the proposed model is that it temporarily shuts down the
electric connection with the power grid. The shutdown is performed twice to increase the load
demand during daytime hours and reduce the peak load during night-time hours. The proposed
model also promotes the self-consumption of the generated power during the shutdown period,
which is expected to reduce the operating cost. This paper considers six case studies for SH, and the
operational costs and carbon dioxide emissions are compared and discussed. The results show that
the SH with ADLC successfully reduces the operating costs and carbon dioxide emissions.

Keywords: smart house; renewable energy; heat pump; advanced direct load control

1. Introduction

There has been growing interest in global environmental issues such as global warm-
ing and the depletion of fossil fuels in recent years. In response, the Japanese government
has announced its Basic Energy Plan, aiming to reduce carbon dioxide emissions by 46%
or more and increase the ratio of zero-emission power sources from 16% in 2016 to 57%
to 61% in 2030. However, due to the effects of the East Japan Earthquake in 2010, nuclear
power, one of the zero-emission power sources, is not fully functioning. Therefore, the
introduction of Renewable Energy Sources (RES) using clean natural energy such as Pho-
tovoltaic (PV) and Wind-power Generators (WGs) is rapidly increasing as an alternative
energy source to nuclear power [1]. As a result, many studies have been conducted to
promote the introduction of renewable energy sources [2,3]. Therefore, further promotion
of the introduction of RES is expected in the future. In particular, the Feed-in Tariff (FIT)
system that has been in place since 2012 has increased the amount of PV installed, and it
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is expected to spread to households as well, promoting its introduction as a distributed
power source for local production for local consumption.

A Smart House (SH) has been proposed as a demand-side measure for environmental
protection. PV and Heat Pump (HP) water heaters are mainly installed in the SH [4], and
the operating cost (electricity price) in the house can be reduced by applying the Time-
of-Use (ToU) price provided by the electric power company [5,6]. In this case, the smart
house is self-sufficient in energy using PV and supplies the generated power to the loads in
the home. In addition, it is also possible to sell the generated surplus power to the power
company. This reduces the amount of electricity purchased from the power company on
the demand side, and on days with high solar radiation, it is possible to earn revenue from
the power sold. Since the East Japan Earthquake mentioned above, energy supply in times
of disaster has become an issue, and the introduction of storage batteries into SHs has been
proposed. At present, the introduction of storage batteries in the household sector has not
progressed due to their high initial cost, but the price is expected to decrease in the future.
In addition, for HPs that use electricity for hot water supply, operating costs can be reduced
by starting the system during night-time hours when electricity rates are low. As described
above, an SH has various advantages and can bring benefits (lower operating costs) to the
consumer side. In addition, it is expected to reduce carbon dioxide emissions by promoting
the introduction of RES and reducing the amount of purchased electricity, which could
benefit the power system operator as well; thus, creating a win–win relationship.

Renewable energy, especially PV, which is currently being introduced in increasing
quantities, is changing the shape of the demand curve for electricity, which has a significant
impact on the operational planning of thermal generators [7,8]. This phenomenon is called
the duck curve, and it results in a significant difference between the peak and off-peak
demand periods, which reduces the operational efficiency of thermal generators. As a
result, the PV output must be curtailed and its capacity cannot be utilized to the fullest. In
addition, the introduction of new renewable energies is going to stagnate and the expansion
of their introduction might not be realized, and the goals mentioned above would not be
reached. As a countermeasure to these problems, load control is well known, in which peak
loads are shifted to times when PV output becomes large, and Demand Response (DR) is
used to control power consumption by consumers. Load control can be roughly classified
into indirect load control and direct load control. In indirect control, consumers control
their electricity consumption by providing incentive information such as electricity rates
and demand curves from power companies. On the other hand, direct control involves the
direct remote control of devices in the home by the power company. This makes it possible
to shift the peak load and increase it when the PV output is at maximum. In addition to
peak shifting, Demand-side Management (DSM) such as these can also reduce electricity
costs by providing superior appliance control. Therefore, DSM is fundamental research in
terms of the cost for power system operators and consumers [9].

For indirect load control, as described above, the power companies use these load
controls to reduce peak loads by setting prices for each time period to gain an advantage
in power system operation. In this case, customers can reduce the operating cost of
the smart house by operating home appliances according to the price setting. In recent
years, electricity meters with communication functions such as smart meters have become
widespread, and Real-time Pricing (RTP) using these meters has been introduced. This is
expected to reduce household electricity bills and improve energy consumption profiles
effectively [10,11]. However, when the utility company controls the load indirectly as in
these cases, there is uncertainty that the effect depends on the electricity consumption
behavior of the customer [12,13]. Customers’ consumption behavior patterns change
depending on their daily lives, seasons, and other factors. Therefore, it is necessary to
operate the system in such a way that it can cope with the uncertainty.

On the other hand, direct load control allows the power system operator to control
the appliances and adjust the load to achieve a highly efficient generator operation. This
is expected to be more effective than indirect control and is considered to be an effective
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method. However, it may be stressful for customers to have their home appliances operated
by a power company. Various factors form customers’ lifestyles, and the operation of
appliances that do not match their lifestyles is detrimental to their comfort. In contrast
to previous studies, Ref. [14] proposes a DLC model that takes into account the thermal
inertial dynamics model to ensure the thermal comfort of customers. In [15], a residential
load scheduling algorithm based on consumer’s preferences is developed. In [16], the
influence in comfort and uncertainty is expressed as a risk index, which is incorporated
into the objective function to solve the optimization problem and guarantee the benefit
to the consumer. The authors of Ref. [17] present an optimization method for scheduling
home appliances that are expected to reduce the cost of operation and generation and, in
doing so, shift the peak load without causing any discomfort. Thus, in the future, it will be
essential to study how to avoid damaging the customer’s lifestyle, and these factors must
be taken into account, but this DSM cannot wholly take comfort into account.

This paper proposes an Advanced Direct Load Control (ADLC) model that temporarily
shuts down the electric connection between the power grid and the smart house. The ADLC
model does not shift the peak load as in the DLC; thus, allowing customers to operate
their home appliances freely, which is “ideal” for customers and does not compromise
their comfort. In addition, ADLC promotes the self-consumption of PV surplus power,
which will not flow into the power grid; thus, improving the problems on the power grid
side. In addition, during the shutdown period, self-consumption is expected to reduce
the amount of electricity purchased by consumers, thereby decreasing the operating cost.
At the same time, the carbon dioxide emission per SH is also reduced, which provides
environmental benefits. In this paper, we calculate the operating costs and carbon dioxide
emissions and discuss the impact of ADLC, aiming to create benefits for both consumers
and power system operators.

The rest of this paper is organized as follows: In Section 2, we describe the proposed
ADLC model. In Section 3, we present the SH model assumed in this paper. In Section 4,
we present the objective function for operational cost minimization and the constraints
considered in the optimization. In Section 5, we present the simulation conditions that we
set up. In Section 6, the simulation results are presented and discussed. Section 7 concludes
the paper.

2. Advanced Direct Load Control (ADLC)

Among the RES, the mass deployment of PV, in particular, mitigates global warming,
but there are also disadvantages. As mentioned above, one of the issues on the power
grid side is the duck curve. The duck curve is feared to cause a variety of problems from
both economic and environmental perspectives, and RES output curtailment would also be
necessary [18–20]. This has made it challenging to introduce new renewable energy sources.
In order to address these issues, ADLC proposed in this paper is applied to smart houses.

The most important feature of the ADLC model is that the electric connection with the
power grid is temporarily interrupted twice: during the daytime when the PV output is
high and during the night time when the peak load is high. During the daytime shutdown
period, the load demand of households is covered by the PV output, and if surplus power
is generated, it is charged into storage batteries to promote private consumption. In
this way, the power generated by PV does not flow into the power system during the
daytime hours, and the power system as a whole can be given the same effect as PV output
suppression. Therefore, the load demand of the entire power system during daytime hours
would increase.

During the night-time shutdown period, the smart house is operated using the energy
in the storage batteries charged with the surplus PV output during the daytime. This elimi-
nates the need to purchase power from the power grid during the night-time shutdown
period; thus, reducing the peak load at night for the power grid as a whole. In addition,
since the smart house is operated only with the energy in the storage batteries during
the night-time shutdown, the utilization rate of the storage batteries is also expected to
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improve. These merits mainly affect the power grid operation side and benefit the customer
side, since the self-consumption of PV-generated electricity contributes to the reduction in
the amount of purchased electricity and reduces the operation cost. Since the ADLC model
reduces carbon dioxide emissions on a per-household basis, customers can participate in
environmental conservation without adopting a “special” lifestyle.

In Section 1, we discussed the uncertainty of electricity consumption behavior on
the customer side and the customer’s comfort. When indirect control is applied to a
smart house, the customer’s consumption behavior affects the effect, and sufficient load
shifting may not be realized. In the case of applying direct control to a smart house,
the electric power company operates the home appliances installed in the smart house,
and the customer must adjust their lifestyle to match the operation of the electric power
company, which greatly impairs the comfort of the customer. In contrast, the ADLC model
proposed in this paper shuts down the electric connection between the power system
and the smart house; thus, modifying the load more reliably than indirect control. In
addition, compared to direct control, the operation of home appliances can be tailored
to the customer’s preferences and, thus, comfort can be taken into account. At this time,
worsening weather conditions or a disaster such as a typhoon would make it difficult to
apply ADLC to the operation method. Therefore, it is assumed that ADLC can stop the
shutdown upon the request of the consumer. Since typhoons and other natural phenomena
are predictable, it is easy for consumers to obtain information about them through weather
forecasts. In this way, ALDC is an operational method that can fully satisfy the demands
of consumers.

3. Smart House Model

The smart house model assumed in this study is shown in Figure 1. The smart house is
equipped with PV, HP, and stationary storage batteries. The connection point tidal current
is the power tidal current supplied to the smart house from the power system in Figure 1.
In this study, the HP and the stationary storage battery in the smart house were controllable
loads, and the start-up and shutdown times of the HP and the charging and discharging
power of the stationary storage battery were determined by an optimization problem that
minimized the operation cost of the smart house. The capacity of the storage battery for
stationary use was set to 5 kW/13.5 kWh, and the HP water heater had a storage tank
capacity of 370 L, a rated heating capacity of 1 kW/4 kW, and a COP value of 4.0. The total
amount of electricity consumed in the SH (for a total of 24 h) was 15.4362 kWh, which was
satisfied by the purchase of electricity, PV output, and battery discharge.

Infinite bus

PI(t)

Battery

PPV(t)

PB(t) PHP(t)

Load

PL(t)
Bus

Electric

Smart 
Meter

Communication

Electricity 
general utility

HEMS

PV

Storage 
Tank

City water

HP

Figure 1. Smart house model.
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The parameters of the PV system covered in this paper were: conversion efficiency
ηPV = 14.4%, number of panels nPV = 18, area per panel SPV = 1.3 m2, and rated output
Pn = 3.5 kW. The generated power PPV (kW) of the PV obtained from the solar radiation
was calculated from the following equation. Note that the simulations in this paper were
conducted for Okinawa, Japan, and the solar radiation data for Okinawa were used for
the simulations.

PPV = ηPVnPVSPV IPV(1− 0.005(TCR − 25)) (1)

where IPV (kW/m2) is the solar radiation and TCR (◦C) is the outdoor air temperature.

4. Formulation of Optimization Problem

In Figure 1, PI(t), PL(t), PPV(t), PB(t), and PHP(t) indicate the power flow at the con-
nection point of the smart house at each time t, the power consumption of all loads except
the controllable load, the output of solar power generation, the charging/discharging
power of storage batteries, and the power consumption of HP. The following equation
was established from the relationship between the supply and demand balance in the
smart house.

PL(t)− PPV(t)− PB(t) + PHP(t) = PI(t) (2)

4.1. Objective Function

The objective function was to minimize the total daily operating cost of the smart
house. The objective function was shown below.

Min : Costday =
24

∑
t=1

(CostP(t)− CostS(t)) (3)

where Costday is the daily operating cost of the smart house, CostP(t) is the amount of
electricity purchased, CostS(t) is the amount of electricity sold, and t is the time.

4.2. Constraints

(a) Power flow variation constraint:

|PI(t)− PI(t− 1)| < PFB (4)

where PI(t−1) is the power flow at the point of connection one time step ago and PFB
is the maximum fluctuation of the power flow at the point of connection (300 W).

(b) Storage battery charging/discharging power constraint:

|PB(t)| < Pmax
B (5)

where PB(t) is the charging/discharging power of the stationary storage battery and
Pmax

B is the maximum charging/discharging power of the stationary storage battery.
The positive direction of the current in the storage battery implies discharge.

(c) State of charge (SOC) constraint on storage batteries:

Cmin
B < CB(t) < Cmax

B (6)

where CB(t) is the SOC of the storage battery, Cmin
B is the minimum storage battery

capacity (20%), and Cmax
B is the maximum storage battery capacity (90%).

(d) SOC constraint on storage batteries at the end of the day:

0.5Cmax
B < CB(t = 24) < 0.7Cmax

B (7)
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In this paper, to shorten the simulation time, the weather classification introduced
in Section 5.2 was performed and the operating cost for one month was calculated.
Therefore, it was necessary to reconcile the charge rate of the storage battery because
the operation for one year was not continuously simulated. Therefore, the problem
was solved by setting the constraint conditions as described above.

(e) Shutdown constraint:

Pshutdown
L − Pshutdown

PV − Pshutdown
B + Pshutdown

HP = 0 (8)

where Pshutdown
L is the load power consumption other than controllable load during

the shutdown period, Pshutdown
PV is the PV power output during the shutdown period,

and Pshutdown
B is the storage battery charge/discharge power during the shutdown

period. Since it was necessary to avoid power flow during the shutdown period,
the power consumption in the smart house was satisfied by the PV output and the
discharge of the storage battery. In addition, when surplus power was generated, the
difference between the load of the smart house and the PV output was eliminated by
charging the storage batteries.

(f) Constraints on the time of the shutdown period:

TF1 − TS1 ≤ Tmax (9)

TF2 − TS2 ≤ Tmax (10)

TS2 − TF1 ≥ Tinterval (11)

where TS1 indicates the first shutdown start time, TF1 indicates the first shutdown end
time, TS2 indicates the second shutdown start time, TF2 indicates the second shutdown
end time, Tmax indicates the maximum shutdown time, and Tinterval indicates the
minimum shutdown interval.

5. Operating Conditions

In this paper, we determined the optimal operation method for controllable loads in a
smart house by applying ADLC. Six case studies were considered, and the operational cost
and carbon dioxide emissions of each were calculated. A summary of the case studies is
given in Table 1. The simulations in this paper were performed using MATLAB R2020b on
a PC with Intel Core i9-10980XE and 64GB of RAM. In the research of DSM, three methods
were mainly employed to optimize the scheduling of controllable loads: mathematical
programming, a heuristic approach, and meta-heuristic approach [21]. In this paper, Tabu
Search (TS), a meta-heuristic solution method, was employed to solve the optimization
problem. Genetic Algorithm (GA) is another well-known method [22]. TS was adopted in
this paper because of its advantages such as having a relatively short computation time
compared to other methods. The procedure for solving TS is represented in Figure 2. First,
for any solution x1, it searched for multiple neighboring solutions, selected a good solution
x2 from among them, and moved from x1 to x2. Then, it searched for the neighboring
solutions again. In this way, the optimal solution was found by repeatedly searching for
solutions. One of the biggest problems with meta-heuristic solutions is that they fall into
local optimum solutions. In TS, we set up a tab list to avoid this problem. The “tab-list”
was a list that stored the solutions we had moved so far, and we avoided the risk by
searching for solutions while referring to the tab list. In this paper, a limit was placed on
the storage memory of the tabular list, which was updated in order of the oldest solution.
The parameters set for applying TS are shown in Table 2.
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Table 1. Case studies.

Case ADLC Electricity Sales Price (JPY/kWh) SH Model

Case 1 w/o 19.0

TraditionalCase 2 w/ 19.0
Case 3 w/o 7.7
Case 4 w/ 7.7

Case 5 w/o - Self-consumptionCase 6 w/ -

Figure 2. Flow chart of Tabu Search.

Table 2. Parameters set in TS.

Parameters Set Value

Number of searches 2000
Storage capacity of tab list 500

5.1. Hot Water Demand

Hot water use is one of the important factors in consumer consumption behavior. In
this paper, we assumed that the SH model used hot water twice a day, once in the morning
and once in the evening, and the water used in the SH was managed in a tank attached to
the HP water heater and supplied to the SH. When the water temperature in the tank was
lower than the target temperature, the HP was activated to heat the water. The parameters
for hot water use are summarized in Table 3.

Table 3. Parameters for hot water usage.

Parameters The Morning The Evening

Use time 7:00∼8:00 20:00∼23:00
Supply completion time 7:00 20:00

Target temperature 50 ◦C 60 ◦C
Amount used 30 L 150 L

5.2. Weather Classification

In this paper, to reduce the simulation time, we classified the weather conditions and
performed simulations for each weather condition to calculate the operational cost. First,
we simulated one day in each weather condition (sunny, cloudy, and rainy). Next, the
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percentage of sunny, cloudy, and rainy days in the target month was calculated based on
the maximum solar radiation for each month. We defined a sunny day as one that was
60% or more of the maximum solar radiation in the target month, a cloudy day as one that
was 30% or closer to 60%, and a rainy day as one that was less than 30%. This definition
determined the number of days in each weather condition and the simulation for each
weather condition was used to calculate the monthly operating cost.

The power consumption other than the controllable load assumed in this paper and
the PV power output in each weather condition are shown in Figure 3. The simulations
were conducted for each month from January to December, and the simulation results for
October were shown as a representative.
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Figure 3. Load in SH and PV output (Oct.). (a) Power consumption; (b) PV output power on sunny
day; (c) PV output power on cloudy day; (d) PV output power on rainy day.

5.3. Application of ADLC

ADLC was applied to the SH according to the following rules. An example of ADLC
application is shown in Figure 4.

• The shutdown would be performed twice a year, once during the day when PV output
was high and once at night when peak load occurred.

• The shutdown time per time shall be 2 h (6 time steps).
• The interval between the first and second shutdown periods must be at least 2 h.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

0

0.5

1

1.5

L
o
ad

 [
k
W

]

shutdown period 1

shutdown period 2

Over2 hours
(Max 2 hours)

(Max 2 hours)

Figure 4. Example of ADLC application.

6. Simulation Results
6.1. Operation of SH

In this paper, we set the ToU price where the electricity price was set for each time
period. The FIT price for electricity sales was the unit price set by the Japanese government.
The unit price table is shown in Table 4 [23]. The simulation results for sunny, cloudy, and
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rainy days are shown in Figures 5–7. Figures 5a–7a show the operating/stopping status
of the HP. On sunny days, the HP was operated using inexpensive late-night electricity
and PV output, so it was operated during the late-night hours and the hours of high solar
radiation from morning to daytime. In rainy and cloudy weather, when solar radiation
was low, a part of the increased power consumption due to the HP operating was covered
by the PV output, and the rest was operated by discharging the storage batteries and
purchasing power.

Table 4. Electricity rate.

Type of Service Type of Service Unit Unit Charge (JPY)

Basic Charge — — 1620.00

Energy Charge
Daytime

Summer

1 kWh

38.65

Others 35.23

Living Time 26.71

Night Time 10.97

Sales price
FIT price 19.00

Non-FIT price 7.70
Daytime : 10:00∼17:00; Living time : 7:00∼10:00/17:00∼23:00; Night time : 23:00∼7:00.
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Figure 5. Simulation results on sunny day (Oct.). (a) Power consumption of HP; (b) purchased and
sold power; (c) SOC for storage battery; (d) operation of SH.

The purchased and sold power in each weather condition is shown in Figures 5b–7b,
where it can be confirmed that no power was sold because all the power generated by PV
was consumed by itself. In this paper, the first shutdown time was from 12:00 to 14:00 when
the PV output was large, and the second shutdown time was from 18:20 to 20:20 when
the peak load occurred. It can be confirmed that the amount of electricity purchased was
zero during the night-time shutdown period. After that, the energy in the storage batteries
contributed to reducing purchasing power from evening to night time. In addition, during
sunny and cloudy days, the amount of purchased electricity was reduced through the
self-consumption of PV-generated electricity.

The behavior of the storage battery as a controllable load is shown in Figures 5c–7c.
During sunny and cloudy weather, the energy in the storage batteries increased during the
daytime hours when electricity was purchased or the amount of solar radiation was high,
and the amount of energy decreased from evening to night time. Furthermore, during the
second shutdown period, the energy in the storage batteries was used to cover the load
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power consumption of the smart house, and it can be confirmed that the stored energy
decreased. It can be confirmed that the storage batteries were being recharged using
inexpensive night-time electricity and discharged starting in the evening hours, as the PV
system generated little power during rainy weather.

The output and purchased power of each facility during a day’s operation of the
smart house is shown in Figures 5d–7d. As mentioned above, the shutdown periods were
implemented from 12:00 to 14:00 and from 18:20 to 20:20. In the daytime shutdown period,
it could be confirmed that the load power consumption generated by the SH was satisfied
by the PV output. During the night-time shutdown, the smart house was operated by
discharging the energy charged by the surplus electricity generated by the PV during the
daytime or using inexpensive night-time electricity [24–26].
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Figure 6. Simulation results on cloudy day (Oct.). (a) Power consumption of HP; (b) purchased and
sold power; (c) SOC for storage battery; (d) operation of SH.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

0

0.5

1

1.5

P
o

w
er

 c
o

m
su

m
p

ti
o

n
 [

k
W

]

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

0

1

2

3

4

P
u

rc
h

as
e 

an
d

 s
el

l 
p

o
w

er
 [

k
W

]

Purchase
Sell

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

0

20

40

60

80

100

S
ta

te
 o

f 
ch

ar
g

e 
[%

]

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time [hour]

-3

-2

-1

0

1

2

3

4

O
u

tp
u

t 
[k

W
]

Shutdown period
PV Battery Purchase

Load

(d)

Figure 7. Simulation results on rainy day (Oct.). (a) Power consumption of HP; (b) purchased and
sold power; (c) SOC for storage battery; (d) operation of SH.

6.2. Operational Results of Other Case Studies

Section 6.1 referred to the operational results of the SH in Case 6. In this section, we
discuss the results of the other case studies. Figure 8 shows the results of the SH operation
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in Case 1 to Case 5. In Case 1 and Case 2, where the FIT price was adopted as the power
sale price, the basic operation policy was to sell most of the PV surplus power. As can
be seen from Equation (3), the income of the consumer from the sale of electricity was a
variable that influenced the objective function, and in Cases 1 and 2, the large income from
the sale of electricity at the FIT price led to the operation method shown in the figure. In
Case 1, the storage batteries were recharged during the late night hours when electricity
rates were low (1:00 to 7:00) and discharged during the night-time hours when PV output
was not available (18:00 to 24:00). However, since ADLC was applied to Case 2, it could
be confirmed that the storage batteries were charged during the shutdown period. As
mentioned earlier, the power tidal current was reduced to zero during the shutdown period,
so surplus power was not sold, but was instead consumed in-house.

Figure 8c,d shows the results of the operation of Case 3 and Case 4. In this case,
it could be confirmed that the percentage of surplus power used to charge the storage
batteries increased because the revenue from power sales was smaller than in Case 1 and
Case 2. As a result, a time when the power tidal current became zero occurred, and it could
be confirmed that PV surplus power was being charged and discharged at night.

Figure 8e shows the operational results in Case 5, which was a self-consumption SH
that used all the generated electricity to operate the loads in the SH, so PI(t) ≥ 0 was
always obtained. Therefore, the amount of electricity purchased would be the minimum
necessary, and the carbon dioxide emissions per SH house would be reduced proportionally.
This was discussed in detail in Section 6.3.
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Figure 8. Operation results on sunny day (Oct.). (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4;
(e) Case 5.

6.3. Comparison and Discussion of Operating Costs and CO2 Emissions

In this paper, an SH was simulated in six case studies, and the operating cost for one
year was calculated from the simulation results of each weather condition in each month.
The operating cost of the smart house in each case study is shown in Table 5. Comparing
Case 1 and 2, it can be confirmed that there was a difference in the purchase price depending
on whether ADLC was applied or not. This was because the application of ADLC reduced
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the amount of purchased electricity by consuming PV-generated electricity in the SH during
the shutdown period. In addition, comparing Case 1 and 5, it can be confirmed that the
amount of purchased electricity was reduced by supplying surplus electricity generated by
PV to the load in the SH instead of selling it. The above simulation results showed that
the application of ADLC to a self-consumption SH reduced the purchase price the most
among all case studies.

In recent years, there has been a need to reduce carbon dioxide emissions in the
household sector due to the growing interest in environmental issues such as global
warming. This paper calculated the carbon dioxide emissions per SH household based
on the purchased electricity for one year. The carbon dioxide emissions in each case are
shown in Table 5. From the simulation results, it can be confirmed that the application of
ADLC reduced carbon dioxide emissions as the purchased electricity was controlled. In
addition, the self-consumption-type SH without power sales reduced the carbon dioxide
emissions compared to the conventional SH (with power sales). Based on these simulation
results, Case 6, which applied ADLC to a self-consumption SH, had the most significant
potential to reduce carbon dioxide emissions. Therefore, it can be confirmed that Case 6
was superior to the other cases regarding environmental friendliness.

Table 5. Operation costs and CO2 emissions in SH.

Case Purchase Sell Operation Cost CO2 Emission
(JPY) (JPY) (JPY) (t-CO2)

Case 1 100,680 85,695 14,985 4.62
Case 2 78,666 77,141 1525 3.98
Case 3 81,289 14,757 66,532 3.69
Case 4 67,444 12,953 54,491 2.84
Case 5 70,131 0 70,131 2.56
Case 6 67,398 0 67,398 2.53

7. Conclusions

This paper proposed an optimal operation method of a controllable load in an SH
with advanced direct load control (ADLC) to minimize the daily operating cost. From the
simulation results, the operating cost for one year was calculated and compared with the
operating cost in an SH for each case study. ToU prices, set according to the time of day
and season, were used to calculate the operational costs. In addition, TS, a meta-heuristic
solution method, was adopted as the solution method of the optimization problem to
minimize the operation cost, and the operation method of the controllable load, storage
battery and HP, were determined. The simulation results showed that it was possible
to reduce purchasing power by supplying the surplus power from PV generation to
the loads in the SH without selling power and consuming all the power in the SH. In
addition, the application of ADLC to the self-consumption SH was found to reduce the
operating cost. In addition, carbon dioxide emissions per SH were reduced by reducing the
amount of purchased electricity. This showed that self-consumption SHs with ADLCs are
environmentally superior; self-consumption in SHs allowed for a more efficient generator
operation since the renewable energy-generated power did not flow into the power system.
This was expected to reduce the operating costs of the generators and benefit the power
supply side as well. Furthermore, electricity consumers would see a decrease in their
electricity bills, which would promote the shift to SHs and contribute to the expansion of
the introduction of renewable energy.

In the future, the integration of electric vehicles (EVs), detailed HP models, and the
uncertainty of PV power generation will be introduced into the simulations. EVs are
expected to bring out more potential than their capacity as vehicles by operating them as
storage batteries in an SH. This will promote the introduction of EVs and further reduce
the progress of global warming. Determining the optimal configuration and capacity of
the equipment to be installed in an SH is an important issue to address in the future. In
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HP, the water is usually divided into two layers in the hot water storage tank at different
temperatures. By constructing a detailed HP model, the required power demand in SH
can be accurately assumed. In addition, the uncertainty of the PV system must be taken
into account because the power generated depends on the weather. This has become an
essential issue in the expansion of renewable energy deployment.
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Abbreviations
The following abbreviations are used in this manuscript:

SH Smart House
HP Heat Pump
ToU Time-of-Use
DR Demand Response
DSM Demand-side Management
RTP Real-time Pricing
SOC State of charge
ADLC Advanced Direct Load Control
Variables in the manuscript:
t Time
shutdown Variables in shutdown period
PPV PV output
ηPV Conversion efficiency
nPV Number of PV panels
SPV Area per PV panel
IPV Solar radiation
TCR Outdoor air temperature
PI Power flow at the connection point
PL Power consumption except the controllable load
PPV PV output
PB Charging/discharging power
PHP Power consumption of HP
Costday Daily operating cost of SH
CostP Electricity purchased
CostS Electricity sold
PFB Maximum fluctuation of the power flow
Pmax

B Maximum charging/discharging power
CB SOC of battery
Cmin

B Minimum storage capacity
Cmax

B Maximum storage capacity
TS1 First shutdown start time
TF1 First shutdown finish time
TS2 Second shutdown start time
TF2 Second shutdown finish time
Tmax Maximum shutdown time
Tinterval Minimum shutdown interval
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