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Abstract: This paper presents an improved Teaching-Learning-Based Optimization (TLBO) for opti-
mal tuning of power system stabilizers (PSSs) and static VAR compensator (SVC)-based controllers.
The original TLBO is characterized by easy implementation and is mainly free of control parameters.
Unfortunately, TLBO may suffer from population diversity losses in some cases, leading to local
optimum and premature convergence. In this study, three approaches are considered for improving
the original TLBO (i) randomness improvement, (ii) three new mutation strategies (iii) hyperchaotic
perturbation strategy. In the first approach, all random numbers in the original TLBO are substituted
by the hyperchaotic map sequence to boost exploration capability. In the second approach, three
mutations are carried out to explore a new promising search space. The obtained solution is further
improved in the third strategy by implementing a new perturbation equation. The proposed HTLBO
was evaluated with 26 test functions. The obtained results show that HTLBO outperforms the TBLO
algorithm and some state-of-the-art algorithms in robustness and accuracy in almost all experiments.
Moreover, the efficacy of the proposed HTLBO is justified by involving it in the power system stability
problem. The results consist of the Integral of Absolute Error (ITAE) and eigenvalue analysis of
electromechanical modes demonstrate the superiority and the potential of the proposed HTLBO
based PSSs and SVC controllers over a wide range of operating conditions. Besides, the advantage of
the proposed coordination design controllers was confirmed by comparing them to PSSs and SVC
tuned individually.

Keywords: power system stability; electromechanical oscillations; PSS; SVC; TLBO; hyperchaotic TLBO

1. Introduction
1.1. Research Background

In several engineering problems, acceptable solutions are generally not reached us-
ing conventional algorithms at a reasonable cost and time. Generally, the problems as
mentioned earlier are multimodal. Recently, several methods have been involved in the
resolution of engineering problems. These techniques are characterized by different ap-
proaches in the process of finding the optimal solutions. Some of these methods imitate the
natural processes and are named metaheuristics. Actually, the latter techniques have shown
concurrent results for handling harsh engineering problems such as power system dispatch
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and stability [1,2], energy commitment problems [3], energy management of micro-grid [4],
and manufacturing industry [5].

1.2. Literature Review

The electromechanical oscillations are observed in the power system following the
unbalance between mechanical and electrical torques at the synchronous generator, caused
by the variation of power system topology or loads. When these oscillations are poorly
damped, the generator rotor shaft and the power transfers are highly affected. Generally,
the electromechanical oscillations can be classified into two types: the inter-area and local
modes, which range between 0.1 and 1 Hz and 1–2 Hz, respectively [6]. The local modes
are recognized as the oscillation of the generation units at one station with respect to the
rest of the power system. The inter-area mode referred to the oscillation of many generation
units in a given area against machines in other parts [7]. The reliability and security of a
power system are highly affected by these oscillations.

Power system operators routinely use the Power System Stabilizer (PSS) to alleviate
the electromechanical oscillations of synchronous machines. Unfortunately, some weakness
is encountered in the damping of inter-area oscillations, and other solutions need to be
involved. FACTS controllers, which are based on power electronics, give more flexibility to
the existing power system [8]. In other words, they can increase power transfer capability,
improve power system stability and controllability. Static Var Compensator (SVC) is the
most installed type of FACTS. Furthermore, other proprieties of the power system can
be improved, such as dynamic control of power flow, steady-state stability limits, and
damping of electromechanical oscillations [9]. SVC acts by introducing to the transmission
network a variable reactive admittance. Both kinds of oscillations are enhanced when
an SVC device is used in conjunction with PSSs. Considering the limitation of other
PSSs structure and the easiness of implementation, lead-lag PSSs is chosen by the power
systems utilities. The efficacy of PSSs is highly related to the fine selection of its parameters.
Conventional approaches generally fail to solve the problem design of PSSs [10].

The problem design of power system controllers parameters is formulated as a non-
differentiable and large-scale nonlinear problem. This optimization problem is harsh
to solve by employing traditional optimization techniques such as sequential quadratic
programming (SQP) techniques due to their high sensitivity to the initial point. Further-
more, these methods require a long time in the convergence process. To overcome the
drawbacks mentioned earlier, intelligent techniques are involved in real-life engineering
problems, including power system stability. Intelligent techniques can be classified into
two types: evolutionary and swarm algorithms. Evolutionary algorithms are inspired
by the natural evolution process. In this class, the most popular algorithm is the Genetic
Algorithm (GA) [11], which is based on the Darwinian theory of the evolution process.
Unfortunately, researchers revealed some deficiencies in GA, especially when the parame-
ters to be optimized are highly correlated. Among evolutionary algorithms that have been
successfully applied in different areas, we cite: Differential Evolution (DE) [12], Genetic
programming [13], Evolution strategy and Biogeography-Based Optimization (BBO) algo-
rithm [14]. The swarm techniques imitate the collective behavior of groups of animals. The
most known swarm optimization algorithm is the Particle Swarm Optimization inspired
by the behavior of bird flocking. PSO was first introduced by Kennedy and Eberhart [15].
Another famous swarm technique is Ant Colony Optimization (ACO) [16] inspired by
the behavior of ants for tracking the shortest path between the source food and the nest.
Several swarm techniques are applied in various domains such as Cuckoo Search (CS)
algorithm [17], Artificial Bee Colony (ABC) algorithm [18], Firefly Algorithm (FA) [19], Bat
Algorithm (BA) [20] and Harmony Search (HS) [21].

Recently, intelligent techniques that mimic human behavior have emerged. Some
of algorithms belonging to this class are: Imperialist Competitive Algorithm (ICA) [22],
Firework Algorithm [23], Seeker Optimization Algorithm (SOA) [24] and Interior Search
Algorithm (ISA) [25]. TLBO [26] is the most popular algorithm inspired by human behavior.
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TLBO Simulates the teaching-learning process in a class. It is based on the influence of
the teacher on their learners. Furthermore, by an interaction between themselves, the
learners can achieve a positive contribution to enhance grades. The strong points of the
TLBO algorithm are easy implementation, small required computational memory, free of
control parameters in all equations that simulate the updating process of output knowledge
of learners. Several researchers have successfully applied the TLBO in real-engineering
problems in various fields. Some weakness is encountered in standard TLBO, especially
when the problems to be optimized revealed an enormous number of local optima. Recently,
several improvements to TLBO have been suggested by researchers. In [27,28], the authors
modify the learning process by using a new mutation strategy to enhance the diversity of
solutions. Then, the improved TLBO was employed to solve non-smooth optimal power
flow. In [29], an elitist TLBO algorithm is introduced to solve the petrochemical industry
planning problem. The dynamic group strategy concept, which consists of improving the
output of a given learner from the mean of their group, was involved in improving the
global search capacity. Bi-phase crossover and local search strategy are used to reach a
perfect balance between exploration and exploitation capabilities in [30]. The updating
equations of TLBO, which simulate the teaching and learning process, are modified using
a scale factor [31]. A modified mutation operator and a new teacher factor alleviate
some drawbacks of the standard TLBO by avoiding premature convergence on a local
optimum. In [32], a group discussion is introduced as a powerful method to increase
the efficiency of standard TLBO by involving a group of leaders. Another approach to
enhance the abilities of the standard TLBO is to boost the learning phase by adding a
self-learning phase [33]. A new hybrid optimization algorithm is developed by combining
the TLBO algorithm and the Artificial bee colony algorithm (ABC) for prediction of the
berm geometry [34]. A multi-objective optimization algorithm developed by integrating
the DE in TLBO obtains the optimal solution of a hydro-thermal scheduling problem.
Multi-objective TLBO is introduced in [35] to overcome the problem of optimal power
flow. The learning knowledge of other students is integrated into TLBO to boost learners’
learning speed and output knowledge. The obtained algorithm is tested on the design
problems of the PID controller and a gear train in addition to 18 test functions.

Several intelligent techniques have been suggested for designing SVC to damp out
electromechanical oscillations and enhance power system dynamic stability. A bee colony
(ABC) algorithm with the sequential quadratic programming (SQP) optimization technique
was employed for the tuning of PSS and SVC-based controllers in [36]. The implementation
of SVC using wavelet neural network to improve power system stability is presented
in [37]. A method for seeking the best-input signals and the optimal location of several
SVC involving a stability index was developed in [38]. The optimal setting of SVC for
voltage stability enhancement was addressed in [39]. In [40] a coordination tuning of PSS
and SVC-based controller employing bacterial swarming optimization (BSO) has been
performed to achieve optimal damping of electromechanical oscillations. The design of
the SVC parameters using a shuffled frog-leaping algorithm to enhance power system
stability was presented in [41]. In [42], the authors have suggested an optimal allocation,
size, and parameters of the SVC using multi-objective PSO. In [43], the researchers have
been involved the bacterial foraging optimization algorithm (BFOA) for achieving the
coordination of SVC and PSS to attain optimal damping performance of power system.

Recently, many researchers have embedded a new mathematical approach named
chaos to replace algorithm-parameters in several optimization algorithms such as ABC
algorithm [44], Chaotic crow search optimization algorithm [45], PSO [46], Jaya [47–50],
Gravitational Search Algorithm (GSA) [51], and TLBO [2]. The chaos approach has non-
repetition and ergodicity properties, which increase the search behavior’s speed and boost
the generated solutions’ diversity. Besides, chaos allows the balance between exploitation
and exploration capabilities. The final solution provided by a given optimization algorithm
can be improved by embedding the chaotic maps [44]. The solution quality of the original
crow search optimization algorithm is enhanced by substituting the random numbers
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by chaotic scheme [45]. The search behavior and the convergence characteristic of the
standard PSO are improved by using chaotic dynamic weight. All the aforementioned
works demonstrate the benefit of a chaotic scheme compared to random numbers.

1.3. Contributions

The contributions of this work can be summarized as follows:

• The original TLBO is improved by considering randomness improvement, new muta-
tion equations, and hyperchaotic perturbation scheme.

• The HTLBO is proposed for solving the power system stability problem.
• The performance of the HTLBO technique is proved by using 26 test functions with

different comparative methods such as FA, PSO, DE, and TLBO.
• The statistical signification of the obtained results is achieved by involving the Fried-

man ranking scheme.

1.4. Structure of the Manuscript

The remainder of this work is introduced as follows: The standard TLBO and the 5D
hyperchaotic map are detailed in Section 2. Section 3 present the proposed hyperchaotic
teaching–learning algorithm. The numerical results were stated in Section 4. The applica-
tion of our approach to solving the power system stability design problem was discussed
in Section 5. The conclusions were drawn in Section 6.

2. Preliminaries

In this part, the fundamental concepts of Teaching-Learning-Based Optimization are
introduced. Furthermore, the basic knowledge of the hyperchaotic 5-D map is defined
as well.

2.1. TLBO

TLBO is a population-based optimization that imitates the teaching and learning pro-
cess. It was devised by Rao et al. and can be summarized in the teacher and learner phases.
In the first phase, the teacher transmits their expertise to all students, whereas in the learner
phase, students interact with their fellow to improve their knowledge. Under TLBO, the
population is simulated by a class or a group of learners. In optimization algorithms, a
design variable is associated with each individual in the population. Further details of
TLBO can be found in [26,52]. More information on the TLBO phases is provided next part.
Theoretically, in the teacher phase, a good teacher aims to transfer all their knowledge
to each learner in the class. However, in practice, it cannot be reached due to the lim-
ited student’s capabilities, and as a consequence, only the mean knowledge of the class
can be improved. The ith learners with d-dimensional variables can be defined as:
Si = [si1, si2, ..., sid]. The average of students grades can be represented by : Smean =

1
NL [∑

NL
i=1 si1, ∑NL

i=1 si2, ..., ∑NL
i=1 sid] where NL is the number of students. It is noteworthy that

the minimum fitness criterion was adopted to choose the teacher among all learners. The
teaching process can be described as follows:

Snew = Si + rand(Steacher − αSmean), (1)

where rand is a random number, α is the teaching factor given by the following expression
: α = round(1 + rand). If the objective function of the new solution is lesser than the old
one, it will be accepted. Contrarily, the new solution will be rejected.

Learners improve their knowledge through the teacher as well as by the interaction
between themselves. The interaction process is performed by randomly selecting two
different learners Sj and Sk. The new learners is accepted in the population if he/she
has the lesser objective function (2) and (3). If the previous condition is not satisfied, the
population of students is kept unchanged. The new population of students is updated
as follows:
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If Obj(Sj) < Obj(Sk)
Sj,new = Sj,old + randj(Sj − Sk) (2)

Else
Sj,new = Sj,old + randj(Sk − Sj) (3)

2.2. The 5D Hyperchaotic System

In [53], a new five-dimensional (5D) hyperchaotic system is presented. It is derived
from the 3D-modified generalized Lorenz system, and it can display complex dynamical
behaviors such as period, chaos, and hyperchaos. The dynamics of such a 5D can be
mathematically expressed as: 

ẋ = a(y− x),
ẏ = cx + dy− xz + w,
ż = −bz + x2,
u̇ = ey + f u,
ẇ = −rx− kw,

(4)

where a > 0, b > 0, d > −c, er 6= 0, a, b, c, d, and f are constant parameters. e and w are
the coupling parameter and the controller, respectively. r and k are the control parameters
responsible for the periodic, chaotic, and hyperchaotic behaviors and bifurcations of the
system. The hyperchaotic behavior of (4) is shown in Figures 1 and 2, which illustrate the
2D and 3D phase portraits of the hyperchaotic attractor (cf. (4)), respectively.
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Figure 1. 2D phase portraits of the hyperchaotic attractor of (4) in x− y plane (a), and in x− z plane
(b), where (a, b, c, d, e, f , r, k) = (35, 3, 35,−8.1, 1, 1, 1, 0.05).
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Figure 2. 3D phase portraits of the hyperchaotic attractor of (4) in x− z− y space (a), and in x− z−w
space (b), where (a, b, c, d, e, f , r, k) = (35, 3, 35,−8.1, 1, 1, 1, 0.05).
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3. Proposed Hyperchaotic Teaching–Learning-Based Optimization

The improvements introduced in the hyperchaotic Teaching-Learning-Based Opti-
mization are the randomness phase, three new search equations, and a hyperchaotic
perturbation strategy.

3.1. Randomness Improvement

The procedure for finding the global optimum solution depends on randomness
to imitate the teaching-learning process. Furthermore, the convergence speed is highly
affected by random parameters. Consequently, it is beneficial to adopt non-conventional
distributions (i.e., the hyperchaotic map) instead of the standard distributions (i.e., Gauss or
uniform distributions).

The initial equation is described as follows:

Si
j = Si

min + Hcj(Si
max − Si

min) (5)

Teacher phase: The teaching–learning process depends on the learner’s influence and
the quality of the teacher. In standard TLBO, the difference between the teacher and the
class grades mean is involved in updating the level of learners. In the HTLBO, hyperchaotic
numbers are used to replace the random sequence. The obtained hyperchaotic mutation can
increase the level of learners. Furthermore, the newly added term Hc,i.

(
Xworst −

∣∣∣Xold,ij

∣∣∣)
express the tendency to avoid the worst solution. The implementation can be encapsulated
as follows:

Snew,ij = Sold,ij + Hc,i(STeacher − SFSmean)− Hc,i

(
Sworst −

∣∣∣Sold,ij

∣∣∣) (6)

Student phase: The hyper-chaotic sequences are introduced instead of random numbers
to increase the population’s diversity of learners. It is worthy to note that the standard
distribution fails to reach a satisfactory level of ergodicity.

The new learning process is described as follows: If Xj is better than Xk

Snew,i = Sold,i + Hc,i

(
Sold,i − Sold,j

)
+ Hc,i

(
Sold,k1 − Sold,k2

)
(7)

Else
Snew,i = Sold,i + Hc,i

(
Sold,i − Sold,j

)
+ Hc,i

(
Sold,k2 − Sold,k1

)
(8)

3.2. New Hyperchaotic Perturbation Strategy

A new hyperchaotic perturbation strategy is embedded in the original TLBO algorithm
to improve the obtained solution further. This perturbation strategy is mathematically
formulated as follows:

Vj = Sj,new
(
1 + Hcj

)
(9)

The step size of the hyperchaotic perturbation affects its search capability. In other
words, a significant step leads to avoiding local optima by performing a considerable jump.
In contrast, a small step is beneficial to look for a good solution and boost exploitation ability.

The pseudo-code of the HTLBO algorithm is summarized in Algorithm 1.
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Algorithm 1 Pseudocode of HTLBO.

Input: Maxiter: the maximum number of iterations.
dim : Dimension of the problem
Hc_max_iter : Maximum number of 5-D hyperchaotic map iterations
Initial_point : Initial point of 5-D hyperchaotic map
NL : Number of learners.
m : Population size.

Output: Minimum objective function and best solution
Hc=Hc(Initial_point,Hc_max_iter);

2: Initialization()
Iterate the hyper-chaotic map.

4: while ITER ≤ Maxiter do
Teacher ← Select best solution

6: for i = 1 : m do
SF = round(1 + Hc,i)

8: Smean=mean(Si)
STeacher=Best(Si)

10: Snew,ij = Sold,ij + Hc,i.(STeacher − SF.Smean)− Hc,i.
(

Sworst −
∣∣∣Sold,ij

∣∣∣)
if f (Snew,i) < f (Sold,i) then

12: Sold,i ← Snew,i
end if

14: j← randi(m)
if j 6= i then

16: if f (Snew,i) < f (Sold,j) then
if k1 6= k2 then

18: if f (Sold,k1) < f (Sold,k2) then

Snew,i = Sold,i + Hc,i.
(

Sold,i − Sold,j

)
+ Hc,i.

(
Sold,k1 − Sold,k2

)
20: else

Snew,i = Sold,i + Hc,i.
(

Sold,i − Sold,j

)
+ Hc,i.

(
Sold,k2 − Sold,k1

)
22: end if

end if
24: end if

end if
26: if f (Snew,i) < f (Sold,i) then

Sold,i ← Snew,i
28: end if

end for
30: Vi = Si,new.

(
1 + Hcj

)
if f (Vi) < f (Si,new) then

32: Snew,i ← Vi
end if

34: Iter=Iter+1
end while

4. Numerical Results from Benchmark Testing

The proposed HTLBO and the comparative algorithms are implemented using MAT-
LAB 2017a, and a PC with 4 GB of RAM and a processor I7 with 2.3 GHz. The performance
of the HTLBO was assessed against popular optimization algorithms such as PSO, FA, DE,
and standard TLBO. To achieve a fair comparison, all used algorithms were executed for
30 independent runs under 100,000 function evaluations and a population size of 40 for
each benchmark function.

In this paper, the effectiveness of the used optimization algorithms are evaluated via a
set of benchmark functions with different characteristics listed in Tables 1–3, where Dim and
range indicates the dimension and the boundary of the search space, respectively. In line
with this process, 26 benchmark functions are involved from the literature to achieve a fair



Energies 2021, 14, 7312 8 of 26

comparison. The used benchmark functions are divided into three types: unimodal, multimodal,
and rotated problems. The first category of the test functions ( f1— f8) is characterized by only
one global optimum (i.e., no local optima), and as a consequence, they are used to benchmark
the exploitation propriety. The second category, namely multimodal test functions ( f9— f18),
are suitable for examination of the exploration characteristic of a given optimization algorithm
since they have several local optima. The third category ( f19— f26) is composed of the rotated
unimodal and multimodal functions. The latter category was chosen for its similarity to a
real-life problem and its capability to judge the balance between exploitation and exploration
propriety of a given optimization algorithm. The statistical results including the mean of the
best (Mean) and the standard deviation (StdDev) are reported in Tables 4–6.

Table 1. Description of unimodal functions.

Name Formula Range Acceptance

Sphere f1(x) = ∑D
i=1 x2

i [−100, 100] 1e− 6

Schwefel 1.2 f2(x) = ∑D
i=1(∑

i
j=1 xj)

2 [−100, 100] 1e− 6

Schwefel 2.21 f3(x) = max{|xi|, 1 ≤ i ≤ D} [−100, 100] 1e− 5

Scwefel 2.22 f4(x) = ∑D
i=1|xi|+ ∏D

i=1|xi| [−10, 10] 1e− 6

Elliptic f5(x) = ∑D
i=1
(
106) i−1

D−1 [−100, 100] 1e− 6

SumPower f6(x) = ∑D
i=1|xi|(i+1) [−1, 1] 1e− 6

Quartic f7(x) = ∑D
i=1 ix4

i + random(0, 1) [−1.28, 1.28] 1e− 2

Rosenbrock f8(x) = ∑D−1
i=1 [100(x2

i − xi+1)
2 + (xi − 1)2] [−5, 10] 50

Table 2. Description of the multimodal functions.

Name Formula Range Acceptance

Dixon-price f9(x) = (x1 − 1)2 + ∑D
i=1 i(2xi − xi−1)

2 [−10, 10] 1

Zakharov f10(x) = ∑D
i=1 x2

i + (∑D
i=1 0.5xi)

2 + (∑n
i=1 0.5xi)

4 [−10, 10] 1e− 6

Rastrigin f11(x) = ∑D
i=1(x2

i − 10cos(2πxi + 10)) [−5.12, 5.12] 1e− 2

Ackley f12(x) = −20exp(−0.2
√

1
D ∑D

i=1 x2
i )− exp( 1

D ∑D
i=1 cos(2πxi)) + 20 + e [−32, 32] 1e− 2

Griewank f13(x) = ∑D
i=1

x2
i

4000 −∏D
i=1 cos( xi√

i
) + 1 [−600, 600] 1e− 2

Penalized2 f14(x) = 1
10 [sin2(3πx1) + ∑n−1

i=1 (xi − 1)2(1 + 10 sin2(3πxi+1)
)

[−50, 50] 8e− 1

+(xn − 1)2(1 + sin2(2πxn)
)
] + ∑n

i=1 u(xi, 5, 100, 4) [−50, 50]

Alpine f15(x) = ∑D
i=1|xi sin(xi) + 0.1 ∗ xi| [−10, 10] 1e− 6

NC Rastrigin f16(x) = ∑D
i=1(y

2
i − 10cos(2πyi + 10)) [−5.12, 5.12] 1e− 2

Levy f17(x) = sin2(πy1) + ∑n−1
i=1 (yi − 1)2(1 + 10 sin2(πyi + 1)

)
[−10, 10] 1e + 00

+(yn − 1)2(1 + sin2(2πyn)
)

yi = 1 + 1
4 (xi − 1)

yi ={
xi |xi| < 1

2
round(2xi)

2 |xi| ≥ 1
2

Weierstrass f18(x) = ∑D
i=1(∑

kmax
k=0 [a

k cos(2πbk(xi + 0.5))])− D ∑kmax
k=0 [a

k [−0.5, 0.5] 1e− 2

cos(2πbk × 0.5)] a = 0.5 b = 3 kmax = 20
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Table 3. Description of rotated functions.

Name Formula Range Acceptance

Category 1: Rotated unimodal functions
Rotated sphere f19(x) = f1(z), z = M ∗ x [−100, 100] 1e− 6

Rotated schwefel 1.2 f20(x) = f2(z), z = M ∗ x [−100, 100] 1e− 6

Rotated elliptic f21(x) = f5(z), z = M ∗ x [−100, 100] 1e− 6

Rotated sum power f22(x) = f6(z), z = M ∗ x [−1, 1] 1e− 6

Category 2: Rotated multimodal functions
Rotated rastrigin f23(x) = f13(z), z = M ∗ x [−5.12, 5.12] 1e− 2

Rotated ackley f24(x) = f14(z), z = M ∗ x [−32, 32] 1e− 2

Rotated griewank f25(x) = f15(z), z = M ∗ x [−600, 600] 1e− 2

Rotated NC rastrigin f26(x) = f19(z), z = M ∗ x [−5.12, 5.12] 1e− 2

4.1. Solution Accuracy of the Used Algorithms

Table 4 shows that HTLBO outperforms all competitive algorithms in terms of the
mean of the best solution and the standard deviation (SD) for the unimodal functions f1,
f2, f3, f4, f5 and f7. For the last unimodal function f8, the PSO algorithm provides the best
results.

Table 4. Results comparisons of unimodal test functions on 30-dimensional functions f1– f8.

Function PSO FA DE TLBO HTLBO

f1 Mean 1.364e-86 1.099e-02 2.027e-36 1.999e-227 0.000e+00
StdDev 7.471e-86 5.991e-02 1.560e-36 0.000e+00 0.000e+00

f2 Mean 3.017e-08 2.658e+02 1.452e+04 3.249e-52 0.000e+00
StdDev 1.652e-07 9.105e+02 2.658e+03 1.399e-52 0.000e+00

f3 Mean 5.111e-05 1.753e+01 7.2631e-03 6.449e-92 0.000e+00
StdDev 2.799e-04 8.096e+00 1.373e-03 3.911e-92 0.000e+00

f4 Mean 8.933e-06 8.206e-03 2.424e-22 2.69e-113 0.000e+00
StdDev 4.888e-05 4.144e-02 8.803e-23 2.468e-113 0.000e+00

f5 Mean 5.403e-75 2.997e+03 4.580e-33 5.420e-223 0.000e+00
StdDev 2.959e-74 1.404e+04 5.019e-33 0.000e+00 0.000e+00

f6 Mean 8.171e-240 8.5579e-12 1.509e-115 0.000e+00 0.000e+00
StdDev 0.00e+00 4.6162e-11 7.084e-115 0.000e+00 0.000e+00

f7 Mean 7.267e-04 9.342e-03 9.379e-03 2.339e-04 3.215e-05
StdDev 9.650e-04 3.364e-03 2.103e-03 6.353e-05 2.490e-05

f8 Mean 1.503e+00 4.430e+00 2.693e+01 1.896e+01 2.766e+01
StdDev 4.819e+00 3.636e+01 1.046e+01 6.773e-01 3.891e-01

Table 5 indicates that all algorithms give practically similar results for functions f9.
For functions f10, f11, f13, f15, f16 and f18 the proposed algorithm is the best among all used
algorithms. Its final solutions are the theoretical global optimum. For functions, f12 all
used algorithms fail to reach the global optimum, but the proposed algorithm still ranked
first. For function f14 and f17, DE give better performance among all algorithms followed
by PSO algorithm.

Table 6 pinpoint that the proposed HTLBO outperform all comparative algorithms
and reach the theoretical global optimum for the unimodal rotated problem f19, f20, f21,
f22, f23, f25 and f26. Despite all used algorithms failing to attain the global optimum for the
function f24, HTLBO algorithm provides a promising result.
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Table 5. Results for 30-dimensional multimodal functions f9– f18.

Function PSO FA DE TLBO HTLBO

f9 Mean 6.666e-01 8.817e-01 6.666e-01 6.666e-01 6.666e-01
StdDev 5.492e-15 6.647e-01 4.659e-06 5.961e-16 4.190e-10

f10 Mean 2.847e-12 4.380e-01 1.272e+02 5.909e-30 0.000e+00
StdDev 1.559e-11 3.969e-01 2.686e+01 1.891e-29 0.000e+00

f11 Mean 2.193e+01 5.377e+01 2.663e+01 6.786e+00 0.000e+00
StdDev 4.435e+00 2.019e+01 6.195e+00 2.257e+00 0.000e+00

f12 Mean 3.218e-01 6.925e-03 7.993e-15 4.441e-15 8.882e-16
StdDev 5.550e-01 3.615e-02 0.000e+00 0.000e+00 0.000e+00

f13 Mean 9.836e-13 2.216e-02 0.000e+00 0.000e+00 0.000e+00
StdDev 5.387e-12 7.732e-02 0.000e+00 0.000e+00 0.000e+00

f14 Mean 1.750e-10 2.677e-03 1.349e-32 3.245e-03 3.511e-01
StdDev 9.585e-10 4.963e-03 5.567e-48 1.777e-02 1.36-e-01

f15 Mean 4.135e-04 1.856e-03 3.201e-04 4.143e-114 0.000e+00
StdDev 1.138e-03 8.506e-03 3.889e-04 1.279e-113 0.000e+00

f16 Mean 2.203e+01 5.633e+01 2.424e+01 1.256e+01 0.000e+00
StdDev 7.490e+00 1.930e+01 1.052e+00 2.824e+00 0.000e+00

f17 Mean 3.625e-02 2.08e-01 1.499e-32 2.506e-01 4.720e-01
StdDev 1.379e-01 4.571e-01 1.113e-47 6.814e-02 1.737e-01

f18 Mean 1.682e+00 4.908e-02 0.000e+00 0.000e+00 0.000e+00
StdDev 6.632e-01 2.192e-01 0.000e+00 0.000e+00 0.000e+00

4.2. Comparison of Convergence

The mean number of evaluations and success rate over 30 independent runs is calcu-
lated to compare all used algorithms in convergence speed. As for the unimodal functions,
Table 7 shows that the HTLBO required a lesser number of functions evaluations to reach
the final solutions and had a higher success rate than all comparative algorithms for all
unimodal functions.

The convergence graph of the used algorithms for f1, f3, f5 and f8 functions are drawn
in Figure 3. These figures indicate that the convergence process of the HTLBO algorithm is
quicker than all comparative algorithms.

Table 6. Results for 30-dimensional rotated functions f19– f26.

Function PSO FA DE TLBO HTLBO

f19 Mean 6.962e-18 1.086e-02 2.981e-36 1.912e-226 0.000e+00
StdDev 3.813e-17 5.918e-02 2.447e-36 0.000e+00 0.000e+00

f20 Mean 2.329e-08 4.419e+02 1.434e+04 1.223e-51 0.000e+00
StdDev 1.275e-07 1.261e+03 2.720e+03 3.246e-51 0.000e+00

f21 Mean 7.726e-30 4.563e+02 3.093e-33 3.406e-221 0.000e+00
StdDev 4.232e-29 2.481e+03 2.386e-33 0.000e+00 0.000e+00

f22 Mean 1.764e-241 7.768e-11 1.733e-116 0.000e+00 0.000e+00
StdDev 0.000e+00 4.251e-10 7.474e-116 0.000e+00 0.000e+00
SEM 0.000e+00 7.762e-11 1.364e-116 0.000e+00 0.000e+00

f23 Mean 3.691e+01 4.945e+01 2.525e+01 3.658e+00 0.000e+00
StdDev 9.232e+00 1.224e+01 8.129e+00 3.457e+00 0.000e+00

f24 Mean 1.258e-01 5.598e-03 8.112e-15 4.441e-15 8.882e-16
StdDev 3.915e-01 2.874e-02 6.486e-16 0.000e+00 0.000e+00

f25 Mean 5.398e-02 2.272e-02 0.000e+00 0.000e+00 0.000e+00
StdDev 1.704e-14 8.855e-02 0.000e+00 0.000e+00 0.000e+00

f26 Mean 2.123e+01 6.834e+01 2.401e+01 1.423e+01 0.000e+00
StdDev 6.334e+00 3.125e+01 1.753e+00 2.996e+00 0.000e+00
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Figure 3. Convergence performance of different algorithms on the unimodal functions. DE [◦], TLBO
[∗], PSO [×], HITLBO [�], and FA [�].

Table 7. MeanFes and SR by all used algorithms for unimodal functions.

Function PSO FA DE TLBO HTLBO

f1 MeanFes 999.9 77,663.185 26,630.733 4790.667 189.967
SR (%) 100% 90% 100% 100% 100%

f2 MeanFes 4077.633 NAN NAN 19,133.933 169.533
SR (%) 100% 0% 0% 100% 100%

f3 MeanFes 3574.345 NAN NAN 8654.633 190.8
SR (%) 96.6667% 0% 0% 100% 100%

f4 MeanFes 1225.448 97,054.565 34,492.6 7245.433 252.033
SR (%) 96.667% 76.667% 100% 100% 100%

f5 MeanFes 1324.767 98,660.471 34,655.733 6494.967 243.167
SR (%) 100% 56.667% 100% 100% 100%

f6 MeanFes 261.567 11,975.433 5106.2 1109.3 157.833
SR (%) 100% 100% 100% 100% 100%

f7 MeanFes 1903.667 77,271.833 83,476.05 4746.3 594
SR (%) 100% 60% 66.6667% 100% 100%

f8 MeanFes 527.5667 46,165.05 21,700.1034 1593 210.5667
SR (%) 100% 66.6667% 96.6667% 100% 100%
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Table 8 shows the obtained mean number of functions evaluations (MeanFes) and
mean success rate over 30 independent runs by used algorithms on the multimodal test
functions. The lesser values of mean number of functions evaluations and the associated
success rate are shown in bold. The results demonstrate that the proposed HTLBO required
less MeanFes and had a higher success rate than all comparative algorithms for test
functions f10, f11, f12, f13, f15, f16 and f18. Moreover, the proposed technique is ranked
second for the test functions f9, f14 and f17.

The convergence graph of the used algorithms for multimodal functions f11, f14, f19
and f20, is shown in Figure 4. It can be observed from Figure 4 that the convergence speed
of the proposed HTLBO algorithm is the quickest of all comparative algorithms.

The Mean number of function evaluations (MeanFes) and success ratio of each al-
gorithm for 30-dimensional rotated benchmark functions are listed in Table 9. The mean
number of function evaluations is recorded when the required conditions are reached. If
the acceptance criterion is not attained after 30 runs, the mean FEs is expressed as ‘NaN,’
and the success rate is 0%. As we can see from Table 9, the proposed technique exhibits the
best results in terms of the MeanFes and success rate for all used benchmark functions.

Table 8. MeanFes and SR by all used algorithms for multimodal functions.

Function PSO FA DE TLBO HTLBO

f9 MeanFes 559.067 55,895.286 21,590.533 2192.367 654.033
SR (%) 100% 93.3333% 100% 100% 100%

f10 MeanFes 3151.467 NAN NAN 36,511.7 304.9
SR (%) 100% 0% 0% 100% 100%

f11 MeanFes NAN NAN 26,862 NAN 173.6
SR (%) 0% 0% 6.667% 0% 100%

f12 MeanFes 570.318 55,075.069 18,976.033 3558.1 175.933
SR (%) 73.333% 96.667% 100% 100% 100%

f13 MeanFes 708.9 53,596.045 19,370.367 3457.667 178.067
SR (%) 100% 73.333% 100% 100% 100%

f14 MeanFes 403 37,067.3 11,515.7667 4510.2333 1608.6667
SR (%) 100% 100% 100% 100% 100%

f15 MeanFes 1000.5 92,849.8636 86,967 6719.3333 228.433
SR (%) 86.6667% 73.3333% 3.3333% 100% 100%

f16 MeanFes NAN NAN NAN NAN 229.433
SR (%) 0% 0% 0% 0% 100%

f17 MeanFes 316.6 23,093.7241 7834.1333 3225.1724 2012.8
SR (%) 100% 96.6667% 100% 96.6667% 100%

f18 MeanFes NAN 72,856.8148 26,098 5744.3 278.9
SR (%) 0% 90% 100% 100% 100%
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Figure 4. Convergence performance of different algorithms on the multimodal functions. DE [◦],
TLBO [∗], PSO [×], HITLBO [�], and FA [�].

Additionally, a comparison of the convergence behavior of PSO, FA, FE, TLBO and
HTLBO is presented in Figure 5, where f19, f21, f25 and f26 benchmark rotated functions
are considered. These figures show that the proposed HTLBO exhibits a fast convergence
performance due to its high diversity from the hyperchaotic map. Figure 5 reveals that
the HTLBO outperforms the used comparative algorithms and converges to the optimal
solution speedily.

It should be noted that an offset of 1e-3 has been added to the fitness values found by
each algorithm. This is because some of the used algorithms reached the global optimum
0. Consequently, in the convergence curves, the value -30dB indicates that the objective
function equals the global optimum 0.

4.3. Statistical Tests

In order to show the significance of the obtained results, we apply the Friedman rank
test using the results given by Tables 4–6. Table 10 presents the rank of the comparative
algorithms. It is clear from the obtained results that HTLBO outperforms all used algo-
rithm, since it was ranked first. Original TLBO is ranked second according to obtained
statistical test.
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Table 9. MeanFes and SR by all used algorithms for rotated test functions.

Function PSO FA DE TLBO HTLBO

f19 MeanFes 1043.767 77,749.852 26,667.367 4785.8 246.567
SR (%) 100% 90% 100% 100% 100%

f20 MeanFes 4013.367 NAN NAN 19,107.033 260.233
SR (%) 100% 0% 0% 100% 100%

f21 MeanFes 1315 98,377.067 34,507.433 6483.3 203.333
SR (%) 100% 50% 100% 100% 100%

f22 MeanFes 248.1333 12415.1 5173.367 1100.9 189.233
SR (%) 100% 100% 100% 100% 100%

f23 MeanFes NAN NAN NAN NAN 239.967
SR (%) 0% 0% 0% 0% 100%

f24 MeanFes 554.593 55305.724 18,963.5 3439.867 209.967
SR (%) 90% 96.667% 100% 100% 100%

f25 MeanFes NAN 52,346.783 19,440.767 3305.567 213.833
SR (%) 0% 76.667% 100% 100% 100%

f26 MeanFes NAN NAN NAN NAN 170.7
SR (%) 0% 0% 0% 0% 100%
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Figure 5. Convergence performance of different algorithms on the rotated functions. DE [◦], TLBO
[∗], PSO [×], HITLBO [�], and FA [�].
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Table 10. Algorithms ranking using Friedman test.

Algorithm Friedman Value Normalized Value Rank

PSO 3.3846 2.022 4
FA 4.6923 2.804 5
DE 3.1923 1.908 3
TLBO 2.0577 1.229 2
HTLBO 1.6731 1.00 1

5. Power System Stability Design Problem Using the HTLBO
5.1. Study System Modeling

The system of our study is a multimachine power system equipped with two con-
trollers, which are Power System Stabilizer (PSS) and Static Var Compensator (SVC) shown
in Figure 6. The object of this study is to design the controllers parameters using the
proposed technique.
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Figure 7: WSCC 3-machine 9-bus power system

where Xe = −1/Be and rx = Xe/XL .
The TCR consists of a bi-directional thyristor valve in series with a reactor. The reactance of the SVC can

be continuously changed via the control of firing angle α of the TCR that varies between 90◦ and 180◦.
The control loop of SVC uses an auxiliary stabilizing signal. In order to improve system stability a speed
deviation signal was chosen as a input signal. The structure of SVC auxiliary controller is similar to PSS
and composed of gain block, washout block and two lead-lag blocks.
As illustrated in fig. 3, the structure of the proposed SVC-based POD with a lead-lag compensator consists of
a gain block KSV C , a signal washout block and two stage phase-compensation blocks. The dynamic equation
of the effective susceptance of the SVC can be expressed by equation (9). Kr and Tr are respectively, the gain
Kr and Trtime constant of the thyristors firing control system. In order to improve the electromechanichal
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Figure 6. Power network with the proposed controllers.

5.1.1. Test System

Figure 7 shows the Western System Coordinating Council (WSCC) test system. WSCC
is composed of three synchronous machines and nine buses. The parameters of the study
system are illustrated in [9].

5.1.2. Synchronous Machine Model

The nonlinear dynamic of each machine can be described by the following third-order
nonlinear differential-algebraic equations (DAE).

pδi = ωb(ωi − 1) (10)

pωi = (Tmi − Tmi − Di(ωi − 1))/Mi (11)

pE′qi =
(

E f d −
(
xd − x′d

)
idi − E′qi

)
/T′d0i, (12)

where δi and ωi are rotor angle and speed of the i-th machine, respectively. ωb is the base
frequency in rad/sec. E′qi and E f d are internal and field voltages, respectively. Tmi and Tei

are mechanical and electric torques, respectively. Mi, Di and T′d0i are the inertia constant,
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damping coefficient and open circuit field time constant of the machine, respectively. xd
and x′d are the d-axis reactance and the d-axis transient reactance of the machine. idi is the
d-axis armature current.

 

E. Objective function  

In this study, the problem of tuning parameters of the PSS controller that stabilize the system is converted to a 

multiobjective optimization problem. As given in [2,13], two eigenvalue-based objective functions are considered. 

The first one consists to shift the closed-loop eigenvalues in to the left-side of the line defined by 0  , as shown 

in fig. 2(a). This function is expressed by 1J  in equation (15). In equation (16), 2J defines the second objective 

function. It will place the closed-loop eigenvalues in a wedge-shape sector corresponding to  0,


ji
, as shown in 

fig.2(b) As consequence the maximum overshoot is limited.  
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Figure 7. WSCC power system.

The electric torque can be written as follows.

Tei = E′qiiqi +
(
xqi − x′di

)
idiiqi, (13)

where xqi and iqi are the q-axis reactance and the q-axis armature current of the ith ma-
chine, respectively.

5.1.3. Excitation System with PSS Controller

The PSS acts through the excitation system to provide a control effect to the power
system. The IEEE type-ST1 excitation system with PSS shown in Figure 8 is considered in
this paper. It is described as follows.

pE f d =
(

KA

(
Vre f −Vt + U

)
− E f d

)
/TA, (14)

where KA and TA are the amplifier gain and the amplifier time constants of the excitation
system, respectively. Vre f and Vt are reference and generator terminal voltages, respectively.
The input signal of the ith PSS is the normalized speed deviation of ∆ωi. In contrast, the
output is the supplementary stabilizing signal U. As given in the block diagram of Figure 8,
the transfer function of the PSS is given below.

Ui = Ki

(
sTω

1 + sTω

)(
1 + sT1i
1 + sT2i

)(
1 + sT3i
1 + sT4i

)
(15)

In the previous equation, the washout block with a time constant Tω is used as a
high-pass filter to leave the signals in the range 0.2–2 Hz associated with rotor oscillation
to pass without change. In general, it is in the range of 1–20 s. The two first-order lead-lag
transfer functions are used to compensate for the phase lag between the PSS output and
the control action, which is the electrical torque.
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5.1.4. Structure of the SVC-Based POD Controller

The SVC device used in this study is connected to the AC system via a setup trans-
former to keep the network voltage constantly at a set reference value by varying its
effective reactance. As shown in Figure 9, the system is a thyristor-control reactor/fixed
capacitor (TCR/FC). The firing angle of the thyristors controls the value of the effective
reactance of the SVC, as written in the following equation:

Bυ = − (2π − 2α + sin(2α))

πXL
; −π

2
≤ α ≤ π, (16)

where XL is the SVC fixed inductor reactance. The effective reactance is expressed in
the following:

Xe = Xc
π/rx

sin(2α)− 2α + π(2− 1/rx)
(17)

where Xe = −1/Be and rx = Xe/XL .

Figure 9. SVC power circuit.

The thyristor-control reactor is composed of a reactor in series with a bi-directional
thyristor valve. The SVC reactance is modified using the TCR firing angle α, which ranges
between 90◦ and 180◦.

The control loop of SVC uses an auxiliary stabilizing signal. To improve system
stability, a speed deviation signal was chosen as an input signal. The structure of the SVC
auxiliary controller is similar to PSS and composed of the two lead-lag blocks, a washout
block and a gain block.

As illustrated in Figure 10, the structure of the proposed SVC-based POD with a lead-
lag compensator consists of a gain block KSVC, a signal washout block, and two-stage phase-
compensation blocks. The dynamic equation of the effective susceptance of the SVC can be
expressed by Equation (18). Kr and Tr are, respectively, the gain Kr and Tr time constant of
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the thyristors firing control system. To improve the electromechanical oscillations, the input
signal of the POD stabilizer is relatively selected to the speed deviation of the machines.

Ḃe =
1
Tr

(
−Be + Kr

(
Vre f −Vt + Vs

))
(18)
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Figure 10. Block diagram of SVC.

5.1.5. Damping Controllers Design

In this study, the purpose is to tune simultaneously the parameters of the PSS and
SVC controllers that provide the optimum system stability. The controller’s parameters are
obtained for the minimum Integral of Time multiply Absolute Error (ITAE) performance
index. The previous performance criterion is stated as follows:

J =
NG

∑
j=1

NP

∑
i=1

∫ tsim

0
t|∆ωi|dt. (19)

where tsim is the simulation time, ∆ω is the speed deviation of the machi, NP and NG are
the operating points and the generators numbers, respectively. The optimization problem
consisting of parameters of controllers design is stated as follows:

Minimize J subject to
Kmax ≤ K ≤ Kmin

Tmin
1i ≤ T1i ≤ Tmax

1i

Tmin
2i ≤ T2i ≤ Tmax

2i (20)

Tmin
3i ≤ T3i ≤ Tmax

3i

Tmin
4i ≤ T4i ≤ Tmax

4i

The value of the washout time constant is ordinarily predetermined Tω = 5s to
reduce the required time to achieve the final solution. According to the previous works,
the gain of the controller’s range is [1–100]. The values of the lead-lag time constants
range are [0.05–1.5]. Generally, significant computational time is gained when T2 and T4
are predetermined. In several power system stability design works, the time constants
T2 = T4 = 0.05 [54–56].

Three operating conditions are considered for the WSCC test system in the design
process (see Table 11).

The PSSs and SVC parameters for the three operating conditions are optimized by the
HTLBO technique. The design approach was applied for the coordinated design, PSSs only
and SVC only. The optimum controllers parameters are given in Table 12).
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Table 11. Operating conditions for the power system under study.

Generator Nom.Loading Heavy Loading Light Loading

P (pu) Q (pu) P (pu) Q (pu) P (pu) Q(pu)

Gene. 1 0.72 0.27 2.21 1.09 0.36 0.16
Gene. 2 1.63 0.07 1.92 0.56 0.80 −0.11
Gene. 3 0.85 −0.11 1.28 0.36 0.45 −0.20
Load
Load A 1.25 0.50 2.00 0.80 0.65 0.55
Load B 0.90 0.30 1.80 0.60 0.45 0.35
Load C 1.00 0.35 1.50 0.60 0.50 0.25

Table 12. Controllers’ optimal parameters tuned by HTLBO.

Uncoordinated Design Coordinated Design

PSS1 PSS2 SVC PSS1 PSS2 SVC

K 14.0006 7.3196 120.4268 24.011 17.3196 22.5241
T1 0.3282 0.1945 0.2013 0.3270 0.1922 0.7840
T2 0.05 0.05 0.05 0.0500 0.0500 0.0500
T3 0.0754 0.5846 0.3687 0.0766 0.5776 1.2527
T4 0.05 0.05 0.05 0.0500 0.0500 0.0500

Figure 11 depicted the variations of the objective function with the standard and the
hyperchaotic TLBO techniques. The HTLBO gives faster convergence than TLBO, which
demonstrates the potential of the proposed design approach.
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Figure 11. Variations of objective function for TLBO and HTLBO algorithms.

5.2. Simulation Results

To assess the robustness of the HTLBO technique, the controller is tested under severe
conditions and different operating conditions. The coordinated tuning of controllers is
compared with PSSs and SVC tuned individually. In this paper, power system numerical
simulations have been carried out using the fourth-order Runge–Kutta method with the
software Matlab. Time-domain simulation is performed for the following three scenarios:
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Scenario1 :
The nonlinear simulations are performed for different loading conditions under a 10%

increase in mechanical torque at t = 1 s. The speed deviation of the synchronous machines
is shown in Figures 12 and 13. The system’s response with the coordinate PSSs and SVC
controllers is damped compared with HTLBOPSSs only and HTLBOSVC only.

Scenario2 :
A severe disturbance consists of a three-phase fault located at the end of transmission

line 5#7 during 100 ms. The original WSCC test system is restored when the fault is cleared.
The system response is shown in Figures 14 and 15 revealed that the coordination design of
HTLBOPSSs and HTLBOSVC controllers outperform the former stabilizers tuned individually.
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Figure 12. Response of4ω21 and4ω31 for light load condition under scenario1.
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Figure 13. Response of4ω21 and4ω31 for nominal load condition under scenario1.
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Figure 14. Response of4ω21 and4ω31 for light load condition under scenario2.
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Figure 15. Response of4ω21 and4ω31 for heavy load condition under scenario2.

Scenario3:
The test system is under a six-cycle three-phase fault. The initial configuration of

the system is not restored since the line fault 5#7 is tripped permanently. Our approach
is evaluated by applying the HTLBO in the tuning of the stabilizers individually and
simultaneously. Figures 16 and 17 demonstrate the ability of the stabilizers to provide a
satisfactory damping of electromechanical oscillations under a harsh condition.
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Figure 16. Response of4δ21 and4δ31 for light load condition under scenario3.
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Figure 17. Response of4δ21 and4δ31 for nominal load condition under scenario3.

The Integral of Absolute Error (IAE) is involved in our study to quantify the stabilizers’
quality. The mathematical expression of the previous criterion is:

J =
∫ t

0

NG

∑
i=1
|∆ωi|dt (21)
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It is worth mentioning that better time-domain behavior is characterized by the lowest
values of IAE. Table 13 shows the values of the IAE criterion for all considered scenarios
and operating systems. The smaller values of IAE obtained by HTLBOPSS&SVC controllers
reflect its superiority in damping the rotor oscillations.

Table 13. IAE values for the suggested scenarios.

Fault Method Normal Load Heavy Load Light Load

Scenario1 HTLBOPSS 0.01499 0.01616 0.00685
HTBOSVC 0.03068 0.05084 0.01379
ITLAPSS&SVC 0.01228 0.01275 0.00501

Scenario2 HTLBOPSS 0.01683 0.01699 0.00744
HTLBOSVC 0.12016 0.23058 0.04210
HTLBOPSS&SVC 0.01487 0.02306 0.00543

Scenario3 HTLBOPSS 0.00115 0.00116 0.00079
HTLBOSVC 0.09221 0.18403 0.03103
HTLBOPSS&SVC 0.00104 0.00110 0.00078

Table 14 exhibits the electromechanical mode and the damping ratio of the WSCC
test system for the above operating conditions. The smallest damping ratio with HTL-
BOSVC modes for normal, heavy and light are: (ξ = 0.0536, ξ = 0.0416, ξ = 0.0783).
The HTLBOPSSs provide a satisfactory damping performance compared to HTLBOSVC.
Moreover, the coordinated PSSs and SVC designed with the proposed HTLBO enhance
significantly the damping ratio to be (ξ = 0.4586, ξ = 0.5760, ξ = 0.6302) for the aforemen-
tioned conditions. It can therefore be concluded that our approach provides a satisfactory
damping performance since the modes of the system are substantially shifted to the left of
the s-plane.

A comparative of system eigenvalues and damping ratio of mechanical modes with
light, normal, and heavy loading for the proposed HTLBO and Teaching–Learning (TL)
algorithm given in [57] is shown in Table 14. The damping ratios corresponding to the
HTLBO controller are greater than that corresponding to the TL algorithm. The eigen-
value analysis demonstrates that the proposed controller provides a satisfactory damping
performance.

Table 14. Electromechanical modes and damping ratios under different loading Conditions and stabilizers.

Normal Load Light Load Heavy Load

HTLBOPSSs −2.5227± 8.4257i, 0.2868 −4.1636± 6.8816i; 0.5177 −5.4270± 7.9166i; 0.5654
−4.8766± 7.5776i, 0.5412 −1.9237± 7.3739i; 0.2524 −1.7399± 7.9454i; 0.2139

HTLBOSVC −0.6322± 11.7889i; 0.0536 −0.7595± 9.6653i; 0.0783 −0.4976± 11.9566i; 0.0416
−0.7981± 8.0646i; 0.0985 −0.6840± 6.8761i; 0.0990 −0.5417± 7.6075i; 0.0710

TLPSS&SVC [57] −3.8461± 11.6327i; 0.3139 −4.3571± 12.5613i; 0.3277 −4.3362± 9.9705i; 0.3988
−4.8813± 2.7527i; 0.8710 −3.5977± 04.5640i; 0.6191 −6.2342± 5.0439i; 0.7774

HTLBOPSS&SVC −4.9509± 7.8236i; 0.5347 −3.5792± 4.0325i; 0.6638 −3.8856± 2.7691i; 0.8144
−5.7211± 2.9727i; 0.8893 −3.4425± 7.8670i; 0.44482 −4.2187± 7.3542i; 0.4976

6. Conclusions

This work presents a new technique called the Hyperchaotic Teaching–Learning-Based
Optimization algorithm known as HTLBO. The proposed algorithm improves the overall
performance of the original counterpart by involving three approaches, i.e., replacement
of the random numbers in search equations by the hyperchaotic sequences generated by
the hyperchaotic map, implementation of three new mutation equations, and hyperchaotic
perturbation. The latter favors the global search, whereas the mutation strategies guide
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the algorithm towards promising regions and guarantee an intensification effect at the
course-end of the algorithm. That is, the mutation strategies favor local search. There-
fore, a balance between diversification and intensification effects is provided during the
algorithm. The proposed algorithm is tested on twenty-six test functions. The obtained
results confirm that HTLBO provides competitive results compared to four well-known
optimization algorithms. The exploitation and exploration capabilities of the HTBO algo-
rithm are evaluated using multimodal, unimodal, and rotated test problems. Indeed, the
unimodal functions have only one local optimum; thus, they are suitable for evaluating
the exploitation capability. Whereas the multimodal functions present many local optima,
they are ideal for investigating the exploration characteristic. The rotated test functions
demonstrate the ability of HTLBO to solve complex problems. Furthermore, the proposed
algorithm is employed to solve the coordination design of PSSs and SVC for a multimachine
power system. The robustness is assessed via three operating conditions. The nonlinear
simulations and the eigenvalue analysis confirm that the proposed approach provided an
excellent damping behavior than the uncoordinated scheme.
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Abbreviations
TF Teacher factor
x
′
di d-axis transient reactance

r Random number
xqi q-axis reactance of the ith machine
δi Rotor angle speed of machine
iqi q-axis armature current of machine
ωi Rotor speed of the ith synchronous machine
KA gain of the regulator
ωb Base frequency in rad/sec
TA time constant of the regulator
E
′
qi Internal voltage of the ith machine

Vre f voltage reference
E f d Field voltage of the ith machine
Vt terminal voltage
Mi Inertia constant of the ith machine
T1 − T4 time constants of controller
Di Damping coefficient of the ith machine
XL SVC fixed inductor reactance
T
′
d0i Time constant of ith machine excitation circuit

α firing angle of the thyristor
Tmi Mechanical torque of the ith machine
Hcj Hyperchaotic sequence
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Tei Electric torque of the ith machine
xd d-axis reactance
Xe Effective reactance of the SVC
KSVC Gain of the SVC
Kr Gain of the thyristors firing control system
Tr Time constant of the thyristors firing control system
NP Number of operating points
NG Generators numbers
tsim Simulation time
Tω time constant of the washout block
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