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Abstract: Plastics are versatile materials used in a variety of sectors that have seen a rapid increase
in their global production. Millions of tonnes of plastic wastes are generated each year, which
puts pressure on plastic waste management methods to prevent their accumulation within the
environment. Recycling is an attractive disposal method and aids the initiative of a circular plastic
economy, but recycling still has challenges to overcome. This review starts with an overview of the
current European recycling strategies for solid plastic waste and the challenges faced. Emphasis lies
on the recycling of polyolefins (POs) and polyethylene terephthalate (PET) which are found in plastic
packaging, as packaging contributes a signification proportion to solid plastic wastes. Both sections,
the recycling of POs and PET, discuss the sources of wastes, chemical and mechanical recycling,
effects of recycling on the material properties, strategies to improve the performance of recycled
POs and PET, and finally the applications of recycled POs and PET. The review concludes with a
discussion of the future potential and opportunities of recycled POs and PET.

Keywords: plastic wastes; recycled polyolefins; recycled polyethylene terephthalate; chemical
recycling; mechanical recycling; compatibilization; composite

1. Introduction

Plastic materials offer numerous advantages due to their low cost, high toughness,
durability, property of being lightweight, easy processability, low thermal conductivity,
and high environmental and corrosion resistance [1]. For all these reasons, the global
production of plastics has been growing since the 1950s and the global annual primary
plastic production is predicted to reach 1100 million tonnes in 2050 if similar production
trends of the past 70 years continue [2]. However, since 2018, the European plastic pro-
duction has been declining and this decline has been dramatised due to the COVID-19
pandemic [3]. The extensive use of plastics has led to the rapid consumption of fossil fuel
resources and the generation of a vast amount of plastic wastes. Over 90% of plastics are
manufactured from virgin fossil feedstocks and by 2050 the plastic industry will account for
20% of the total global oil consumption [4]. The management of plastic wastes is extremely
important as it is predicted by 2050 there will be 12,000 million tonnes of plastic wastes
in landfills and/or the natural environment globally, due to plastics’ slow degradability
in the ambient environment [5]. Degradation rates of plastics can vary from hundreds
to thousands of years and are dependent on the environmental conditions [6,7]. During
degradation, plastics release toxic, harmful chemicals such as bisphenol A and heavy
metals, which can leach into the natural environment, causing ecological harm along with
potential detrimental effects to human health [8–12]. A growing concern is the increasing
accumulation of plastic wastes in the marine environment, contributing 50–80% of all
marine debris, and its detrimental effect on marine life [12–14].
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At the end of its life cycle, a plastic product can either undergo recycling, energy
recovery, or be placed in landfill [15–18]. The waste management method implemented
for plastic wastes varies from country to country [19]. Globally, we currently operate as
a linear plastic waste economy where 24% of plastic wastes are incinerated, 58% are put
in landfills or enter the environment, and only 18% of plastics are recycled [7]. Achieving
a circular plastic economy where all plastic wastes are re-used, recycled, and recovered
is the desired solution to prevent further plastic waste environmental contamination [20].
For a circular economy to be achieved, it is important to understand and analyse the life
cycle of plastics from manufacturing through to reprocessing but also to design plastic
products with end-of-life management in mind [3,4,21]. To tackle global climate change
and the plastic waste crisis, there has been an increase in international agreements, e.g.,
the Paris Agreement and legislations and voluntary agreements such as the UK Plastics
Pact [22,23]. The European Commission set out their “European Strategy for Plastics in a
Circular Economy” in 2018 to reduce the impact of plastic wastes, which has resulted in
an increase in European recycling rates [24,25]. Plastics are used in a variety of industries
such as packaging, automotive, building, construction, etc. (Figure 1) [3].
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Plastic packaging is the largest end use market for plastics and accounts for nearly
70% of all plastic wastes [3,26]. In 2019, 17.8 million tonnes of plastic post-consumer
packaging wastes were collected from household, industrial, and commercial sources, of
which 42% was recycled, 18.5% was landfilled, and 39.5% underwent energy recovery [3].
Therefore, a key aim of the “European Strategy for Plastics in a Circular Economy” is to
ensure all plastic packaging placed on the EU market is reusable or easily recycled by
2030 [25]. Several industries utilise plastic packaging to preserve and protect products
of the industrial packing, pharmaceuticals, personal and household care, and electronics
industries, but the food and beverage industry possess the largest share in the plastic
packaging market [27,28]. Plastic packaging can be flexible or rigid [29], and possess a
range of versatile properties: flexibility, strength, low weight, chemical stability, perme-
ability, and ease of sterilisation [3,30]. The short lifetime, single use, and improper waste
management of plastic packaging has led to detrimental environmental effects which are
well documented in the literature [12,14,31]. However, the use of plastic packaging has
beneficial environmental and economic impacts, for example, in food plastic packaging.
Food packaging is lightweight, which reduces greenhouse emissions and costs during
transportation, increases food shelf life which reduces food waste, and improves food
hygiene and safety [32–35]. The prominent plastics found in plastic packaging are high
density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and
polyethylene terephthalate (PET) [21,30,36,37]. Plastics present in smaller quantities in-
clude polystyrene (PS), expanded polystyrene (EPS), polyvinyl chloride (PVC), and other
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polymers such as polyamide (PA), ethylene-vinyl acetate (EVA), and ethylene vinyl alcohol
(EVOH) [36]. This review is focused on the mechanical and chemical recycling of the
prominent plastics, LDPE, HDPE, PP, and PET, which are found in post-consumer plastic
packaging wastes.

2. Recycling and Energy Recovery of Plastic Wastes

Recycling involves the conversion of waste materials into materials of commercial
value for re-use and has been reviewed by several authors [18,38–42]. Recycling plastics
has several environmental benefits: a net reduction in greenhouse gases and other potent
molecules, net energy savings, and a reduction in the consumption of natural resources
in comparison to other waste management methods [21,43]. Recycling is an attractive
option to achieve a circular plastic economy as it is a viable method of dealing with plastic
waste on an industrial scale with environmental benefits. However, the recycling industry
faces several challenges related to high costs and the availability of recycling infrastructure
to accommodate for the variation in the recyclate quality [41]. Moreover, the low cost
of virgin plastics can hinder the use of recycled plastics by industries [44]. The major
problems associated with recycled plastics are the different contaminants present in the
plastic wastes, the reduction in their molecular weights on undergoing various recycling
steps, and their degradation by oxygen, light, temperature, or water during their service
life [45].

There are two forms of recycling: mechanical and chemical. Figure 2 summarises their
advantages and current limitations.
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2.1. Mechanical Recycling

Mechanical recycling is the process of recovering plastics through physical processes
such as melting, grinding, shredding, and extrusion. There are two categories of mechanical
recycling: primary and secondary. Both use mechanical processes to recover plastics,
but they differ in the quality of the end product [52,53]. Primary recycling is a closed-
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loop process where pre-consumer polymers are put back into the reprocessing cycle and
extruded. This process produces recyclates of similar performance to the virgin material
and can be used to manufacture the same product as the virgin material or for new products
for demanding applications [38,51,54,55]. Primary recycling requires knowledge of the
waste source origin, previous product application, and history, which ensures low levels of
molecular contamination and high polymeric purity [49,56]. PET bottles are an example
which typically undergo primary recycling [57]. Primary recycling is desirable due to the
production of high quality recyclates, reduction in energy costs, and conservation of natural
resources. Secondary recycling involves the recovery of plastics from municipal solid waste
(MSW) and is described as down-cycling due to the recyclate demonstrating a reduction in
properties, and consequently it are used in less demanding environments compared to the
virgin material [39,55]. For example, recycled polyolefins (rPOs) can be used to manufacture
floor tiles [54]. Post-consumer plastic packaging commonly undergoes secondary recycling
as it is contaminated by residue, additives, and the presence of composite materials and
laminate structures [52,58].

In the United Kingdom, secondary recycling begins with the kerbside collection
of household wastes, MSW [59,60]. Other collection schemes include household waste
recycling centres and bring sites/banks [60,61]. After collection, the MSW is taken to a
material recovery facility. At this facility, the plastic solid waste (PSW) is sorted from the
MSW, e.g., paper and cardboard, by either manual or automated means [62]. The PSW is
then transported to a plastic recycling facility where further sortation occurs into single
polymer type waste streams, as PSW is a mixture of different plastics, e.g., PP, PE, PVC, PS,
and PET [63]. Plastics are sorted and undergo a size reduction by cutting and shredding
mechanisms; a washing process involving a hot wash in alkaline and detergent solutions;
and drying and reprocessing steps: compounding and pelletizing [39,59,64]. The sorting
process is extremely important to limit contamination entering the recycled plastics stream
to improve recyclate quality and to reduce the waste of target and non-target plastics which
will ultimately end up in landfill sites [21,59,64]. Luijsterburg et al. [64] found that the final
quality of the recyclate was dependent on the sorting process but also the reprocessing
steps. The sorting and processing will vary greatly from location to location due to different
plastic waste collection processes, waste stream composition, recycling infrastructures,
available equipment, and capacity, but also by the recycled plastic type market demand [21].
There are several separation and identification techniques which can be used, such as sink–
float [65,66], froth flotation [67], near/mid infrared spectroscopy [68–70], X-ray fluorescence
spectroscopy [71,72], hydrocyclones [73–75], tribo-electrostatic [76–78], magnetic density
sorting [79,80], magnetic levitation [81,82], hyperspectral imaging [83–85], laser induced
breakdown spectroscopy [86–88], hybrid jig [89], and many others. There are several
reviews in the literature discussing the techniques, principles, advantages, and drawbacks
in detail [18,46,79,90–94].

2.2. Chemical Recycling

Chemical recycling involves the chemical conversion of polymers to monomers or
oligomers which can be achieved through depolymerisation reactions [17,38,95–97]. Chem-
ical recycling can be categorised as either a homogenous or heterogeneous process [50].
Homogenous processes include methanolysis, glycolysis, and alcoholysis [50]. Typical het-
erogeneous processes for plastic wastes include pyrolysis [98–100] and gasification [98,101],
but other novel processes exist such as catalytic cracking [47,102] or microwave-assisted
pyrolysis [47,103,104]. These processes result in monomers and other low molecular weight
oligomers usually in the form of a liquid oil and syngas, which is a mixture consisting of
carbon monoxide, carbon dioxide, and hydrogen [48,98,105]. These molecules can be used
as feedstock for the production of new polymers and composites [106], valuable chemicals,
or fuel [40], and hence contribute towards a circular plastic economy. Chemical recycling
of plastic waste has numerous advantages compared to mechanical recycling: higher toler-
ance to waste contamination, avoidance of recyclate performance losses, and formation of
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products with economic value, and sortation is not always required; for example, in gasifi-
cation, all MSW can be treated together without prior sortation [47,98,107,108]. Currently,
chemical recycling is not practiced on an industrial scale due to the large energy costs and
limited technology [46,98,109,110]. Some of the processes are unselective, so the yield and
composition of products can vary greatly depending upon the waste composition and
processing conditions [110,111], but the use of catalysts has been shown to help produce
selective products and require lower temperatures [110,112].

2.3. Energy Recovery

Energy recovery is the process of recovering the energy content within plastic wastes
through incineration [46,97]. The energy recovery process generates heat which can be
used to generate electricity, providing an alternative to burning fossil fuels [113]. Plastics
generate a significant amount of energy due to their high lower calorific value (LCV) [114]
and can provide a high electricity-to-heat ratio [113]. For example, polyethylene (PE)
has an LCV of 43 MJ kg−1, which is the same LCV as diesel fuel [114]. Different plastics
possess slightly different LCVs: PA has an LCV of 31.4 MJ kg−1 whereas PS has an LCV
of 41.6 MJ kg−1, due to their chemical structures [115]. Combining a high proportion of
plastic wastes into the waste MSW feedstock can improve its combustibility [116]. Energy
recovery is a useful method to dispose of large quantities of waste with its infrastructure
requiring less space compared to landfills [117]. Energy recovery is the preferred man-
agement method when plastic sorting is too difficult or too expensive during recycling,
as mixed plastic wastes still provide a high LCV of 30–40 MJ kg−1, which is comparable
to the LCV of coal [50,114,118]. Incineration produces waste products, bottom ash, and
fly ash, and their amounts and compositions can vary depending on the waste composi-
tion and the incineration technology used [119,120]. Typically, these waste products are
placed in landfills due to their toxicity, but bottom ash has been re-used in road recon-
struction [119,121]. A major concern surrounding the incineration of plastic wastes is the
production and release of persistent organic pollutants, particulates, and hazardous toxic
compounds such as dioxins and furans into the environment [10,115,116]. Recent research
has also shown microplastics are present within the waste products, bottom ash, and fly
ash, caused by incomplete combustion, which is concerning due to the ecological harm
caused by microplastics [117]. There are strict European regulations for incineration as
stated by the EU Hazardous Waste Incineration Directive. Incineration has environmental
concerns, so recycling is the preferred route for waste management.

3. Recycled Plastics
3.1. Thermodynamics of Recycled Plastic Blends

During the recycling process, the complete separation of each plastic is challenging.
The resulting recycled plastic will therefore contain a low fraction of other plastics and can
be considered a polymer blend [122]. A polymer blend is a mixture of two or more poly-
mers or copolymers which forms a new material with different physical properties [123].
Recycled blends are immiscible due to their heterogeneous nature which affects their
final properties.

The immiscibility can be determined by the Gibbs free energy of mixing, ∆Gmix, which
is calculated by the following equation (Equation (1)) [124]:

∆Gmix = ∆Hmix − T∆Smix (1)

where ∆Hmix is the enthalpy of mixing, T is the temperature, and ∆Smix is the entropy
of mixing.

The ∆Smix is usually negligible, so ∆Hmix is the main contributor to ∆Gmix. The blend
is immiscible when the ∆Gmix is positive, but this does not mean that a negative ∆Gmix
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is a sufficient condition for miscibility. Additionally, the second derivative shown by
Equation (2) needs to be positive for a system to be miscible [125]:

δ2∆Gmix/δ∅2
2 > 0 (2)

where ∅2 is the volume fraction of the second polymer in a two-component polymer
blend. Immiscible blends result in multi-phase morphology and poor interfacial adhesion
between the phases, leading to poor mechanical properties [123]. Recycled blends have
poor mechanical and physical properties due to polymer degradation through the recycling
process and inhomogeneity.

3.2. Compatibilization of Recycled Plastic Blends

To improve the performance of recycled plastics, compatibilization is required. Com-
patibilization improves interfacial properties between the different constituents by stabi-
lizing a desired morphology, reducing interfacial tension, and enhancing phase adhesion,
thus leading to the improvement of mechanical properties [122]. Compatibilizers can
be graft/block copolymers, nanoparticles, or ionomers [40]. Their efficiency depends on
their structure/shape, molecular architecture, chemical composition, and concentration
(Figure 3). Thus, spherical nanoparticles are more efficient than elongated ones and longer
branched copolymers are more effective than shorter diblock copolymers [40]. However, it
is still hard to predict the type and amount of compatibilizer required for recycled blends
due to the inhomogeneity of plastic wastes.

Energies 2021, 14, x FOR PEER REVIEW 6 of 44 
 

 

sufficient condition for miscibility. Additionally, the second derivative shown by Equation (2) 
needs to be positive for a system to be miscible [125]: 𝛿ଶ∆𝐺௠௜௫/𝛿∅ଶଶ ൐ 0 (2) 

where ∅ଶ is the volume fraction of the second polymer in a two-component polymer 
blend. Immiscible blends result in multi-phase morphology and poor interfacial adhesion 
between the phases, leading to poor mechanical properties [123]. Recycled blends have 
poor mechanical and physical properties due to polymer degradation through the recy-
cling process and inhomogeneity. 

3.2. Compatibilization of Recycled Plastic Blends 
To improve the performance of recycled plastics, compatibilization is required. Com-

patibilization improves interfacial properties between the different constituents by stabi-
lizing a desired morphology, reducing interfacial tension, and enhancing phase adhesion, 
thus leading to the improvement of mechanical properties [122]. Compatibilizers can be 
graft/block copolymers, nanoparticles, or ionomers [40]. Their efficiency depends on their 
structure/shape, molecular architecture, chemical composition, and concentration (Figure 3). 
Thus, spherical nanoparticles are more efficient than elongated ones and longer branched 
copolymers are more effective than shorter diblock copolymers [40]. However, it is still 
hard to predict the type and amount of compatibilizer required for recycled blends due to 
the inhomogeneity of plastic wastes. 

   
(a) Spherical (b) Elongated (c) Copolymer structures’ nanoparticles 

Figure 3. Presentation of compatibilizer shapes and molecular architectures for (a) spherical nanoparticles (b) elongated 
nanoparticles (c), copolymer structures: diblock copolymer consisting of two homopolymer blocks, triblock copolymers 
consisting of three homopolymer blocks, multiblock copolymer consisting of four or more homopolymer blocks, star co-
polymers consisting of polymeric chains attached to a central core, and grafted copolymers consisting of main homopol-
ymer chain with different polymeric side chains. Reproduced with permission [40]. 

4. Recycled Polyolefins (rPOs) 
POs, such as PP and PE, are attractive due to their low cost, high abundancy, good 

mechanical properties and chemical resistance, low density, and ease of processability 
[126]. For these reasons, 9.8 million tons of PP and 15.1 million tons of PE were manufac-
tured in 2019, which accounted for 49.2% of the total converted plastic European demand 
(50.7 million tonnes) [3]. POs are fully saturated hydrocarbons synthesised by the 
polymerisation of an olefinic monomer in the presence of a catalyst [127]. The olefinic 
monomers, ethylene and propylene, depicted in Figure 4, are obtained from the cracking 
of petroleum feeds or the dehydrogenation of alkanes [126]. Different grades of PP and 
PE exist, such as blow moulding or injection moulding grades, which differ in melt vis-
cosity and can be obtained through the use of co-monomers such as hexane or butane 
during olefinic polymerisation [127]. 

Figure 3. Presentation of compatibilizer shapes and molecular architectures for (a) spherical nanoparticles (b) elongated
nanoparticles (c), copolymer structures: diblock copolymer consisting of two homopolymer blocks, triblock copolymers
consisting of three homopolymer blocks, multiblock copolymer consisting of four or more homopolymer blocks, star copoly-
mers consisting of polymeric chains attached to a central core, and grafted copolymers consisting of main homopolymer
chain with different polymeric side chains. Reproduced with permission [40].

4. Recycled Polyolefins (rPOs)

POs, such as PP and PE, are attractive due to their low cost, high abundancy, good
mechanical properties and chemical resistance, low density, and ease of processability [126].
For these reasons, 9.8 million tons of PP and 15.1 million tons of PE were manufactured
in 2019, which accounted for 49.2% of the total converted plastic European demand
(50.7 million tonnes) [3]. POs are fully saturated hydrocarbons synthesised by the polymeri-
sation of an olefinic monomer in the presence of a catalyst [127]. The olefinic monomers,
ethylene and propylene, depicted in Figure 4, are obtained from the cracking of petroleum
feeds or the dehydrogenation of alkanes [126]. Different grades of PP and PE exist, such
as blow moulding or injection moulding grades, which differ in melt viscosity and can
be obtained through the use of co-monomers such as hexane or butane during olefinic
polymerisation [127].
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PP is a semi-crystalline polymer which is widely used in packaging films and house-
hold and electrical appliances [128–130]. For example, biaxially orientated polypropylene
(BOPP) is commonly used in the manufacturing of flexible and light packaging [131].
PP possesses good mechanical properties and processability; however, its applications
are limited by UV degradation, flammability, and poor impact strength at low temper-
atures [130,131]. There are three different types of PP: atactic PP, syndiotactic PP, and
isotactic PP (iPP) [128,129,132]. In iPP, the methyl groups are all located on one side of the
main chain and it is typically used in research papers due to its stability, homogeneity, and
high crystallinity [128,132].

PE is a semi-crystalline polymer used in a wide range of applications from packaging
to medical devices due to its diverse properties [128,129,133]. Depending on the poly-
merisation mode, three different PEs can form: high density PE (HDPE), low density PE
(LDPE), and linear low density PE (LLDPE) [128]. The branching degree and the molecular
weight influence their physical properties in the melt and solid state [134–136]. There are
many other types of PEs which exist on the PO market: for example, ultrahigh molecular
weight PE (UHMWPE) and very low-density PE (VLDPE), which are used in very specific
applications [134]. UHMWPE is typically incorporated in biomedical applications such
as artificial joints [137], whereas VLDPE is typically used to manufacture films for food
packaging [138]. Generally, PEs are limited by poor environmental stress cracking resis-
tance (ESCR) [139]. ESCR is affected by molecular weight, molecular weight distribution,
density, number of tie molecules between crystalline and amorphous domains, and the
testing conditions [140–142]. Typically, the higher the level of crystallinity, the lower the
ESCR [143]. Table 1 summarises the structure, properties, and applications of HDPE, LDPE,
and LLDPE.
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Table 1. Structure, properties, and applications of HDPE, LDPE, and LLDPE. The list of properties and applications is
non-exhaustive [53,133,134,138,144–147].

PE Degree of Branching Crystallinity Properties Applications

HDPE

Minimal branching High High tensile strength Milk bottles
High heat resistance Packaging

Rigidity Toys
Chemical resistance to acids,

alkalis, and solvents Electrical insulation

Chemical containers

LDPE
High level of short and

long branches Low

Flexibility Film packaging
Sufficient moisture barrier Electrical insulation

Chemical resistance to most
alcohols, acids, and alkalis Pipes

LLDPE
High level of short

branches
Low

Transparency Film packaging
Flexibility

High toughness

4.1. Mechanical Recycling of POs

Mechanical secondary recycling is a commonly used method for recycling POs due to
its low cost and reliability [42]. Due to the heterogeneity of PSW and difficulty in 100% sep-
aration of different plastic types, maintaining a constant recyclate quality or performance
is challenging. The complete separation of PP and PE during recycling is challenging and
expensive due to their similar physical properties and densities [144,145]. PP/PE blends
are commonly found in recycled wastes and are of great commercial interest. The blends
display poor mechanical performance due to immiscibility, thermo-mechanical degrada-
tion during reprocessing, and the presence of contaminants [146]. During reprocessing,
recycled PO (rPO) blends undergo the addition of stabilizers, compatibilizers, and fillers to
improve performance, but this can cause issues in processability and cost.

A major challenge of mechanical recycling is the occurrence of thermo-mechanical
and thermo-oxidative degradation caused by high temperatures and shear in the presence
of oxygen and impurities during reprocessing [147,148]. Degradation mechanisms cause
irreversible changes within the polymer structure, causing the deterioration of the thermal,
mechanical, and physical performance of the recycled materials [149,150]. During mechan-
ical recycling, two competing degradation mechanisms occur: random chain scission and
chain crosslinking (Figure 5) [151,152]. Random chain scission is the process of breaking
bonds in the polymer backbone chain, leading to the formation of reactive free radicals.
Chain crosslinking occurs when free radicals react, forming a crosslink between polymer
chains to form a network structure.
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Chain scission is considered to be the dominant mechanism and results in a decrease
in the polymer molecular weight and an increase in polydispersity showing the presence
of different chain lengths [122]. The presence of chain crosslinking, however, increases
the molecular weight due to the formation of longer chains and crosslinking [152]. The
extent of degradation is dependent upon several factors: the number of re-processing
cycles, polymer chemical structure, thermal-oxidative stability of the polymer, and the re-
processing conditions [128,152–154]. For example, Nait-Ali et al. [155] studied the influence
of oxygen concentration on this competition between chain scission and chain crosslinking.
They concluded that a well-oxygenated environment favours chain scission while a low-
oxygenated environment provokes chain crosslinking. The presence of oxygen leads to the
formation of oxygenated functional groups on the polymer chain, such as ketones, which
influence the final performance.

HDPE, LDPE, and PP have been found to have different degradation behaviours
during mechanical reprocessing (Figure 6) [154]. HDPE and LDPE have high thermal
stability, can be subjected to a high number of extrusion cycles before degradation, and
typically undergo chain scission and chain branching/crosslinking. Chain scission has been
shown to be the dominant degradation mechanism in HDPE by Abad et al. [156], further
supported by Pinherio et al. [152], who both studied HDPE subjected to five extrusion
cycles. However, Oblak et al. [157] subjected HDPE to 100 consecutive extrusion cycles at
220–270 ◦C and found that the chain scission was dominant up to the 30th extrusion cycle
but upon further increase, chain branching dominated. Eventually, crosslinking occurred
after the 60th cycle as determined through the melt flow index (MFI), rheological behaviour,
and gas permeation chromatography (GPC). Jin et al. [158] found that when virgin LDPE
(vLDPE) was subjected to 100 extrusion cycles at 240 ◦C to simulate the recycling process,
chain scission and crosslinking occurred simultaneously, determined by rheological and
MFI measurements. However, even though both chain scission and crosslinking were
occurring, it was suggested that one mechanism was usually dominant. At a low number of
extrusion cycles, chain scission dominated, whereas at a higher number of extrusion cycles,
crosslinking dominated. Similar results were found by Dostál et al. [159], in which vLDPE
was subjected to 20 extrusion cycles at 150–170 ◦C. Chain scission dominated at cycles 1
and 2 followed by crosslinking occurring from cycles 3–20 followed by the formation of a
microgel. In comparison to HDPE and LDPE, PP has been found to only undergo chain
scission [160]. Aurrekoetxea et al. [161] studied the effect of recycling on iPP by subjecting
iPP to 10 injection moulding cycles at 200 ◦C. They found that the MFI increased but the
chemical structure remained unchanged by FTIR, suggesting that chain scission was the
dominant degradation mechanism. Costa et al. [162] also found that chain scission was
the dominant degradation mechanism for PP. They found that, after 19 reprocessing cycles
at 270 ◦C, PP underwent chain scission resulting in a molecular weight reduction and the
presence of entanglements, causing the formation of a low viscosity liquid-like material
(Figure 6). This low viscosity liquid-like material could cause issues in processability
during further reprocessing cycles and limit the recyclate value.

The MFI which can also be denoted as the melt flow rate (MFR) is a key parameter
to understand the processability of materials, as any change in MFI can cause difficulties
during reprocessing and manufacturing [154,157]. Several researchers have shown MFI
to be affected during recycling due to a change in the polymer molecular weight and
distribution caused by degradation [122,148,157,163]. Kartalis et al. [163] reported a reduc-
tion in MFI with an increasing number of extrusion cycles that was caused by random
chain scission of a 75/25 weight ratio (wt%) LDPE/medium density PE (MDPE) blend.
To prevent a significant deterioration in MFI, stabilizers were added during reprocessing.
Upon stabilizer addition, an improvement in molecular weight retention was observed,
resulting in processing stability. Heat stabilizers along with other additives are typically
added during reprocessing. On the other hand, an increase in MFI was reported with
increase in recycling cycles which could be caused by chain crosslinking [159,161]. If the
MFI changes significantly after each recycling cycle, the reprocessing conditions such as
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temperature may have to be altered, which can be time consuming and costly. Predict-
ing the MFI of recycled blends has been shown to be possible by Hubo et al. [164], who
compared the experimental MFI of different compositions of post-consumer PP/HDPE
blends to the rule of mixtures. Little deviation was found between the experimental and
theoretical values. However, predicting the change in MFI with increasing recycling cycles
is challenging due to degradation and the presence of contaminants. Rytöluoto et al. [165]
investigated the effects of three reprocessing cycles on the performance of biaxially oriented
silica polypropylene nanocomposite (SiO2-BOPP) films containing 4.5 wt% silica particles.
They found that reprocessing cycles had a detrimental effect on the steady shear viscosity
and film processability, but silica particle agglomeration remained mostly unaffected.
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During a recycling cycle, thermal degradation can result in a decrease in the molecular
weight, causing the mechanical properties to decrease [160]. The number of recycling cycles
has been shown to affect rheological and mechanical properties due to their dependence
upon the molecular weight [157,162,166,167]. The polymer structure and thermal stability
will determine the number of cycles a polymer can endure before a reduction in mechanical
performance is observed. PP and PE are semi-crystalline polymers and their degradation
in the solid state typically occurs in the amorphous phase [159]. Degradation affects
the crystallinity and thus the mechanical properties [162]. Interestingly, the recycled PP
(rPP) crystallinity has been found to be higher than that of virgin PP (vPP) by several
authors [161,162,166]. Costa et al. [162] suggested that a higher value of crystallinity of
rPP compared to vPP was caused by a decrease in the molecular weight, which resulted in
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an increase in chain mobility. Increased chain mobility improved the ability of chains to
fold into thicker lamella, and hence an increased crystallisation rate and crystallinity. An
increase in crystallinity can result in improvements in tensile properties, Young’s modulus,
and yield stress, but causes the elongation at break to decrease.

Aurrekoetxea et al. [161] subjected PP to 10 successive injection moulding cycles at
200 ◦C and found that the degree of crystallinity increased with each cycle. This caused an
increase in the Young’s modulus and yield stress. On the other hand, Oliveira et al. [160],
who subjected PP to seven successive cycles at 175–190 ◦C, suggested a decrease in Young’s
modulus and yield stress after the third cycle, which was caused by the reduction in tie
molecules between the crystalline and amorphous phases (Table 2). Additionally, impact
strength was also observed to decrease after the fifth cycle, which was caused by chain
scission increasing the crystallinity. Conflicting observations by Aurrekoetxea et al. [161]
and Oliveira et al. [160] for the Young’s modulus and yield stress of rPP could be due
to differences in the processing methodology. Aurrekoetxea et al. [161] used injection
moulding whereas Oliveira et al. [160] opted for a single screw extruder followed by
compression moulding. This highlights the importance of the reprocessing methodology
but also demonstrates the difficulty of comparing the performance of recycled materials in
the literature.

Table 2. Elastic modulus, yield stress, and impact strength of PP subjected to multiple extrusion
cycles. Reproduced with permission [160].

Pure PP
Tensile Test

Impact Strength (J/m)
Elasticity Modulus (MPa) Yield Stress (MPa)

1 cycle 481.6 ± 38.41 16.19 ± 0.80 79.30 ± 2.23
3 cycles 465.8 ± 36.88 15.44 ± 1.28 78.01 ± 3.07
5 cycles 478.3 ± 18.25 13.58 ± 0.58 72.00 ± 1.54
7 cycles 433.5 ± 18.21 12.75 ± 0.88 66.51 ± 2.38

PE can be subjected to a higher number of extrusion cycles before any deterioration
in the mechanical properties is observed. Jin et al. [158] found no significant change in
crystallinity and hence in mechanical properties of LDPE up to the 40th extrusion cycle.
However, a decrease in crystallinity was observed between the 40–50th cycles, either caused
by short side branches in the backbone chain, side groups, or by crosslinking. Through
creep experiments it was found that the time-dependent mechanical properties were
affected after the 40th extrusion cycle, which can be related to the decrease in crystallinity.
Oblak et al. [157] subjected HDPE to 100 consecutive extrusion cycles at 220–270 ◦C. They
found that chain branching and chain scission, which occurred up to the 60th cycle resulted,
in a decrease in crystallinity and Young’s modulus. However, crystallinity and Young’s
modulus remained stable after the 60th extrusion cycle due to crosslinking. After the 100th
cycle, the Young’s modulus of recycled HDPE (rHDPE) had only reduced by 20% compared
to that of the virgin HDPE (vHDPE).

The processing conditions at which recycling is carried out affect the polymer degra-
dation and thus the physical and mechanical properties of the recycled materials. The
processing temperature has been found to be of importance by Santos et al. [148], who
investigated the rheological, structural, and physiochemical properties of a municipal
plastic waste blend extruded at conventional (150–180 ◦C) and aggressive temperatures
(210–250 ◦C) three times. Rheological and structural properties remained unaltered up
to the third cycle at conventional temperatures (Figures 7 and 8). On the other, at higher
(aggressive) temperatures, degradation occurred from the second extrusion cycle and re-
quired the addition of an antioxidant. This work highlighted the importance of processing
temperature—the higher the temperature, the higher the rate of degradation—but it was
limited to only one blend ratio. Guillén-Mallette et al. [168] investigated using recycled
printed BOPP labels and printed PO caps as a chemical foaming agent in extruded products.
Gases were produced as the inks on the BOPP labels degraded and these gases acted as the
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foaming agent in the PO matrix. They determined that the processing conditions, screw
angular velocity and temperature, affected the cellular morphology. The crystallinity and
melt strength of the PO matrix varied depending on the cooling process.
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4.2. Chemical Recycling of POs

Chemical recycling is not so easily achievable for POs as for other polymers such as
PET due to POs’ chemical inertness, which requires harsh conditions to break the C–C
backbone chain and C–H bonds [169,170]. The preferable chemical recycling routes for
POs on large scales are thermochemical ones such as pyrolysis and catalytic cracking [112].
Several researchers have investigated the pyrolysis of POs [96,105,171–176], where above
700 ◦C the recycling products are olefin mixtures and aromatic compounds, while around
400–500 ◦C they are calorific gas, hydrocarbon oil, waxes, and chars [170,177]. Pyrolysis is a
temperature-dependent, energy intensive process and results in a wide range of molecular
weight hydrocarbons which are low value products [96,97]. The use of catalysts of suitable
acidity and shape selectivity in pyrolysis narrows the molecular weight range of hydrocar-
bons in the crude oil product at lower temperatures [175,178,179]. Catalytic cracking of PP
and PE is commonly carried out using zeolite [178,180–184] and FCC [185,186] catalysts,
but Ziegler–Natta [187] catalysts have also been used. The use of catalysts has drawbacks
such as recovery costs of the catalysts after use and catalyst deactivation over time [184].
Even with the addition of a catalyst, the temperatures required to process POs are still
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elevated, so work has begun on a tandem catalytic approach to degrade under mild condi-
tions [188–191]. A limitation of most literature concerning catalytic cracking is that it has
not been applied to real plastic waste streams, but work has begun on developing strategies
for mixed plastic waste streams [172,192–194]. Sivagami et al. [195] assessed the catalytic
pyrolysis of multi-layered plastics wastes: BOPP, metalized biaxial oriented polypropy-
lene (MET/BOPP), PET, metalized polyethylene terepthlate (MET/PET), PET combined
polyethylene (PET/PE), and mixed PO plastic waste, in the presence of a zeolite catalysts
at pilot scale. They found that BOPP-based plastics gave a higher oil yield and calorific
values compared to PET-based multi-layered plastics. By combining multi-layered plastics
such as BOPP with PET or PO mixed plastic waste, a consistent oil yield and quality can be
achieved. For example, mixing PET-based multi-layered plastics and BOPP/MET/BOPP
in the range of 40–60% doubled the liquid yield.

Gasification of POs waste is also a promising technology [18,101]. Gasification involves
the conversion of plastic waste into a mixture of carbon monoxide, carbon dioxide, methane,
and hydrogen gases [196]. The desirable product from gasification is syngas, a mixture
of hydrogen and carbon monoxide, which can be used to synthesise fuel chemicals, in
particular methanol [98]. However, a concern surrounding the gasification of plastic
waste is the production of harmful pollutants [98]. Gasification is usually carried out in
conjunction with pyrolysis in the presence of catalysts and has been reported for POs [197].

4.3. Improving the Performance of rPO Blends
4.3.1. Composition of rPE and rPP Blends

The performance of PO blends is dependent upon the composition and the charac-
teristics of the individual components. Strapasson et al. [145] investigated the tensile and
impact properties of vPP/vLDPE blends at five different blend ratios. Upon addition of
PP, the Young’s modulus and yield strength increased, but elongation at break and impact
strength decreased. Hassan Awad et al. [198] observed similar tensile property trends in
rPP/rHDPE blends upon rPP addition. The crystallisation behaviour of PO blends is also
affected by the recycling process. Aumnate et al. [199] studied the effect of recycling on
the crystallisation and mechanical behaviour of five PP/LDPE blend ratios: PP, LDPE, and
PP/LDPE at 25:75 wt%, 50:50 wt%, and 75:25 wt%. An increased rate of crystallisation
and formation of imperfect crystallites were found in the rPP/rLDPE blends compared
to the virgin blend, which was caused by the decrease in molecular weight during the
recycling process. Interestingly, they found that the tensile properties of the rPP/rLDPE
blend showed only a slight change from the virgin blend.

4.3.2. Addition of Virgin Polymers

The addition of virgin polymers to recycled polymer wastes has been shown to be an
effective method of improving the performance of recycled materials [144,200,201]. For
industry, the quantity of virgin polymer required is of key interest to strike a balance
between cost and material performance. Typically, the same type of polymer is added to
the recycled waste, which can minimise the change in melt viscosity. Meran et al. [200]
added vPP to rPP, vLDPE to rLDPE, and vHDPE to rHDPE. They found that the recycled
polymer tensile strength and elongation at break improved upon the addition of virgin
polymer. The addition of virgin polymers to rPO blends has also been investigated by
several authors. Madi [144] investigated the thermal and mechanical behaviour of rHDPE
and vPP blends which contained up to 30 wt% of vPP. They found that the dispersion of
vPP through the rHDPE was poor and the presence of vPP affected crystallite formation,
resulting in a decrease in crystallinity and heat of fusion. The tensile strength was observed
to improve as the vPP content was increased, but elongation at break decreased, which
was caused by HDPE potentially decreasing the plasticity of PP. Lovinger et al. [202]
suggested that the mechanical properties of vPP/rHDPE blends were determined by the
morphology. rPOs can also be blended with other polymers such as polyamide to improve
their performance [203,204].
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4.3.3. Addition of Compatibilizers

Non-reactive compatibilizers such as graft and block copolymers are located at the in-
terface between phases and contain a component that is miscible in one phase and another
component that is miscible in the other phase [124,204]. The effectiveness of compatibi-
lization on the performance of PO blends is influenced by the chemical structure of the
compatibilizer, the amount of compatibilizer added and the method of blending. Com-
monly used compatibilizers for rPP/rPE blends are ethylene–propylene rubber monomer
(EPRM) and ethylene propylene diene monomer (EPDM), as they are cheap, readily avail-
able, and easily processed. EPDM and EPRM are used as impact modifiers to improve
the toughness of recycled blends. Bertin and Robin [205] investigated an rPP/rLDPE
blend prepared by single and twin screw extruders with the addition of different com-
patibilizers: EPRM, EPDM, and a PE-g-(2-methyl-1,3-butadiene) graft copolymer. All
rPP/rLDPE/compatibilizer blends exhibited improved elongation at break and impact
strength, but the extent of improvement was dependent upon the structure of the com-
patibilizer. The chemical structure of the copolymers, such as the ratio of ethylene to
propylene or the use of block versus random copolymer, affects the resulting morphol-
ogy and mechanical properties. Bertin and Robin [205] found that random copolymers
performed as more efficient compatibilizers than graft copolymers, giving enhanced me-
chanical properties. Radonjič and Gubeljak [204] investigated the compatibilization effect
of two different EPRM copolymers upon the mechanical properties of rPP/rHDPE and
rPP/rLDPE blends at 80/20 wt%. The EPRM block copolymers differed in ethylene content:
EPRM-1 had 68% and EPRM-2 had 59% ethylene, and the EPRM content in the blends
remained at 10 wt%. They found that EPMR-1 and EPRM-2 both decreased the size of the
dispersed phase in the phase separated morphology upon addition. The effectiveness of
the EPRM compatibilizer was affected by the ethylene monomer content. The notched
impact strength and the elongation at break improved upon the addition of EPRM-1/2 in
the rPP/rLDPE blend, whereas the elongation at yield and Young’s modulus improved
marginally. The improvements in the rPP/rLDPE blend were greater upon addition of the
higher ethylene containing EPRM-1. However, no significant improvements were observed
with the exception of notched impact strength for the rPP/rHDPE blend upon the addition
of EPRM.

Maleated POs are also used as compatibilizers in the literature [204,206]. Atiqah
et al. [206] used a maleated PP (MAPP) to improve the tensile properties of rPP/rHDPE
blends. They observed an increase in tensile strength, Young’s modulus, and elongation
at break with the presence of MAPP, which was attributed to the improvement in inter-
facial adhesion between the rPP and rHDPE phases. Similar results were reported by
Radonjič and Gubeljak [204] who found the presence of the 10 wt% compatibilizer EPRM
improved the phase adhesion by reducing the size of the dispersed rPP phase in 20/80 wt%
rPP/rHDPE and 20/80 wt% rPP/rLDPE blends. The MFI was found to decrease upon the
addition of compatibilizers, which was attributed to the improvement in phase adhesion.

The amount of compatibilizer added to a system will be effective up to an optimum
level, at which point the interface becomes saturated. Hanna [207] investigated the mechan-
ical properties of rPP/rPE blends with and without the compatibilizer EPDM prepared
by a designed mixing-injection moulding machine. It was observed that the addition of
4 wt% EPDM to rPP/rPE blend increased the tensile strength. Upon further increase to
6 wt%, EPDM tensile strength was not affected. This is most likely due to the saturation
of the interface with EPDM. The amount of EPDM did not have a significant effect on
the elongation at break, flexural strength, and modulus, but minor improvements were
observed. Batch mixing followed by compression moulding or single/twin screw extrusion
followed by injection moulding were the methods used to produce PO blends. Bertin
and Robin [205] found that blends of rPP/rLDPE/compatibilizer prepared by twin screw
extrusion were more homogeneous with improved mechanical properties compared to
single screw prepared blends. A uniform dispersion of compatibilizers is important for
consistent performance.



Energies 2021, 14, 7306 15 of 43

4.3.4. Production of Composites from rPOs and Inorganic/Organic Fillers

To further enhance the performance of recycled materials at low cost, particular fillers
can be added along with or instead of compatibilizers to form composite materials. Nano-
fillers can stabilize immiscible blend morphology, leading to a finer morphology and
improved material performance [40]. Recyclates contain additives such as heat stabilizers
which are added during reprocessing. Therefore, the presence of additives in recyclates
needs to be taken into account when adding nano-fillers and/or compatibilizers. It is
essential that a balance between the quantity of filler and compatibilizer is struck as
nano-fillers can affect compatibilizer efficiency if located at the interface [146]. POs are
hydrophobic in nature and the addition of hydrophilic fillers results in a poor performing
composite caused by a lack of bonding between the matrix and filler [208]. To improve the
adhesion between the polymer matrix and filler, a coupling agent can be added and/or
the surface of the filler can be modified. Coupling agents are bifunctional molecules
which act as a bridge between the matrix and filler and usually have a polar and nonpolar
functionality [209]. Common examples of coupling agents are copolymers containing
maleic anhydride (MA) such as maleated polypropylene (MAPP), silanes, and titanates.
Surface modification of the filler can occur through either chemical or physical routes.
Inorganic fillers such as minerals can be added to improve the mechanical and thermal
properties of the rPOs. Calcium carbonate (CaCO3) is a cheap mineral which can improve
the impact strength, hardness, and Young’s modulus, but was found to accelerate polymer
degradation [210]. Brachet et al. [210] studied the effect of the addition of compatibilizer
ethylene–octene rubber (EOR) at either 5 wt% or 10 wt% and CaCO3 at either 10 wt%
or 20 wt% for rPP. Improvements were observed in Young’s modulus at 23 ◦C upon the
addition of CaCO3, whereas yield stress and strain increased with EOR and CaCO3 +
EOR (Table 3). Only minor changes occurred in mechanical performance in comparison to
those reported in the literature. Additionally, it was found that the mechanical properties
were dependent upon the quantity of EOR and CaCO3. For example, Young’s modulus
decreased upon addition of 5 wt% of EOR, but was found to increase upon the addition of
20 wt% of CaCO3. A ratio of 10 wt% EOR and 10 wt% CaCO3 gave the optimum balance
for mechanical performance.

Table 3. Trends in the mechanical properties of rPP with the addition of elastomer EOR and CaCO3

or both. Reproduced with permission [210].

Additive −20 ◦C −23 ◦C −60 ◦C

E- modulus (tensile)

CaCO3 0 + −
EOR − − −

CaCO3 + EOR − 0 −
Additive σ Yield stress ε Yield strain

Yield stress and strain

CaCO3 − −
EOR − +

CaCO3 + EOR − +

CaCO3 can be surface treated to improve dispersion and the interactions between
the filler and polymer matrix. Elloumi et al. [211] compared the effects of the addition of
CaCO3 in vPP and rPP. The CaCO3 was surface treated with stearic acid but was found
to have a non-uniform dispersion through vPP. The dispersion was improved in rPP due
to the lower viscosity of the matrix. The mechanical properties of both vPP/CaCO3 and
rPP/CaCO3 were investigated. The Young’s modulus of vPP and rPP increased by 17%
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and 9.5%, respectively, with 10 wt% CaCO3. The yield strength for both the vPP and rPP
composites decreased upon increasing the CaCO3 loading.

Talc is another commonly used inorganic filler. At high loadings (10–40 wt%), talc
acts as rigid particles to increase the stiffness and Young’s modulus of the plastic, but
causes a reduction in the elongation at break and impact strength [212]. This was observed
by Wang et al. [213], who injection moulded PP with talc at 10 and 20 wt% loading. The
PP/talc compound underwent six reprocessing cycles at 200 ◦C. They observed an increase
in the Young’s modulus (Figure 9) and a decrease in the elongation at break (Figure 10)
with reprocessing cycles for both PP/talc 90/10 wt% and PP/talc 80/20 wt% compositions.
However, an increase in yield stress was observed for the PP/talc 80/20 wt% with recycling
cycles, but with 10 wt% talc yield stress remained constant. Thermal properties were also
investigated. The presence of talc stabilized the melting and crystallisation temperature
of PP during the recycling processes, but the glass transition temperature (Tg) was found
to decrease.
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At low (below 10%) loading levels, talc can act as a nucleating agent to promote
heterogeneous crystallisation, causing a change in the material performance. Sánchez-
Soto et al. [214] investigated a blend of rHDPE from two different sources, industrial
moulding scraps and post-consumer bottles, with talc prepared by a twin-screw extruder.
The Young’s modulus increased and strain at break decreased with a smaller talc particle
size (2 µm) at a higher loading (10–20 wt%), which was caused by an increase in the number
of small regular crystallites in the matrix caused by the nucleation effect of talc.

Fly ash (FA) is a waste by-product from thermal power plants and has been shown
to be an effective mineral filler in rHPDE [215] and rPP composites [216] to enhance the
mechanical properties. As with other fillers, FA is surface modified with coupling agents
due to weak interfacial bonding between the FA particles and polymer matrix. Green
couplings agents, stearic acid [217], lauric acid [218], and palmitic acid [219], were shown
to be effective coupling agents in rPP/FA composites. The use of green coupling agents
instead of conventional chemicals can improve the sustainability and reduce the cost of
rPO/FA composites.

Organoclays are layered silicates which are modified with alkylammonium groups to
improve their interaction with hydrophobic polymers [220,221]. A commonly used organ-
oclay is organically modified montmorillonite (OMMT) [221]. Organoclays have excellent
thermal stability, modulus, barrier properties, and flame retardancy, which can enhance
the performance of a polymer matrix [220]. This has been shown by Phuong et al. [222],
who found a significant improvement in the mechanical performance of rPP which was
comparable to vPP in the presence of 4 wt% nanoclay and a MAPP compatibilizer. Melt
intercalation is a convenient and popular method to produce organoclay reinforced com-
posites which involves the dispersion of the organoclay in the polymer melt. However,
during processing, alkylammonium surfactants were found to degrade as the temperature
increased beyond 180 ◦C [223]. Touati et al. [224] found that, after a recycling cycle, the
mechanical and thermal properties of PP/OMMT/PP grafted maleic anhydride (PP-g-MA)
composite decreased significantly but remained constant upon further recycling cycles. The
dispersion of the OMMT was found to increase with recycling cycles due to the decrease in
complex viscosity caused by a reduction in molecular weight.

4.3.5. Production of Composites from rPOs and Fibres

Composites consisting of rPOs and glass fibres [225,226] or carbon nanotubes [227]
have been reported in the literature. However, the addition of natural plant-based fibres
to recycled plastics to form wood–plastic composites (WPC) is gaining popularity as
they are considered to be a sustainable and green material. Examples of plant-based
fibres include wood, bamboo, pine, kenaf, cellulose, pineapple fibre, and hemp [228–234].
Plant fibres are cheap, readily available, and biodegradable [234], but they do possess
challenges in processability due to fibre agglomeration and fibre breakage, degradation
during processing and the WPC lifetime, incompatibility with hydrophobic matrices, and
lifetime, which results in poor composite performance. However, the limitations can
be overcome through the addition of coupling agents and/or fibre surface modification
and by finding optimum processing conditions. WPCs have the potential to be used in
the automotive and construction industries due to their superior strength/weight and
stiffness/weight ratios [228]. Rohit et al. [235] studied the mechanical and morphological
properties of a composite consisting of a recycled LDPE:LLDPE:BOPP matrix reinforced
with sisal fibres at 5, 10, 15, and 20 wt%. The optimum fibre content was found to be 15 wt%.
The tensile strength, flexural strength, and modulus increased with increased fibre content
up to the optimum of 15 wt%. However, poor adhesion was found between the fibres and
matrix and therefore required the addition of a compatibilizer. Inácio et al. [236] suggested
that bamboo fibre reinforced rPP/talc/EPDM composites with a PP-g-MA compatibilizer
have the potential to be used in the automotive industry. They found that the addition of
the bamboo fibres and PP-g-MA resulted in an increase in the tensile strength and modulus,
flexural strength, and fatigue life of the composites. Impact strength and elongation at break
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were found to decrease. Improvements in impact strength are possible through the use
of impact modifiers, such as EPDM and ethylene vinyl acetate (EVA). The durability and
longevity of the composite is crucial for its use in interior and exterior applications within
the automotive industry. Therefore, more research into improving the adhesion between the
natural fibre and recycled matrix is required to ensure fibre debonding does not occur, along
with the effects of the environmental conditions on the degradation of natural fibres within
WPCs. Due to plant fibres’ hydrophilic nature, they absorb water from the surrounding
environment [237]. This results in thickness swelling, resulting in a dimensional instability
in WPCs and limiting their possible end use. Kazemi Najafi et al. [238] compared the
properties of WPCs made from wood flour and virgin and recycled plastics, PP and HDPE,
after immersion in distilled water after 2 and 24 h at three temperatures: 25, 50, and
70 ◦C. They found that WPCs containing recycled plastics had a higher water absorption
compared to WPCs containing virgin plastics caused by the poor wetting of the wood flour
by the recycled plastics. Weak bonding between the wood flour and the recycled plastics
caused the rate and the amount of water absorbed to increase. WPCs with mixed rPP/rPE
had the greatest water absorption. Additionally, the immersion temperature was found to
influence the extent of water absorption with higher temperatures leading to higher levels
of water absorption (Figure 11).
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Ashori and Nourbakhsh [239] investigated the addition of recycled old newsprint
in rHDPE/rPP blends. They suggested that water absorption in fibrous composites was
dependent upon several factors: temperature, fibre loading, permeability and orientation,
void content, diffusivity, area of exposed surfaces, and the hydrophilicity of the compo-
nents. A concern for potential industries is WPCs’ high risk of flammability. However,
Zhang et al. [240] found an improvement in the flame retardancy of vPP/wood composites
through the use of ammonium polyphosphate and silica as fire retardants. Das et al. [241]
showed that organosilanes are an effective coupling agent in rPP/jute caddy composites to
enhance their thermal stability.

4.4. Applications of rPOs

The price of POs is determined by the oil price as they are sourced from petrochemical
derivatives, ethylene and propylene. As the price of oil changes, so does the cost of virgin
polymers [17]. rPOs have the potential of being used in a wide range of applications if
a control and improvement in waste quality could be achieved without a large increase
in cost. Plastics Europe [30] found that post-consumer recyclates have been used in a
variety of industries, as shown in Figure 12, with the building and construction sector
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using the highest proportion of recyclates [242]. Jubinville et al. [62] discussed several
potential applications for rPO from WPCs, which were discussed in Section 4.3.5, as a fuel
either via pyrolysis or energy recovery, to aggregates within concrete. Andoh et al. [243]
proposed a 75 wt% rHDPE:25 wt% bamboo fibre composite which could potentially be
used in wind blade manufacturing. Post-consumer PO waste can additionally be used in
the manufacturing of plastic lumber. Plastic lumber is used in the construction of docks,
marine piling, fences, and park benches [244]. Grammatikos et al. [245] demonstrated a
WPC consisting of rHDPE with 30, 40, and 50 wt% wood fibre flour which had adequate
mechanical performance for use as flooring in ship containers.
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5. Recycled Polyethylene Terephthalate (rPET)

Currently, polyethylene terephthalate (PET) is mainly used for fibre production and in
the packaging sector for bottles and trays, due to its resistance to shrinkage, heat stability,
high stiffness, strength, and high barrier property against oxygen [57]. For these reasons,
96% of its European production is dedicated to the packaging industry [246] and its use
for drinking bottles expanded worldwide from 300 billion bottles in 2000 to 480 billion
in 2016 [247]. The PET quantity produced globally each year is approximately 70 million
tonnes compared to 33 million tonnes in 2015 [248,249]. PET is a part of the polyester
family, and its monomer unit is presented in Figure 13.
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PET can be produced either by an esterification reaction between ethylene glycol
(EG) and terephthalic acid (TPA) or by a transesterification of dimethyl terephthalate
(DMT) with EG [250]. Both reactions create a prepolymer: bis (hydroxyethyl) terephthalate
(BHET) [250]. Different grades of PET are used for different applications such as bottles,
geotextiles, clothing, etc. Properties such as intrinsic viscosity (IV), molecular weight, or
optical properties vary for all these grades [251]. The unrestrained PET production presents
a real threat for the environment, animals, and human health if no recycling policy is
implemented. As an example, one million PET bottles are discarded worldwide per minute
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(2018) [252,253], and the full decomposition of PET in soil requires over 300 years [44].
For these reasons, many countries are taking more and more interest in PET recycling,
which can reduce the waste quantity and the exploitation of fuel resources. India, Germany,
Japan, and South Africa appear to be leaders in this sector [254]. Thus, PET is one of the
most recycled plastics with about 18.5% of PET wastes recycled in 2016 [255]. Even if the
applications of recycled PET (rPET) can vary depending on the countries, today rPET is
mainly used for fibres and plastic bottle production as presented in Figure 14 [246,254].
However, rPET can also be found in electrical and lighting components, housewares,
sports equipment, automotive parts [256], and in bitumen roads and pavement [242]. rPET
presents some advantages in the construction industry, such as raising the ductility of
concrete or reducing the weight of aggregates [242,257].
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Meanwhile, PET recycling represents a real economic and technical challenge. Eco-
nomically, the low cost of vPET can hinder the use of rPET in industries even if PET is one
of the most cost-efficient plastics to recycle [44,249]. Technically, the different contaminants
present in PET waste can highly reduce its molecular weight and hence its mechanical
properties [45]. Different waste management techniques are employed for PET: mechanical
recycling, chemical recycling, and energy recovery [258–262]. Primary recycling requires
high quality waste and energy recovery is selected when sorting is too difficult or too
expensive. Neither of these appear like promising solutions for PET; therefore, major
research is focused upon chemical and mechanical recycling [118].

5.1. Chemical Recycling of PET

Different treatments have been developed in order to depolymerise PET waste [259,262,263].
The three major chemical routes for depolymerisation are glycolysis [264–269], methanoly-
sis [270–274], and hydrolysis [270,274–281], summarised in Figure 15. For glycolysis and hy-
drolysis transformations, researchers focussed on the selection of catalysts, which could of-
fer a high yield, short process time, and more environmental friendliness [106,249,282,283].
Thus, for glycolysis, Chiaie et al. [249] underlined the importance of tuning the strength
of Lewis acid-base catalysts. López-Fonseca et al. [282] recommended the use of sodium
bicarbonate as a catalyst, which can be as efficient as zinc acetate in higher concentrations
but is more respectful towards the environment. For methanolysis, Yang et al. [283] ob-
tained a good degree of depolymerisation under the supercritical state of methanol for
different PET colours and waste origins. The different products of chemically recycled PET
can be used to produce new materials. For example, Viante et al. [106] developed magnetic
microsphere composites from magnetic nanoparticles and BHET produced by glycolysis
and modified by glycidyl methacrylate (GMA).
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Two other chemical treatments were reported: ammonolysis and aminolysis [249–251,282–286].
They correspond to a reaction of PET with anhydrous ammonia and with amine in aqueous
solution, respectively. Moreover, Kárpáti et al. [287,288] recently developed a new chemical
route for PET recycling by acido-alcoholysis which allowed the production of high quality
oligoesters by combining depolymerisation and polycondensation in one step. Chemical
treatments appear to be a very promising way to recycle waste PET because they offer the
possibility to produce new virgin PET with good properties. However, the use of chemicals,
which poses a threat to the environment and incurs high costs, present challenges that still
have to be solved.

5.2. Mechanical Recycling of PET

Subjecting PET, in particular multi-layered PET packaging, to several mechanical
reprocessing cycles produces lower quality rPET products because of the degradation
of PET during the re-melting process [256,282,289,290]. The breakdown of the backbone
chain causes a decrease in the molecular weight and intrinsic viscosity (IV) with a rise
of the end groups’ (carboxyl and hydroxyl) number [282,289,291]. These phenomena are
accompanied by a change in the PET colour, which becomes slightly browner or greyer [292].
This degradation of PET is also linked to the trace acidic contaminants during the melting
step of the recycling [258,293]. Acids such as acetic acids from EVA or hydrochloric
acid from PVC induced chain scission of the molten PET, causing degradation [251]. The
presence of acidic contaminants is a major issue for PET recycling. PVC is a commonly used
plastic which possesses low thermal stability and undergoes significant thermo-oxidative
degradation by chain scission during reprocessing [294,295]. Szarka et al. [294] illustrated
the importance of understanding the effect of thermo-oxidative degradation on PVC
thermal stability. They found at shorter degradation times partially oxidized PVCs formed
and at longer PVC degradation times (after 3 h) oily products were formed, which could
increase the number of routes for PVC recycling. Awaja and Pavel [118] underlined the
impossibility of removing more than 90% of PVC during the manual sorting step. Moreover,
the contamination by metal ions can also create transesterification and polycondensation
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reactions [251]. Finally, an amount of water even in the range of 0.01–0.02 wt%, incites
hydrolysis of the ester groups in PET during melting, leading to a decrease in molecular
weight [155]. Without a drying step, Eriksen et al. [296] noticed an extreme decrease in
the mechanical properties of rPET from packaging waste in comparison to vPET. Tensile
and impact strengths were reduced by more than 55% and 90%, respectively. On the
contrary, Qin et al. [297] underlined that with dried copolymer rPET from clear flakes,
melt-spun fibres have a tenacity and a strain at break very close to melt-spun fibres from
vPET. Likewise, Frounchi [298] noticed only a very slight decrease of tensile and impact
strength of dried rPET even when the molecular weight was reduced by around 26%. He
also studied the impact of the change in chain length on crystallisation. Cold crystallisation
was evident in rPET and not in vPET, and the crystallisation rate increased with an increase
in the number of recycling cycles.

To minimise rPET degradation, multiple solutions have been investigated, such as
solid-state polymerisation (SSP) [285,299], adding chemical stabilisers, or chain exten-
ders [300–304]. The SSP process is commonly used in industry to improve the quality of
rPET by aiming to increase the molecular weight of rPET [305]. The SSP process corre-
sponds to heating PET at temperatures between the Tg and melting temperature (Tm) and
under low pressure [306–308]. These conditions increase the molecular weight by transes-
terification reactions and improve the mechanical properties of rPET. Chain extenders have
been used in industry with PET to counter the degradation caused by mechanical recycling,
but there are concerns of their use in food grade packaging due to migrations [309]. Py-
romellitic dianhydride (PMDA) is a commonly used chain extender for rPET. According to
Kossentini-Kallel et al. [310], the addition of 0.3 wt% PMDA increased the molecular weight
and IV by approximately 150% and 75%, respectively. Awaja et al. [311] reported that IV
and die pressure were raised with an increasing amount of PMDA. They also highlighted
the possibility to achieve improved elastic modulus and tensile strength for reactively
extruded rPET compared to vPET. Awaja and Pavel [118] studied the impact of PMDA on
injection stretch blow moulding (ISBM) of rPET and vPET blends. Other types of chain
extenders have also been investigated, such as diisocyanates [312], diphosphates [313],
and silicones [314]; the last ones are particularly effective to increase the flexibility of rPET,
facilitating the extrusion process.

Effects of Mechanical Recycling on PET Properties

The thermal and mechanical properties of rPET are difficult to define because they
strongly depend on the sources of the PET waste, the presence of contaminants, and the
recycling conditions. Badia et al. [315] investigated the influence of mechanical recycling
on the vPET properties. They emphasised the importance of chain scissions, which were
revealed by a higher number of -OH groups, which explains the yellowing aspects of
rPET. They also studied the influence of recycling cycle number on the viscosity and poly-
dispersity index (PDI) (Figure 16a), crystallinity (Figure 16b), and mechanical properties
(Figure 16c,d) of PET.

Some authors also studied the influence of contaminant polymers on the final prop-
erties of rPET [45,316]. Itim and Philip [316] investigated the influence of 5 wt% of PP
contamination in bottle grade PET multicolour waste. With this contaminant, the crys-
tallinity degree and crystallisation rate were reduced in comparison to neat rPET and
that decreased further with the number of recycling cycles. They also highlighted that
under these conditions crosslinking predominated over chain scissions. Torres et al. [45]
compared the properties of vPET and rPET from homogeneous blue bottles, and rPET from
heterogeneous wastes contaminated by PVC. Their different results are summarised in
Table 4. They reported that rPET was more sensitive to hydrolytic degradation than vPET
due to the presence of contaminants and moisture.
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Table 4. Comparative properties of vPET and rPET. Reproduced with permission [45].

vPET rPET from Blue Bottles rPET from Wastes
Contaminated by PVC

Mw (g/mol) 42,200 37,900 31,300

Young’s modulus
(N/mm2) 2140 (±206) 2170 (±184) 1996 (±210)

Elongation at break (%) 270 (±57) 5.4 (±0.6) 3.0 (±0.4)

Charpy impact strength
(notched, 20 ◦C, J/m2) 3.0 (±0.2) 2.4 (±0.5) 1.8 (±0.3)

Aspect of test bars Transparent Opaque Opaque

5.3. Compatibilization of rPO and rPET Blends

The blending of rPET with other virgin/recycled polymers such as POs can produce
a material with beneficial versatile mechanical and barrier properties and processability,
overcoming the rPET limitations and reducing the need for plastic waste sortation during
mechanical recycling [317,318]. rPET has a generally higher tensile and flexural strength
and modulus than rPO, while rPOs offer higher impact strength. Thus, the blends of these
materials appear less brittle than neat rPET and stiffer than neat rPO [319–321]. Therefore,
their blends can represent very promising materials. However, their processing gives rise
to numerous difficulties. Firstly, due to a large difference between their melting temper-
atures (Tm_PET ≈ 250 ◦C, Tm_PE ≈ 100–140 ◦C, Tm_PP ≈ 160 ◦C), POs and the adhesion
between PO and PET can be degraded at temperatures corresponding to rPET processing
temperatures (around 270 ◦C). Acceptable mechanical properties can be obtained for an
injection moulding temperature close to 185 ◦C [320]. As mentioned before, the crystallinity
of recycled polymers is higher than that of virgin ones due to their shorter molecular chains
and decrease in chain entanglement [199,322]. Zander et al. [323] noticed that the relative
crystallinity of each phase and more particularly of the dispersed phase decreased by
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blending in comparison to neat materials. On the other hand, numerous studies reported
the nucleating effect of the rPET phases in the rPO matrix [319,324] as well as the rPO
phases in the rPET matrix [325]. Due to a large difference in polarity between POs (non-
polar) and PET (polar) structures, they are immiscible [325]. Therefore, the production of
their blend requires a compatibilization step [40]. The addition of compatibilizers is the
most widely employed method, but other approaches such as radical processing via the
use of an initiator or irradiation have also been investigated [40]. For rPET and rPO, the
most common compatibilizers are the ones with MA or GMA functions (Table 5). Some of
the compatibilizers such as EPDM, EVA, poly(styrene-butadiene-styrene) (SBS), and poly
(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) also have a rubbery function which
improves the toughness of the blends but might reduce its stiffness [323,326–329]. The MA
function can react with the hydroxyl group of rPET by the esterification reaction (Figure 17).
These compatibilizers allow for an improvement of the impact strength and elongation at
break of the blends, higher than those of the neat rPET.

Table 5. Literature summary on preparing PO/rPET blends.

Blend Components Compatibilizer Type Mixing Temperature
(◦C)

Moulding/Injection
Temperature

(◦C)
References

rPET/vHDPE

MAPE 225–235 230 Taghavi et al. [330]
(0,5, 10, 15 wt%)

SEBS-g-MA
(0, 5, 10, 15 wt%)

rHDPE/rPET
PE-g-MA 215 310 Lei et al. [319]

(0.5, 2, 5 wt%)

rPP/rPET
SEBS-g-MA 265 275 Araujo et al. [325]

(5 wt%)

rPET/vLLDPE
SEBS Zone 1: 100 240 Zhang et al. [328]

(5, 10, 15, 20 wt%) Zone 2: 100
SEBS-g-MA Zone 3: 200

(5, 10, 15, 20 wt%) Zone 4: 230

rHDPE/rPET E-GMA Zone 1: 250 200 Chen et al. [331]
(2.5, 5, 7.5 php) Zone 2: 270

Zone 3: 240
Zone 4: 190

rPET/rPE E-GMA 270–280 Pracella et al. [332]
EPR-g-MA
SEBS-g-MA

E-AA
(5, 10, 15 pph)

rHPDE/rPET E-GMA Zone 1: 190 200 Salleh et al. [333]
(2.5, 5 wt%) Zone 2: 240

Zone 3: 270
Zone 4: 250

rPET/rPE/rPP/rPS
EGMA, LLE 250–260 260–280 Imamura et al. [334]

(3, 5, 10, 15 phr)
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Taghavi et al. [330] reported optimal compositions of blends: 75/10/15 wt% and
70/15/15 wt%, respectively, for rPET/vHDPE/SEBS-grafted-MA (SEBS-g-MA) and rPET/
vHDPE/Maleic anhydride-grafted-polyethylene (MAPE). Their comparative study con-
cluded that the rPET/vHDPE samples with MAPE were smoother and had a lower number
of voids than the ones with SEBS-g-MA. Lei et al. [319] studied the influence of the intro-
duction of rPET into the rHDPE matrix. The dispersed and matrix phases were inverted
in this work in comparison to the work of Taghavi et al. [330]. In order to improve the
dispersion of rPET in the rHDPE matrix, they added 2 wt% of PE-g-MA as a compatibilizer
and 5 wt% of SEBS as an impact modifier in a 70/30 wt% blend. Under these conditions,
the impact strength of the blend became higher than that of neat rPET and its phases were
well dispersed, but the tensile strength was reduced. According to Araujo et al. [325], an
enhanced impact strength value was obtained with the 80/20 wt% for rPP/rPET blend
and 20 phr of SEBS-MA, which acted as a compatibilizer as well as an impact modifier.
Moreover, they underlined that SEBS-MA was more efficient at dispersing rPET particles in
the rPP matrix than at dispersing rPP particles in the rPET matrix. This phenomenon was
caused by the lower viscosity of rPET, whose droplets could be more easily dispersed than
the ones of rPP. Zander et al. [323] studied the effect of 5 wt% of SEBS-MA on an rPP/rPET
blend. They observed the presence of two distinct melting peaks which revealed that the
miscibility is not enhanced by the compatibilizer. SEBS-MA was also used to improve the
compatibility between rPET and vLLDPE. A blend of 80/20 wt% rPET/vLLDPE showed
an increase in the elongation at break from 10.4% (without compatibilizer) to 267.5% upon
the addition of 10 wt% of SEBS-MA compatibilizer [328]. All the blending conditions
(compatibilizers and temperatures) presented above are summarised in Table 5.

The GMA compatibilizers appear more promising to improve the compatibility be-
tween rPET and rPOs as their epoxy group can react with both hydroxyl and carboxyl
groups of rPET (Figure 18) [331].

Pracella et al. [332] showed that a very good dispersion was possible with very low
amounts of ethylene-glycidyl methacrylate (E-GMA) (<5 pph) for the 75/25 wt% rPET/rPE
blend and the 75/25 wt% vHDPE/rPET blend. In the case of the second blend, 5 wt%
of E-GMA produced a blend of higher impact strength, tensile strength, and modulus
compared to pure rHDPE [331,333]. Kalfoglou et al. [336] demonstrated that among
the E-GMA, ethylene-ethylacrylate glycidyl methacrylate (E-EA-GMA), SEBS-g-MA, and
ethylene-methyl acrylate copolymer (E-MeA-g-MA), the highest impact strength and tensile
properties were obtained with a 70/20 wt% rPET/rHDPE blend having 10 parts of E-GMA.
Imamura et al. [334] highlighted a very promising effect of E-GMA on rPET/rPE/rPP/rPS
blends, which increased the impact strength and the elongation at break and offered higher
tensile properties than an α-olefin modified LLDPE copolymer compatibilizer. Researchers
have studied the effect of varying compatibilizer dosage on material performance, such
as rHDPE/rPET blends and rPET/LLDPE blends [328,333]. Generally, a compatibilizer
dosage above 5–10% within the blend has been found to have a negative impact on the
mechanical properties due to the formation of agglomerates and voids. Compatibilizers in
high dosages can also reduce the crystallinity of the polymers by increasing the adhesion
between them [328,333].
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Less generic compatibilizers for the use in rPET and rPO blends have also been studied.
Choudhury et al. [337] evaluated the efficiency of an ionomeric compatibilizer, Surlyn 1650,
which is a zinc salt of the ethylene-methacrylic acid copolymer. The carboxylate function
of this compatibilizer can react with the carbonyl and hydroxyl groups of rPET. This
study underlined an improved compatibilization of the rLLDPE/rLDPE/rPET compared
to the one observed with PE-g-MA. The effect of gamma irradiation was examined by
Abdel Tawab et al. [338]. This treatment showed two antagonist effects: the enhancement
of crosslinking, which improved the adhesion of polymers, but also an oxidative chain
scission. By coupling a gamma irradiation dose of 100 kGy and 10 wt% amount of EVA,
Abdel Tawab et al. [338] produced a blend with improved mechanical properties.

5.4. Production of Composites from rPET and/or rPO

As described in Section 5.3, rPET and rPO can be combined to produce blends, but
they can also be used to produce composites. Both rPET and rPO can be employed as
fillers to improve matrices which are used for the production of composites. The fillers
help to improve the tensile strength, creep resistance, heat deflection temperature, and the
shrinkage of the matrix [339–341]. rPET microfibrils were added into the rHDPE matrix by
Lei et al. [320], where E-GMA proved to be an efficient compatibilizer. rPET particles and
fibres can also reinforce other matrices such as unsaturated polyester resin (UPR). With
both being polyester, a good adhesion between the particles and matrix can be achieved.
Fidanovski et al. [252] showed that for bio-based UPR and rPET particles, the mechanical
properties were lower than those of non-bio-based UPR and glass fibres (GF). However, due
to their cost-efficiency and eco-friendliness, they remain very promising materials for future
applications. The incorporation of rPET fibres into the PP matrix without compatibilizer
was studied by Santos and Pezzin [257]. They showed an increase of impact strength with
rPET fibre volume fraction (Vf) between 3 and 7% and suggested the use of a compatibilizer
to produce composites with higher rPET Vf. The properties of reinforcing rPET fibres can
be improved in different ways, such as by modifying their viscosity during the extrusion
process by adding 0.5 wt% of hyper-branched PET (HBPET). This treatment increases the
tenacity and initial modulus of the fibres due to the lubricant property of HBPET [342].
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rPET fibres can also be designed to reinforce a lower melting PET copolymer matrix as
proposed by Romhány et al. [343]

Other forms of rPET can also be used to produce composites. PET char, which is a
product from PET waste pyrolysis, can be added in epoxy resin to produce semi-conductor
composites, whose mechanical properties (surface hardness and tensile strength) depend
on the pyrolysis conditions [344]. rPET is also widely used to reinforce concrete. It improves
tensile strength and fracture energy in comparison to normal concrete. Khalid et al. [345]
studied the influence of rPET particle shapes on the final properties of the concrete. They
reported that ring-shaped rPET (cross-sectional diameter of 60 ± 5 mm and a thickness
of 10 ± 1 mm) reinforcement improved the strength of the first crack by one-third in
comparison to normal concrete. On the contrary, irregularly shaped fibres (different length
and width) have the lowest results. However, the addition of rPET in concrete presents a
real challenge for the post-fire properties as discussed by Nematzadeh et al. [346].

Composites can also be developed with the rPET matrix and can be reinforced with GF,
CaCO3, talc, and plant-based organic fillers. In order to improve tensile strength, flexural
strength, and modulus, GF are more efficient [327,347]. Scelsi et al. [348] revealed that for
recycled plastic blends, the addition of GF did not reduce the elongation at break as it did
for virgin plastic blends. GF produces new products with recycled plastics which exhibit
properties, such as specific strength and thermal expansion, close to those of steel [348].
Moreover, GF/rPET (from the SSP recycling process) composites offer tensile, flexural, and
impact strengths in the same order of magnitude as the ones of GF/vPET composites, when
aminosilane or epoxysilane coupling agents are used as fibre sizings [299]. Aminosilane
coupling agents can react with the carboxyl group of rPET, enhancing the fibre/matrix
interface [349]. De Moura Giraldi et al. [349] studied the influence of process parameters
on the final mechanical properties of rPET reinforced with 30 wt% GF. The composites with
recycled plastics mainly had fibre lengths lower or equal to 5–6 mm. The results of Santos
and Pezzin [257] for a PP matrix reinforced with short rPET fibres are very encouraging in
terms of Izod impact strength even without a compatibilizer. Moreover, rPET fibres present
multiple advantages. One is their low cost in comparison to E-glass fibres, which is between
$1450 and $3300/ton [350,351]. Furthermore, their elongation at break is around 10 times
higher than that of E-glass fibres [352–355]. Their properties are particularly interesting to
develop composites with high impact resistance as required in the automotive sector or for
wind turbine blades production. In the rPET matrix, different PO fillers can be added and
the adhesion between the filler and matrix can be ensured with the same compatibilizers
as discussed in Section 5.3 and summarised in Table 5. However, other types of fillers in
the rPET matrix have also been studied in the literature. Graphene nanoplatelets (GNP),
employed as reinforcing fillers in the rPET matrix, improved the crystallinity of rPET by
their nucleating effects, but without modifying its crystalline structure [356]. The stability
and storage moduli of rPET increased with increasing GNP content and its damping
behaviour was improved at low temperatures. Montmorillonite is another filler which can
be added in recycled thermoplastic blends to increase Young’s modulus and the tensile
strength of the blends [326]. Talc or glass beads can also play the role of fillers in the rPET
matrix. They reduce the moisture absorption in comparison to neat rPET due to higher
crystallinity, which might be attributed to the nucleating effects of the fillers [357]. Fibres
can be added in rPET/rPO blends in order to enhance their properties. Marzuki et al. [358]
reported that rPET/rPP/PP-MA blends reinforced with kenaf fibres showed an increase in
impact strength, but the stress concentration increased in the material due to low adhesion
between these hydrophilic fibres and less hydrophilic plastics. The stress concentration
points caused a decrease in the tensile strength and elongation at break in comparison to
the blends.

5.5. Applications of rPET

rPET up-cycling has potential as shown by several recycling companies such as
Indorama, who manufacture PET resins with up to 30% rPET [359], and Charpak Ltd.,
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who manufactures rPET packaging with a minimum of 50% post-consumer wastes and
up to 40% post-industrial wastes [360]. Additionally, the household brand Coca-Cola has
invested in the rPET company CuRe to help accelerate Coca-Cola’s sustainability goals and
aim of 100% rPET for bottle manufacturing [361]. Additionally, rPET has been used in a
variety of lower performance applications as a substitute for wood or concrete: outdoor
furniture, decking, traffic barriers, house flooring [362], water pipes [321], and in the
packaging sector [338]. An interesting use of rPET has been within the textile industry as
fibres [363]. The use of rPET in fabrics has been highlighted by the sports industry, for
example, the US men’s basketball team uniforms have been made from r-PET bottles [256].
The development of rPOs and rPET microfibril composites which can be further reinforced
with GF or natural fibres has led to the possibility of rPET being used in higher performance
applications such as scaffolding, railroad ties, or car bumpers [256]. The drawback of this
use is the loss of recyclability caused by the introduction of fibres in the blends. The
reprocessed materials will exhibit lower mechanical properties due to the reduction in fibre
length by shredding. The outlets of rPET fibres are always more diversified, as is shown by
the new production of honeycomb made from 95% rPET from the packaging industry [364].
Moreover, PET bottle wastes have also been used to produce the cores of wind turbine
blades by Armacell [365].

6. Future Application Potential of rPOs and rPET

As previously discussed, the use of rPO and rPET is very diverse both in terms of
their structures (neat plastics, blends, fibres, composites) and their applications (packaging
industry, construction sector, furniture). Their use in producing a diverse range of sustain-
able products can contribute immensely to the circular economy and to the reduction of
landfills. Due to the lowering of material properties during recycling, most applications of
rPET and rPO are of low value. However, through innovations, new novel applications of
plastic packaging wastes are emerging, for example, as carbon chip anodes for rechargeable
batteries [366] or as aggregates in concrete [367].

A report by Hundertmark et al. [368] suggested that recycled plastics would represent
nearly a third of the plastics entering the market by 2030. Large variations in recyclate
quality caused by the presence of other plastics and additives occur between different
batches and waste streams. The determination of the recyclate composition is of key impor-
tance in order to maximise the performance and minimise the performance variabilities.
Identifying the optimal amount of compatibilizer/filler to improve the performance is
extremely challenging, time consuming, and potentially costly. In the literature, there is a
lack of research focusing on the performance of different recyclate batches with different
compositions without the addition of additional components. Ideally, the recycling indus-
try would require a portfolio of recyclate compositions, a few key properties (viscosity,
basic mechanical properties, and degradation behaviour), and suggested lists of compatibi-
lizers/stabilizers/fillers that can be used with the recyclates to enhance their processability
and performance as industrial products. A regulation to bring more control of the type
and composition of the virgin plastic packaging products could also help in identifying the
composition of the waste streams.

Another poorly investigated topic is the processability of continuous fibre reinforced
composites using recycled plastics as the matrix for medium to high strength applications.
To the best of our knowledge, very few articles such as the study of Wu and Lai [352]
have been published in this area. Wu and Lai [352] manufactured self-reinforced rPET
composites by film stacking from fabrics composed of uncommingled yarns. They found
that self-reinforced rPET composites had extremely high tensile strength and breaking
strength in comparison to a composite reinforced with non-recycled technical fibres. For
further developments in continuous rPET fibre reinforced composites, the selection of
compatibilizers to reinforce the adhesion between the continuous recycled rPET fibres
and recycled plastic is paramount. Additionally, extensive research should focus on the
quantity of compatibilizer required and the point at which the compatibilizer should be
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added during the manufacturing, for example, during fibres extrusion or mixed with the
polymer matrix before fibre addition. The interaction between compatibilizer and fibre
sizing should be investigated. A work on fibre design as a core/binding structure as
proposed by Romhány et al. [343], or as a core/sheath structure could also improve the
adhesion between continuous fibres and matrices. This knowledge would help to define the
optimal conditions to manufacture medium to high performance recycled thermoplastics-
based composites.

There is a global growing demand for the use of composite materials in the wind
energy sector. The wind composites material market is expected to be worth $12 billion in
2023, an annual growth rate (CAGR) of 9.6% [369]. This sector represents a very promising
market for composites and a major fraction could be from recycled plastics. In the renewable
energy sector, the use of recycled-plastics-based composites can be highly beneficial in
order to produce greener energy and introduce recyclability into the products. However,
significant research efforts are needed to develop innovative technologies that can deliver
high performing composites using recycled plastics and reinforcement fibres. Various
virgin POs and PET-based composite technologies exist in the market which are used for a
diverse range of medium to high performance applications [370–372]. They can serve as
guidelines for future innovations with recycled polymers in a similar direction, producing
continuous-fibre reinforced composites with higher mechanical performance.

The ban of single use plastics has driven the need for a “design for recycling” ap-
proach for the sustainability of plastic packaging [367]. Future ideas include designing
plastics with possible sites for depolymerisation reactions, which would aid the chemical
recycling process [373]. An alternative emerging research area is the use of abiotic and
biotic environments to degrade plastic wastes to monomers and small oligomers [367].
However, extensive research is still required in this area on processing conditions, dealing
with contaminants, controlling the variation in recyclate quality, and bringing in more
reliability of recycled-plastics-based products.

7. Conclusions

We have given an overview of the mechanical and chemical recycling of plastic
packaging wastes. POs and PET are commonly found in plastic wastes due to their
high use in consumer goods. Plastic wastes are heterogeneous in nature and complete
separation of individual plastics from a mixed waste stream is extremely difficult. The
presence of contaminants in the recycled plastics introduces variability in their properties
and maintaining a constant recyclate performance becomes challenging.

POs and PET are mechanically recycled; however, this method is inefficient and results
in degradation during reprocessing, causing poor final performance. Chemical recycling,
on the other hand, can deal with plastic wastes’ inhomogeneity as complete separation
is not always required. Chemical recycling is an attractive method to achieve monomers
and is considered to be the most sustainable solution. The yield and composition of
products can vary greatly depending upon the waste composition and recycling conditions.
PET, having chain scission sites in its backbone at the ester linkages, undergoes chemical
recycling via three main routes: glycolysis, methanolysis, and hydrolysis. Although
chemical recycling is a highly desired method of recycling, it is important to note that
energy is consumed in every step: for example, in producing a polymer from a monomer,
chemically depolymerising the polymer back into its monomer form at end-of-life, and
again repolymerising the monomer into polymer. Hence, innovative technologies should
also be developed where the waste or recycled polymers can be directly converted into
value-added products, for example, monomers or polymers with desired properties with
minimum required modification. POs mainly undergo mechanical recycling due to the
absence of chain scission sites in their backbone. The compatibilizers and fillers such as
plant-based fibres, organoclays, and calcium carbonate, play key roles in enhancing the
properties of recycled plastics. Improvements in performance have been demonstrated for
recycled POs and PET, with some being comparable to their virgin properties. Focus is
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shifting onto the formation of green composites, which consist of green coupling agents and
fillers, as the demand for sustainability and biodegradability increases. This review shows
that recycled POs and PET are used in low demanding applications, but the introduction
of innovative technologies can broaden the future application areas, achieving medium to
high performance products.
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