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Abstract: We present a novel class of reduced-order regenerator models that is based on Endore-
versible Thermodynamics. The models rest upon the idea of an internally reversible (perfect)
regenerator, even though they are not limited to the reversible description. In these models, the
temperatures of the working gas that alternately streams out on the regenerator’s hot and cold sides
are defined as functions of the state of the regenerator matrix. The matrix is assumed to feature
a linear spatial temperature distribution. Thus, the matrix has only two degrees of freedom that
can, for example, be identified with its energy and entropy content. The dynamics of the regener-
ator is correspondingly expressed in terms of balance equations for energy and entropy. Internal
irreversibilities of the regenerator can be accounted for by introducing source terms to the entropy
balance equation. Compared to continuum or nodal regenerator models, the number of degrees of
freedom and numerical effort are reduced considerably. As will be shown, instead of the obvious
choice of variables energy and entropy, if convenient, a different pair of variables can be used to
specify the state of the regenerator matrix and formulate the regenerator’s dynamics. In total, we
will discuss three variants of this endoreversible regenerator model, which we will refer to as ES, EE,
and EEn-regenerator models.

Keywords: regenerator; numerical model; endoreversible thermodynamics; stirling; vuilleumier;
irreversibility

1. Introduction

The concept of thermal regeneration was invented by Robert Stirling as part of his
1816 patent on the Stirling engine [1,2]. Thermal regenerators are energy storage devices
utilized not only in Stirling machines but in a variety of technical applications. They
essentially serve to reduce entropy production by taking heat from a working gas at certain
temperatures during one phase of the cycle and providing it back to the gas (ideally) at the
same temperatures during another phase of the cycle.

In Stirling and Vuilleumier machines, for example, the regenerators usually consist of
a porous metal structure that is also called a matrix. It is periodically passed by alternating
hot and cold flows of working gas, sometimes termed hot and cold blows. This type of
regenerator is referred to as fixed-matrix regenerator. Another type is the rotary-matrix
regenerator used in different applications such as gas-turbine engines [3]. In the rotary-
matrix regenerator, hot and cold gas flows flush different sections of the regenerator
at the same time in an antiparallel manner. The heat transfer between the gas flows
is realized by rotating the regenerator matrix so that all of its sections are alternately
flushed by the hot and the cold gas flow [4]. We will, in this paper, concentrate our efforts
on fixed-matrix regenerators as, for example, used in Stirling or Vuilleumier machines.
Nevertheless, the developed models may be modified to be applicable in describing rotary-
matrix regenerators as well.

In detailed models of Stirling or Vuilleumier machines, the various working spaces
of the machines are resolved both spatially and temporally. That is, inside the working
spaces, gas temperatures and pressures vary (at least temporally), and the working spaces
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exchange working gas through regenerators. Then, the essence of what a regenerator model
must be capable of is to properly approximate the outflow temperatures of the working
gas on both sides of the regenerator depending on the inflow temperatures and other
operational conditions. Important historical contributions to the theoretical description
of regenerators were made by Nusselt [5,6], Hausen [7], and Rummel [8], among others,
beginning in the late 1920’s.

At that time, the focus of research laid on providing engineers with a practical means
for quickly and efficiently calculating regenerator performance [9]. Since digital computers
were not yet available, this meant that the models had to rely on approximate analytic
solutions [7] and empirical correlations [10]. Thus, integral descriptions of the regenerator
were obtained, and its operation was characterized by a quantity that is today commonly
referred to as regenerator effectiveness. This characteristic quantity, in turn, was used to
define the outflow temperatures of the working gas on both sides of the regenerator. Since
such models result in very low computational effort, they have been used continuously
and developed further, especially in applications where low computational effort is a key
requirement [11–14].

A limitation that modeling via the regenerator effectiveness brings about arises from
its definition involving the inflow and outflow temperatures of the regenerator: The inflow
temperatures at the regenerator’s two sides are usually required to be constant over time.
A technical realization of a Stirling engine in which this is approximately valid can be
achieved by installing heat exchangers on both sides of the regenerator. Without the daisy-
chained heat exchangers, the inflow temperatures may fluctuate significantly over the
course of the cycle. Therefore, the applicability of the modeling approach via regenerator
effectiveness is usually limited to technical configurations with heat exchangers providing
approximately constant inflow temperatures for the regenerator.

With the advent of digital computers, the partial differential equations describing
regenerators could be solved numerically [15–18]. In these modeling approaches, the
regenerator is treated as a continuum using respective numerical techniques, such as
finite differences or finite volumes resulting in nodal models. This provides an elaborate
and accurate description of regenerators. However, it causes considerable mathematical
complexity and relatively large numerical effort.

For enhancing power output, efficiency, and sustainability of Stirling or Vuilleumier
machines by simulation-based design and control optimization, proper regenerator models
are required. As described above, on the one hand, numerically very inexpensive regen-
erator effectiveness models and on the other hand very elaborate continuum models of
regenerators exist. For efficiently solving corresponding optimization problems, however,
regenerator models that combine both of these properties to a sufficient degree are required.

In recent research work, Craun and Bamieh [19–21] applied model order reduction
techniques aiming at the provision of regenerator models that constitute suitable trade-
offs for optimal control problems. They succeeded in reducing the computational effort
significantly while still achieving good accordance with the temperature dynamics of the
original model for different engine speeds. The model order reduction techniques used by
Craun and Bamieh are partially physical-insight based as well as data based approaches,
for example, time-scale separation and proper orthogonal decomposition [21].

In this paper, we introduce a new class of reduced-order regenerator models, which
is also intended to be used in optimization problems particularly for efficiently solving
indirect optimal control problems. However, this class of models rests upon Endoreversible
Thermodynamics [22–24] and, thus, follows a purely physical-insight based approach
for model order reduction. In total, we will present three models belonging to this class,
which we will refer to as ES-regenerator, EE-regenerator, and EEn-regenerator models.
In order to furnish an alternative perspective on regenerators and to provide the tools
required for model development, we start with introducing the basic mindset and notation
of Endoreversible Thermodynamics.
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2. Endoreversible Terminology and Notation

Endoreversible modeling is a powerful approach to describe non-equilibrium ther-
modynamic systems that are subjected to finite-rate or finite-time energy transforma-
tions [22–24] and has been used in a variety of systems [25–29]. Such systems include re-
frigerators [30], waste heat recovery systems [31] and other endoreversible devices [32–37].
The underlying concepts have been scrutinized [38,39] and used in Finite-Time Thermody-
namics studies such as [40–42], including work on quantum systems [43].

The goals are to identify the main loss mechanisms and to attain a clear and simple
model structure in order to minimize mathematical complexity and computational effort.
Compared to classical (reversible) thermodynamics, this allows finding more realistic
optima and performance bounds of thermodynamical systems. In what follows, the
endoreversible notation [22–24,44–46] used in this paper is briefly introduced.

In endoreversible modeling, the thermodynamic system is decomposed into a network
of reversible subsystems in the following counted by the index i. Between those reversible
subsystems, reversible or irreversible interactions are defined. Typically, in endoreversible
modeling, all irreversibilities captured by the model are confined in the interactions be-
tween the subsystems. We will first focus this brief introduction on subsystems (the nodes
of the network) and will address interactions (the edges of the network) afterwards.

2.1. Subsystems

Every subsystem i has several contact points r at each of which one interaction is
attached to connect i with other subsystems. At those contact points, the subsystem can
reversibly discard or take up extensive physical quantities, also called extensities. For
each extensity Xα, there is a pairwise related intensive quantity: an intensity Yα. In this
notation, the superscript α counts the extensities, e.g., α ∈ {S, n, V}. Thus, in the case
of the extensities entropy S = XS, particle number n = Xn, and volume V = XV, the
intensities are temperature T = YS, chemical potential µ = Yn, and (negative) pressure
−p = YV, respectively. According to the Gibbs relation, an extensity flux Jα

i,r that enters
subsystem i at contact point r carries a certain energy flux Iα

i,r = Jα
i,r Yα

i,r into the subsystem.
Correspondingly, the overall energy flux that enters i at r is Ii,r = ∑α Jα

i,r Yα
i,r.

In this formalism, several different kinds of extensities α can enter or exit subsystem i
at the very same contact point r. This is then referred to as a multi-extensity flux and will be
addressed later. The two most important kinds of endoreversible subsystems are reservoirs
and engines.

2.1.1. Reservoirs

Reservoirs are subsystems that contain extensities and energy. As schematically shown
in Figure 1, they are usually illustrated as rectangles. Due to the requirement of internal
thermodynamic equilibrium, in a reservoir, the intensities have equal values at all its
contact points r. Therefore, the contact point’s identifier can be omitted: Yα

i = Yα
i,r.

𝐸𝑖(𝑋𝑖
𝛼)𝑌𝑖

𝛼

𝑌𝑖
𝛼

b)a)

Finite reservoir 𝑖
with 2 contact points

𝑌𝑖
𝛼

𝑌𝑖
𝛼

Infinite reservoir 𝑖
with 2 contact points

𝑌𝑖
𝛼

Figure 1. Schematics of reservoirs illustrated here with two contact points.
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A distinction is made between infinite and finite reservoirs. Infinite reservoirs are
characterized by prescribing the full set of intensities Yα

i , whereas finite reservoirs are
characterized by an energy function Ei = Ei(Xα

i ) and a state, e.g., specified by the values
of all Xα

i . The pairwise relation of extensities and intensities in a finite reservoir i is:
Yα

i = ∂Ei/∂Xα
i . Influxes and effluxes of extensities change the finite reservoir’s state. Its

dynamics is determined by a number of conservation equations corresponding to the
number of extensities considered, and is described as:

Ẋα
i = ∑

r
Jα
i,r. (1)

Positive fluxes are considered to enter the subsystem, and negative fluxes are consid-
ered to leave it. This convention will be used throughout this paper.

In what follows, we will consider two different kinds of finite reservoirs. The first one
is a pure entropy reservoir with constant heat capacity Ci. The energy function of such a
reservoir is [45]:

Ei(Si) := Ci T0 e
Si−S0

Ci (2)

with the reservoir’s reference entropy S0 at reference temperature T0. From this, for the
temperature, one obtains Ti = ∂Ei/∂Si = Ei/Ci. This type of reservoir will later also be
referred to as heat reservoir, and it will be used to describe solid components such as
parts of the regenerator matrix. The second type of finite reservoirs considered is an ideal
gas reservoir. It contains the extensities entropy Si, volume Vi, and particles ni that the
reservoir’s energy function depends on [45]:

Ei(Si, Vi, ni) := cv n

Vg0 Tcv/R
g0

ng0

ni
Vi

e

(
Si

ni R−
Sg0

ng0 R

)R/cv

, (3)

where cv is the isochoric molar heat capacity, and R is the ideal gas constant. Furthermore,
(Sg0/ng0) is the gas’ molar reference entropy at reference conditions Tg0 and (Vg0/ng0).
For specific gases, the corresponding data can, for example, be found in [47]. Essex and
Andresen [48] dubbed this expression the ideal gas’ principal equation of state as it contains
all information that characterizes the thermodynamic behavior of the equilibrium system.
From the principal equation of state, the intensities result according to Yα

i = ∂Ei/∂Xα
i :

Ti(Si, Vi, ni) =
∂Ei
∂Si

=

Vg0 Tcv/R
g0

ng0

ni
Vi

e

(
Si

ni R−
Sg0

ng0 R

)R/cv

, (4)

pi(Si, Vi, ni) = −
∂Ei
∂Vi

=
ni R
Vi

Vg0 Tcv/R
g0

ng0

ni
Vi

e

(
Si

ni R−
Sg0

ng0 R

)R/cv

, (5)

µi(Si, Vi, ni) =
∂Ei
∂ni

=

(
cv + R− Si

ni

) Vg0 Tcv/R
g0

ng0

ni
Vi

e

(
Si

ni R−
Sg0

ng0 R

)R/cv

. (6)

2.1.2. Engines

The notion of an engine refers to an energy conversion device, which operates either
continuously or cyclically. We here consider continuously operating engines only. These
have at least three contact points and are characterized by a set of algebraic balance
equations for the extensities and energy:

0 = ∑
r

Jα
i,r, (7)
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0 = ∑
r,α

Iα
i,r = ∑

r,α
Jα
i,r Yα

i,r. (8)

As opposed to reservoirs, at the contact points of an engine, the intensities’ values
generally differ so that all of these balance equations are fulfilled. This is an essential
feature that allows engines to reversibly transfer energy between different intensity levels.
As schematically shown in Figure 2a, engines are usually illustrated as circles.

b)a)

Reversible engine 𝑖
with 3 contact points

𝑌𝑖,2
𝛼

𝑌𝑖,1
𝛼 𝑌𝑖,3

𝛼

Irreversible engine 𝑖
with 3 contact points

𝑌𝑖,2
𝛼

𝑌𝑖,1
𝛼 𝑌𝑖,3

𝛼+Σ𝑖
S

Figure 2. Schematics of engines, here illustrated with three contact points.

A deviation from the standard notion of an endoreversible engine which will be made
use of is an irreversible engine, where for (α = S) Equation (7) is replaced by:

0 = ∑
r

JS
i,r + ΣS

i (9)

with the entropy production rate ΣS
i , which is included in Figure 2b to indicate irreversibility.

3. Interactions

Interactions describe transport phenomena and are the modeling objects to which,
most often, all irreversibilities are confined in Endoreversible Thermodynamics. Therefore,
a proper definition of the interactions is key to the validity of the model. Interactions
can either be reversible or irreversible. In a reversible interaction, balance equations for
energy and all conserved extensities, possibly including entropy, are required to hold. In
contrast, in an irreversible interaction, balance equations must hold only for energy and all
conserved extensities but not for entropy. Then, by a proper definition of transfer laws, it is
guaranteed that entropy is either conserved or produced but never destroyed.

The number of contact points that an interaction attaches to is equal or larger than two.
In the present paper, we will only consider bilateral interactions, that is, interactions that
link exactly two contact points. The used symbolism pertaining to bilateral interactions is
presented in Figure 3.

b)a)

Reversible bilateral

interaction

Irreversible bilateral

interaction

𝐽𝑗,𝑢
𝛼

𝐼𝑗,𝑢
𝐽𝑖,𝑟
𝛼

𝐼𝑖,𝑟

𝐽𝑗,𝑢
S

𝐼𝑗,𝑢

𝐽𝑖,𝑟
S

𝐼𝑖,𝑟

𝐽𝑗,𝑢
𝛽

𝐽𝑖,𝑟
𝛽

Figure 3. Schematics of bilateral interactions between the contact points r and u of subsystems i and
j. The gold dashed arrows represent energy fluxes carried by gray fluxes of arbitrary extensities α, β

and the green entropy flux. In the case of the irreversible interaction in (b), the multi-extensity flux
necessarily includes an entropy flux, depicted by the green wavy arrow.
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Reversible interactions are illustrated by straight arrows, whereas irreversible inter-
actions are illustrated by wavy arrows. In the following, we will consider two essential
examples of irreversible bilateral interactions that will be needed later.

First example: Heat conduction between two finite reservoirs is represented by an en-
tropy flux carrying an energy flux (heat flux). The setup is schematically shown in Figure 4.

𝑇1𝑆1 𝑇2𝑆2
𝐽1,1
S

𝐼1,1
S

1 1

𝐽2,1
S

𝐼2,1
S

Figure 4. Heat conduction between two reservoirs.

The energy flux may be modeled proportional to the temperature difference between
the reservoirs, which corresponds to Newton’s law of heat transfer:

−IS
1,1 = IS

2,1 := K (T1 − T2). (10)

Here, we have already stipulated energy conservation. If the heat conductance K is
finite, then this is a resistive (or finite) transfer law, and the two temperatures may deviate
significantly. Since JS

i,r = IS
i,r/Ti,r, it is obvious that the entropy fluxes at the two connected

contact points will then have different magnitudes: The interaction is irreversible. The
associated entropy production can be quantified as follows:

ΣS = JS
1,1 + JS

2,1 = K
(

T1
T2

+
T2
T1
− 2
)

. (11)

Second example: We consider a pressure-driven flow of ideal gas directed from
reservoir 1 to 2 as shown in Figure 5.

𝜇1

𝑇1

𝑝1

𝑛1

𝑆1

𝑉1

𝜇2

𝑇2

𝑝2

𝑛2

𝑆2

𝑉2
𝐽1,1
S

𝐼1,1

𝐽1,1
n

1 1

𝐽2,1
S

𝐼2,1

𝐽2,1
n

Direction of gas flow

Figure 5. Gas flow between two finite ideal gas reservoirs. Considered flow direction: from reservoir
1 to reservoir 2.

The gas flow is represented by a multi-extensity flux that consists of a particle flux Jn
i,r

and a correlated entropy flux JS
i,r. The overall energy flux (enthalpy flux) carried by this

multi-extensity flux is Ii,r = µi Jn
i,r + Ti JS

i,r. We consider the flow direction where Jn
2,1 > 0.

Mass conservation and energy conservation read:

0 = Jn
1,1 + Jn

2,1, (12)



Energies 2021, 14, 7295 7 of 25

0 = I1,1 + I2,1 = Jn
1,1 µ1 + JS

1,1 T1 + In
2,1 µ2 + IS

2,1 T2. (13)

For the transfer laws, we have:

Jn
1,1 := γ (p2 − p1), γ > 0, p1 > p2 (14)

JS
1,1 := s(T1, p1) Jn

1,1, (15)

which are in accordance with I1,1 := cp T1 Jn
1,1. Entropy production then becomes:

ΣS = Ṡ1 + Ṡ2 = Jn
2,1

[
cp

(
log

T2
T1

+
T1
T2
− 1
)

︸ ︷︷ ︸
σtherm ≥ 0

+ R log
p1
p2︸ ︷︷ ︸

σvisc ≥ 0

]
. (16)

Here, γ > 0 is a particle transfer coefficient that is not necessarily constant but could,
for instance, depend on p1, p2, T1, and T2. The first term in Equation (16) σtherm concerns
entropy production due to thermal mixing, whereas the second term σvisc takes viscous
dissipation into account. In the above equations, the expression:

s(T, p) = cp log
T

Tg0
− R log

p
pg0

+ sg0 (17)

for the ideal gas’ molar entropy has been used with the molar entropy sg0 at the reference
conditions Tg0, pg0, and the working gas’ isobaric molar heat capacity, cp. The correspond-
ing entropy flux to subsystem 2 is:

JS
2,1 =

(
s(T1, p1) + σ

)
Jn
2,1 (18)

with the molar entropy production σ := σtherm + σvisc according to Equation (16). It is
revealing that the overall entropy production (Equation (16)) can, for the ideal gas, be
expressed as consisting of two separate terms, each of which depends either only on
temperatures or only on pressures and becomes zero if the respective temperatures or
pressures are equal.

If one were to replace this interaction with a proper modeling object representing a
thermal regenerator, one could expect it to diminish σtherm. Here, σtherm = 0 would mean
that the temperature of the gas leaving the regenerator was equal to T2 and the regenerator
compensated for the current surplus or deficit of (I1,1 + I2,1) and (JS

1,1 + JS
2,1). Moreover,

σvisc would be zero if a non-resistive particle transfer law resulting in p1/p2 = 1 was
considered. On the other hand, if one considers a resistive (or finite) particle transfer law
resulting in p1/p2 > 1, then the viscous molar entropy production σvisc would be grater
than zero.

4. Endoreversible Regenerator Modeling

As mentioned above, the endoreversible subsystems that will be used to construct
the internal structure of the endoreversible regenerator model are reservoirs, on the one
hand, and engines without extensity buffers on the other. A thermal regenerator is neither
a reservoir nor such an engine since it encompasses features of both: It contains extensities
and energy, and it has contact points with differing intensities. It may, hence, be properly
represented by some combination of both kinds of subsystems. In this section, we will
develop three variants of an endoreversible regenerator model, which we will refer to as
ES-regenerator, EE-regenerator, and EEn-regenerator models.
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4.1. ES-Regenerator Model

For the purpose of the description of the ES-regenerator model, the regenerator’s
internal endoreversible structure will be neglected. It will be considered only as a black
box for which the first and second law are required to hold. The model is motivated by the
notion of an internally reversible regenerator, which conserves both energy E and entropy
S, and correspondingly has zero internal entropy production: ΣS

R = 0. Nevertheless, the
model is technically not limited to the ideal description. In fact, the entropy production term
ΣS

R will be included in the entropy balance equation as a placeholder. The ES-regenerator
model is based on the following modeling assumptions:

(A) Only operational conditions are considered in which the local temperature difference
between the regenerator matrix, and working gas is small so that it can be neglected
when determining the temperatures of the working gas flowing out of the regenerator
on its hot and cold side. Thus, the contact point temperatures can be defined as equal
to the matrix temperature of the respective regenerator side.

(B) The temperature distribution in the regenerator matrix is linear at all times, and the
sign of its gradient is uniquely determined by the boundary conditions. Hence, the
state of the regenerator matrix features two degrees of freedom. In the ES-regenerator
model, the state is specified by providing the energy E and entropy S contained in
the matrix.

(C) Only the regenerator matrix and its interactions with the working gas are encom-
passed by the ES-regenerator model. That is, the regenerator model itself does not
feature a dead volume. The influence of the regenerator dead volume may be taken
into account approximately by allocating it to the adjacent gas reservoirs.

Assumption (B) which regards the linearity of the temperature profile is not valid
under arbitrary (transient) operational conditions of regenerators. It may, however, be
an appropriate approximation for the stationary operational state that the regenerator ap-
proaches after many cycles under typical stationary operational conditions. This (periodic)
stationary operational state is what the model is intended to describe.

We will strictly distinguish between internal irreversibilities ΣS
R that are associated

with loss phenomena occurring inside the regenerator and external irreversibilities that
occur in the interactions of the regenerator with the adjacent subsystems. The internal
irreversibilities ΣS

R can be set to zero or can alternatively be defined via other submodels
as introduced later, whereas the external irreversibilities are not arbitrarily definable. The
external irreversibilities rather result from the exchanged particle fluxes and temperatures
at the contact points of the regenerator and the adjacent gas reservoirs.

The particle flux through the regenerator is modeled as driven by the pressure dif-
ference between the regenerator’s hot and cold side. A particle flux, in turn, induces an
entropy flux. This means a gas flow is described as a multi-extensity flux of particles and
entropy. Inflows and outflows of gas on the regenerator’s hot and cold side are considered
to take place at the pressure of the gas reservoir that the respective regenerator contact
point is connected to. However, as depicted in Figure 6, temperature differences between
gas reservoir and regenerator can occur. As this constitutes a bilateral interaction of subsys-
tems that are not necessarily in thermal equilibrium, these temperature differences result
in entropy production according to Equation (16). Therefore, the external irreversibility
generally occurs even if the regenerator is internally fully reversible.

4.1.1. Contact Point Temperatures as Functions of State Variables

In what follows, the expressions for the regenerator’s energy and entropy are derived
as functions of the linear temperature distribution between the two contact point tempera-
tures TR,H and TR,L of the regenerator. The energy and entropy expressions will afterwards
be inverted to obtain expressions for the contact point temperatures as functions of energy
and entropy. These temperature expressions will later on be needed to determine energy
fluxes and entropy fluxes to and from the adjacent gas reservoirs.
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Dimensionless spatial coordinate 𝜉

T
em

p
er

at
u

re
 𝑇

Low temperature

gas reservoir
Regenerator

𝑇H

𝑇L

𝑇R,H

𝑇R,L

10.50

High temperature

gas reservoir

Figure 6. Schematics of the regenerator with a linear spatial temperature distribution connecting its
contact point temperatures TR,H and TR,L. The temporal evolution of the contact point temperatures
TR,H and TR,L results from the dynamics of the regenerator. Between the contact point temperatures
and the temperatures of the adjacent gas reservoirs TH and TL, temperature differences may occur so
that gas flows to or from the regenerator result in thermal mixing. This thermal mixing will in the
following be referred to as an external irreversibility of the regenerator.

The expressions for energy and entropy are obtained by considering the regenerator
as a one-dimensional continuum, as schematically shown in Figure 6. The specific energy
(energy per mass unit) at some point ξ in this continuum is defined as:

eR(ξ) := cR TR(ξ) (19)

with the matrix material’s specific heat capacity cR and the temperature TR(ξ). The specific
entropy (entropy per mass unit) is:

sR(ξ) := cR log
TR(ξ)

TR0
+ sR0 (20)

where sR0 is the specific entropy at the reference temperature TR0. We assume that the
temperature profile in the regenerator is linear at all times. That is, it takes the form:

TR(ξ) := TR,H + ξ
(
TR,L − TR,H

)
(21)

with the dimensionless coordinate ξ ∈ [0, 1] and the contact point temperatures
TR,H > TR,L as depicted in Figure 6. For homogeneous mass density ρR and homoge-
nous specific heat capacity cR, the energy of the regenerator becomes:

ER(TR,H, TR,L) = mR

∫ 1

0
eR(ξ)dξ = CR

TR,L + TR,H

2
(22)

with the mass mR and the overall heat capacity CR = mR cR of the regenerator matrix.
Analogously, the entropy of the regenerator matrix becomes:

SR(TR,H, TR,L) = mR

∫ 1

0
sR(ξ)dξ

= CR

(
TR,L

TR,H − TR,L
log

TR,H

TR,L
+ log

TR,H

TR0
− 1
)
+ SR0

(23)

where SR0 = mR sR0 is the regenerator’s entropy at the reference temperature TR0. Under
the strict condition TR,H > TR,L and the linear temperature profile requirement, the sets{

TR,H, TR,L
}

and {ER, SR} are bijective. That is, the temperatures TR,H and TR,L can be
expressed as unique functions of ER and SR.
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However, inverting Equations (22) and (23) is not practicable analytically. Therefore,
the entropy expression is approximated. For this purpose, we define the mean temperature
TM

R := (TR,H + TR,L)/2 and the temperature difference T∆
R := TR,H − TR,L. Using the

fourth order Taylor expansion of SR as a function of the temperature difference T∆
R around

T∆
R = 0 yields:

SR(TR,H, TR,L) ≈ SR0 + CR log
TM

R
TR0
− CR

24

(
T∆

R

TM
R

)2

− CR
320

(
T∆

R

TM
R

)4

. (24)

The corresponding approximative expressions for TR,H and TR,L are:

TR,H(ER, SR) :=
ER
CR

1 +

√√√√−5
3
+

√
25
9

+ 20
(

SR0 − SR
CR

+ log
ER

CR TR0

), (25)

TR,L(ER, SR) :=
ER
CR

1−

√√√√−5
3
+

√
25
9

+ 20
(

SR0 − SR
CR

+ log
ER

CR TR0

). (26)

Note, this definition of TR,H and TR,L required additional knowledge about the sign
of the temperature gradient, which we provided by stating TR,H > TR,L. This limitation
of the ES-regenerator model can be overcome by introducing an internal endoreversible
structure, as will be conducted in Section 4.2.

The approximative expressions of Equations (25) and (26) do not entail a deviation
from the exact solution in the mean temperature TM

R since the mean temperature is in either
case ER/CR. However, in the temperature difference T∆

R , a deviation occurs, which can be
determined via:

∆relT
∆
R (T1, T2) :=

TR,H(ER(T1, T2), SR(T1, T2))− TR,L(ER(T1, T2), SR(T1, T2))

T1 − T2
− 1

=
T1 + T2
T1 − T2

√√√√−5
3
+

√
205

9
+ 20

(
T2

T1 − T2
log

T2
T1

+ log
T1 + T2

2 T1

)
− 1.

(27)

Here, T1 > T2 represent predefined contact point temperatures, and the entropy is
calculated according to Equation (23). Note that Equation (27) solely depends on the
temperatures. The relative deviation ∆relT

∆
R can also be expressed as a function of the

relative temperature difference δ := 2 (T1 − T2)/(T1 + T2):

∆relT
∆
R (δ) =

2
δ

√√√√−5
3
+

√
205

9
+ 20

((
1
δ
− 1

2

)
log
(

2
δ + 2

− 1
2/δ + 1

)
− log

(
1 +

δ

2

))
− 1.

(28)

This function is plotted in Figure 7.
It can be observed that the relative deviation of the temperature difference introduced

by the approximation from Equation (24) is smaller than 3× 10−4 for a relative temperature
difference δ ≤ 0.5. For a relative temperature difference of δ ≤ 1.4, the relative deviation
is still smaller than 2× 10−2. Since this is assumed to hold in a broad range of model
situations, the deviations entailed in Equations (25) and (26) are regarded as negligible.
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Figure 7. Relative deviation of the difference between the regenerator contact point temperatures from Equations (25)
and (26) (caused by the approximation of the entropy expression) plotted against the exact relative temperature difference δ.
For typical model situations with δ < 1.5, the caused relative deviation can be regarded as negligible.

4.1.2. Regenerator State Dynamics

In Figure 8a, a schematics of the ES-regenerator model is shown. The straight arrows
depict reversible fluxes, and the wavy arrows depict irreversible fluxes. The state of the
regenerator is determined by ER and SR, which obey the balance laws:

ĖR = IR,H + IR,L, (29)

ṠR = JS
R,H + JS

R,L + ΣS
R. (30)

Here, JS
R,H and JS

R,L are entropy fluxes entering the regenerator at the contact points H
and L. Together with the particle fluxes Jn

R,H and Jn
R,L, they carry the energy fluxes IR,H and

IR,L, respectively. Furthermore, ΣS
R is the sum of all internal entropy sources which can for

now taken to be zero (internally reversible regenerator). It is the placeholder for internal
irreversibilities that will be addressed in Section 5.

Inflows and outflows of working gas are considered to occur without pressure differ-
ences between the a regenerator contact point and the respective gas reservoir i ∈ {H,L}.
Correspondingly, for inflows of working gas, the energy flux and entropy flux are deter-
mined from the gas reservoir’s temperature Ti and pressure pi as well as the respective
regenerator contact point temperature TR,i:

IR,i = cp Ti Jn
R,i, (31)

JS
R,i =

(
s(Ti, pi) + σ(Ti, TR,i)

)
Jn
R,i. (32)
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Figure 8. Schematics of the ES-regenerator model exchanging working gas with two adjacent gas
reservoirs. Inside the regenerator, energy and entropy are balanced and stored independently
according to Equations (29) and (30), as depicted by the yellow and green dashed boxes representing
bookkeeping containers. The temperatures at the regenerator’s contact points H and L are determined
by the current energy and entropy content via Equations (25) and (26), respectively. These contact
point temperatures influence the fluxes of energy and entropy that the regenerator exchanges with
the adjacent gas reservoirs and, thus, feed back to its dynamics (Equations (29) and (30)).

Entropy production, which is due to the temperature difference between the gas
reservoir and the regenerator contact point, is here taken into account with:

σ(Ti, TR,i) := cp

(
log

TR,i

Ti
+

Ti
TR,i
− 1
)

. (33)

As opposed to that, for outflows of working gas, the fluxes of energy and entropy at
the regenerator’s contact point are determined as:

IR,i = cp TR,i Jn
R,i, (34)

JS
R,i = s(TR,i, pi) Jn

R,i (35)

according to the respective contact point temperature (Equations (25) or (26)). Since this
contact point temperature generally differs from the temperature Ti inside the gas reservoir,
the interaction is also irreversible in this flow direction.

In order to show the principle behavior of the ES-regenerator model, we consider
a setup as illustrated in Figure 8 where the temperatures of the adjacent gas reservoirs
are maintained at TH = 500 K and TL = 300 K, and their pressures are maintained at
pH = pL = 50 bar. This corresponds to a reduced pressure p/pcrit of ca. 22, which is rather
high for the application of the ideal gas law. Nevertheless, we chose this high pressure
value as it helps to illustrate the general behavior of the models developed, in particular
the influence of pressure oscillations in the EEn-regenerator model is presented below.
Depending on the accuracy required in a certain application, it might be necessary to use
a constitutive law other than the ideal gas law. This would require an extension of the
models presented here, involving the adaptions of Equation (3) and all the equations based
thereon, for example, Equations (16), (17), and (33). This, however, is beyond the scope of
the current paper. The particle transfer through the regenerator shall obey a non-resistive
transfer law (γ→ ∞) with the particle flux Jn

R,H prescribed as a sinusoidal function with a
cycle time of τ = 0.1 s and an amplitude of 10 mol/s. The working gas shall be helium [47].
The regenerator is considered as internally reversible (ΣS

R := 0), and its heat capacity is
300 J/K.

For these parameters, the dynamics of the ES-regenerator model was integrated until a
cyclic operational state was achieved. In Figure 9, the calculated contact point temperatures
TR,H and TR,L are plotted as solid lines, and the gas reservoir temperatures TH and TL are
plotted as dotted lines.
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Figure 9. Contact point temperatures TR,H and TR,L of the ES-regenerator model (solid lines) compared to the contact point
temperatures of a finite volume benchmark regenerator model TFVM

R,H and TFVM
R,L (dashed lines) for the internally reversible

case ΣS
R := 0. The constant temperatures of the adjacent gas reservoirs TH and TL are plotted with dotted lines. The

contact point temperatures TR,H and TR,L overshoot TH and undershoot TL, respectively, due to the assumption of the linear
temperature profile made in the ES-regenerator model. Apart from that, the regenerative behavior is well approximated
regarding amplitude and phase of the temperature oscillations, despite the fact that the ES-regenerator model has only two
degrees of freedom and much lower numerical effort.

Additionally, to provide a benchmark, in Figure 9, the results of a finite volume
regenerator model using 200 regenerator layers are plotted with dashed lines. Each of
those layers consists of a gas reservoir, which represents a slice of the regenerator dead
space (measuring 0.8 L in total) and is linked by a non-resistive-heat-transfer interaction to
a dedicated heat reservoir representing the respective slice of the matrix. Correspondingly,
TFVM

R,H and TFVM
R,L are the temperatures of the two outermost slices that are connected to the

adjacent gas reservoirs H and L.
In Figure 9, it can be observed that the regenerator contact point temperatures of the

ES-regenerator model oscillate around the constant temperatures TH and TL of the adjacent
gas reservoirs with approximately harmonic shapes. This means that TR,H overshoots TH
and TR,L undershoots TL. As opposed to that, the shapes of the contact point temperature
curves predicted by the finite volume model deviate from harmonic shapes so that TFVM

R,H

does not proceed above TH, and TFVM
R,L does not proceed below TL. It is obvious that this is

a more realistic description of the behavior of a real regenerator. It is connected to slight
deviations from a linear temperature profile in the finite volume model, which are not
described by the ES-regenerator model.

Nevertheless, the temperature deviations TR,i − TFVM
R,i (i ∈ {H,L}) are relatively small

compared to the temperature difference TH − TL. This is particularly remarkable in the
light of the significantly lower numerical effort involved by the ES-regenerator model.
Moreover, it is important to note that a real regenerator cannot operate internally reversible,
which means ΣS

R > 0. Due to these internal irreversibilities, the regenerator contact point
temperatures will approach each other, and the cutoffs by TH and TL will become less
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dominant. Hence, as long as ΣS
R is modeled properly as an input for the ES-regenerator

model, it can be expected that the latter model provides good approximations for the
regenerator contact point temperatures.

4.2. EE-Regenerator Model

In the ES-regenerator model introduced in the previous section, the regenerator’s
internal endoreversible structure was neglected, and the regenerator’s overall energy and
entropy content served to identify its state. The requirements of conservation of energy and
entropy within the subsystem boundaries of the regenerator provided its state dynamics
via the state variables energy and entropy.

The two degrees of freedom of the endoreversible regenerator can also be expressed
using different state variables. These are in the following defined via the internal endore-
versible structure shown in Figure 10.

Particle fluxEntropy flux Energy flux Contact pointReversible Irreversible
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Figure 10. Schematics of the EE-regenerator composed of an engine and two internal heat reservoirs.
The two internal heat reservoir’s energies ER.h and ER.l can change independently according to
Equations (40)–(42) so that the energy and entropy balances of the regenerator are fulfilled. The
temperatures at the regenerator’s contact points H and L are determined by the current values of
ER.h and ER.l via Equations (38) and (39). As opposed to the ES-regenerator model, this internal
endoreversible structure brings about the possibility to consider temperature gradient evolutions
with sign changes.

It consists of an engine (where ΣS
R is again the placeholder for internal irreversibil-

ities, which can for now taken to be zero) and two heat reservoirs that have the heat
capacities CR.h := CR.l := CR/2 and the independent energies ER.h and ER.l. Each of
the two internal heat reservoirs features one degree of freedom. Correspondingly, in the
EE-regenerator model, the two internal heat reservoirs’ energies are taken as state variables
of the regenerator. Given the energies, the entropies of the internal heat reservoirs can be
calculated as:

SR.h := CR.h log
ER.h

CR.h TR0
+

SR0
2

, (36)

SR.l := CR.l log
ER.l

CR.l TR0
+

SR0
2

. (37)

With ER = ER.h + ER.l and SR = SR.h + SR.l, these expressions can be inserted into
Equations (25) and (26). Furthermore, the sign of the temperature gradient can be identified
with the sign of the difference of the energies ER.h and ER.l:

TR,H :=
ER.h+ER.l

CR

1 + sign(ER.h−ER.l)

√√√√−5
3
+

√
25
9

+ 20 log
ER.h + ER.l

2
√

ER.h ER.l

, (38)



Energies 2021, 14, 7295 15 of 25

TR,L :=
ER.h+ER.l

CR

1− sign(ER.h−ER.l)

√√√√−5
3
+

√
25
9

+ 20 log
ER.h + ER.l

2
√

ER.h ER.l

. (39)

From the engine’s balance equations for energy and entropy, the dynamics of the two
heat reservoirs follows:

ĖR.h = IS
R.h = IR,H − IR.hl, (40)

ĖR.l = IS
R.l = IR,L + IR.hl, (41)

with the auxiliary energy flux IR.hl, which the two internal heat reservoirs exchange through
the engine as part of IS

R.h and IS
R.l:

IR.hl =

2
CR

(
JS
R,H + JS

R,L + ΣS
R

)
− IR,H

ER.h
− IR,L

ER.l

1/ER.l − 1/ER.h
. (42)

This auxiliary energy flux is a measure of the rate of change of the temperature
difference Ṫ∆

R that is necessary for the regenerator to take up or release entropy as prescribed
by the external interactions and the internal source term ΣS

R. Note that the denominator
of Equation (42) tends to zero if the energy difference (ER.h − ER.l) → 0. Then, also the
difference of the contact point temperatures T∆

R → 0 and, therefore, ∂SR/∂T∆
R → 0. Let us

consider the case in which the energy of the regenerator stays constant while the entropy
changes: Ṫ∆

R |ER
= ∂T∆

R /∂SR ṠR. Hence, |Ṫ∆
R | → ∞ for finite ṠR, which is consistent with

|IR.hl| → ∞. In order to obtain a numerically stable algorithm, it is necessary to limit IR.hl
in a small region |ER.h − ER.l| < ε. Consequently, the entropy conservation equation is
not fulfilled in the region below ε. However, since thermal regenerators are usually not
operated in a way such that zero-crossings of the temperature gradient occur during the
cycle, this is of no significance for the steady-state cyclic operation of the regenerator with
a proper choice of ε.

Since the definitions of the contact point temperatures TR,H and TR,L from
Equations (38) and (39) are made dependent on the sign of ER.h−ER.l, the EE-regenerator
model is capable of describing temporal evolutions of TR,H and TR,L that involve sign
changes of the regenerator’s temperature gradient. This was not possible in the ES-
regenerator model, where the sign of the temperature gradient was predefined. Apart
from that, the dynamical behavior of the two models is identical so that the results of the
EE-regenerator model are equal to those shown in Figure 9.

4.3. EEn-Regenerator Model

Model assumption (C) results in a more drastic simplification that separates the
treatment of regeneration itself from the description of the influence of the regenerator
dead volume. In doing so, the number of degrees of freedom of the regenerator is kept
minimal. However, the presented EE-regenerator model can be extended by adding a
gas reservoir R.d, for which its temperature TR.d is maintained at the logarithmic mean
temperature of the two contact point temperatures:

T̃R,H,L =
TR,H − TR,L

log
(
TR,H

)
− log

(
TR,L

) . (43)

Its volume VR.d shall correspond to the regenerator’s dead volume. Then, its pressure
pR.d results from T̃R,H,L, VR.d and the particle number nR.d contained in the regenerator
dead space. The correspondingly extended EEn-regenerator model [49] features three
degrees of freedom and is schematically shown in Figure 11.
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Figure 11. Schematics of the EEn-regenerator composed of an engine, two internal heat reservoirs,
and an internal gas reservoir [49]. The sum of the two internal heat reservoir’s energies ER.h and ER.l
represents the energy of the regenerator matrix, whereas their single values determine the contact
point temperatures TR,H and TR,L via Equations (38) and (39). The internal gas reservoir represents
the regenerator dead space with the contained number of gas particles nR.d. This gas reservoir is
maintained at the logarithmic mean temperature T̃R,H,L of TR,H and TR,L. Thus, the working gas
inside the regenerator dead space is attributed the proper effective temperature, which was not the
case in the ES-regenerator and the EE-regenerator.

The definition of contact point temperatures can be taken from the EE-regenerator
model. The regenerator dynamics, however, needs to be adapted to account for extensity
and energy transfers with the internal gas reservoir:

ĖR.h = IR.h = IR,H − IR.hl − IR.d/2, (44)

ĖR.l = IR.l = IR,L + IR.hl − IR.d/2, (45)

ṅR.d = Jn
R.d = Jn

R,H + Jn
R,L, (46)

with the auxiliary energy flux now being:

IR.hl =

2
CR

(
JS
R,H + JS

R,L − JS
R.d + ΣS

R

)
− IR,H−IR.d/2

ER.h
− IR,L−IR.d/2

ER.l

1/ER.l − 1/ER.h
. (47)

Here, the particle fluxes Jn
R,i (i ∈ {H,L}) are considered to be functions of the pressure

differences (pi − pR.d). Moreover, IR.d and JS
R.d are the energy flux and the entropy flux at

the engines lower contact point in Figure 11, directed towards the internal gas reservoir.
Applying a non-resistive heat transfer law results in TR.d = T̃R,H,L. Then, the change of the
internal gas reservoir’s internal energy is defined as:

U̇R.d =
d
dt

(cv TR.d nR.d) = cv TR.d Jn
R.d + cv nR.d ṪR.d = IR.d, (48)

IR.d = µR.d Jn
R.d + TR.d JS

R.d = (cv + R− s(TR.d, pR.d)) TR.d Jn
R.d + TR.d JS

R.d (49)
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with µR.d = (cv + R− s(TR.d, pR.d)) TR.d (see Equation (6)). For the non-resistive transfer
law, ṪR.d = ˙̃TR,H,L holds, which is a function of ER.h, ER.l, ĖR.h, and ĖR.l. Consequently, the
fluxes to the internal gas reservoir can be expressed as:

IR.d = cv T̃R,H,L Jn
R.d + cv nR.d

˙̃TR,H,L, (50)

JS
R.d =

(
s(T̃R,H,L, pR.d)− R

)
Jn
R.d +

cv nR.d

T̃R,H,L

˙̃TR,H,L. (51)

Alternatively, instead of using the non-resistive transfer resulting in TR.d = T̃R,H,L, a
resistive (or finite) heat transfer law involving a very large auxiliary heat conductance KR.d
can be used so that TR.d ≈ T̃R,H,L. Then, TR.d becomes an additional degree of freedom for
which a differential equation needs to be solved:

ṪR.d =
1

nR.d cv

(
IR.d − TR.d cv Jn

R.d
)
. (52)

Nevertheless, this has the advantage that there is no need to calculate the time deriva-
tive of T̃R,H,L, which is a cumbersome expression. As replacements of Equations (50)
and (51), the energy flux and the entropy flux (at the contact point of the internal engine)
to the internal gas reservoir are then defined as:

IR.d = KR.d
(
T̃R,H,L − TR.d

)
+

{
cp T̃R,H,L Jn

R.d if Jn
R.d ≥ 0

cp TR.d Jn
R.d if Jn

R.d < 0
, (53)

JS
R.d = KR.d

(
T̃R,H,L − TR.d

)
/T̃R,H,L

+

 s(T̃R,H,L, pR.d) Jn
R.d if Jn

R.d ≥ 0(
s(TR.d, pR.d) + cp

(
log

T̃R,H,L
TR.d

+
TR.d

T̃R,H,L
− 1
))

Jn
R.d if Jn

R.d < 0
.

(54)

This represents an irreversible interaction. However, by choosing the auxiliary heat
conductance as arbitrarily large, KR.d → ∞, the internal gas reservoir’s temperature
becomes TR.d → T̃R,H,L and this irreversibility becomes negligible.

Thus, the working gas contained in the regenerator dead space is attributed the proper
effective temperature T̃R,H,L. This was not the case in both the ES-regenerator model
and the EE-regenerator model where the regenerator dead space was not included in the
description. The proper attribution of the effective temperature in the EEn-regenerator
model is advantageous for the application in systems where pressure changes are induced
by changing the average temperature of the working gas. This is, for example, the case
in Stirling and Vuilleumier machines. Particularly, the amount of gas in the regenerator’s
dead space is calculated more accurately, and thus also the pressure in the overall system
in which the regenerator is embedded.

In Figure 12, the contact point temperatures of the EEn-regenerator model are opposed
with those of the finite volume benchmark regenerator, as it was described in Section 4.1
for the same parameter values as given there. However, the system pressure here is
additionally prescribed to oscillate harmonically with a relative amplitude of 10 %, phase-
shifted by π in relation to the particle flux Jn

R,H.
This causes the contact point temperatures TFVM

R,H and TFVM
R,L , calculated with the finite

volume benchmark model, to exceed and go below the adjacent gas reservoir’s temper-
atures TH and TL, respectively. However, similarly to the behavior of the ES-regenerator
model from Figure 9, by the EEn-regenerator model the temperature curves are also better
predicted where they remain between TH and TL and worse outside this range. This is,
again, due to the fact that in these situations the spatial temperature profile, calculated
with the finite volume model, becomes nonlinear close to the regenerator’s boundaries.
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Figure 12. Contact point temperatures TR,H and TR,L of the EEn-regenerator model (solid lines)
compared to the contact point temperatures of a finite volume benchmark regenerator model TFVM

R,H
and TFVM

R,L (dashed lines) for the internally reversible case ΣS
R := 0 with oscillating system pressure.

The constant temperatures of the adjacent gas reservoirs TH and TL are plotted with dotted lines.
Due to the pressure oscillations, the finite volume benchmark temperatures TFVM

R,H and TFVM
R,L exceed

TH and proceed below TL, respectively. The amplitude of contact point temperature oscillations
is slightly overestimated by the EEn-regenerator. Nevertheless, the regenerative behavior under
pressure oscillations is well approximated, despite the fact that the EEn-regenerator model has only
three degrees of freedom and significantly lower numerical effort.

Nevertheless, the regenerative behavior under pressure oscillations is properly ap-
proximated by the EEn-regenerator model. As mentioned in Section 4.1, under realistic
operational conditions, significant internal irreversibilities will occur so that ΣS

R > 0. These
will reduce the difference of the contact point temperatures (TR,H − TR,L). To describe such
internal irreversibilities, in the following, approximative expressions for the instantaneous
internal entropy production ΣS

R of the regenerator are provided.

5. Internal Irreversibilities

Internal irreversibilities in the regenerator result in entropy production which is repre-
sented by the source term ΣS

R in Equations (30), (42), and (47). The internal irreversibilities
considered in the following relate to finite mass transfer through the regenerator ΣS,∆p

R ,
heat conduction in the regenerator matrix ΣS,leak

R , and finite heat transfer between working
gas and regenerator matrix ΣS,trans

R . Hence, we have:

ΣS
R = ΣS,∆p

R + ΣS,leak
R + ΣS,trans

R . (55)

5.1. Pressure Drop

As already mentioned in Section 3, viscous dissipation, caused by the frictional gas
flow through the regenerator matrix, cannot be avoided in thermal regenerators. For the ES-
and the EE-regenerator model, the associated entropy production can be approximated as:

ΣS,∆p
R = Jn

R,H R log
pR,H

pR,L
(56)



Energies 2021, 14, 7295 19 of 25

and for the EEn-regenerator model as:

ΣS,∆p
R = Jn

R,H R log
pR,H

pR.d
+ Jn

R,L R log
pR,L

pR.d
. (57)

Note that these expressions constitute approximations that are motivated by the
structure of the endoreversible models. In order to obtain a more accurate expression for
the entropy production rate associated with viscous dissipation, the regenerator is again
considered as a continuum that is discretized into N layers in terms of a finite volume
approach. Then, the entropy production associated with viscous dissipation becomes:

ΣS,∆p
R =

Jn
R,H R log

pR,H

p1
+ ... + Jn

i R log
pi−1

pi
+ Jn

i+1 R log
pi

pi+1
+ ...− Jn

R,L R log
pN

pR,L

(58)

where i identifies some finite volume inside the regenerator having the pressure pi. The
particle flux Jn

i comes from (i− 1) and enters i, whereas Jn
i+1 leaves i and enters (i + 1).

Consequently, Jn
1 = Jn

R,H and Jn
N+1 = −Jn

R,L must hold. Equation (58) can be rearranged:

ΣS,∆p
R = Jn

R,H R log pR,H + ... + (Jn
i+1 − Jn

i ) R log pi + ... + Jn
R,L R log pR,L. (59)

By tanking the limit N → ∞ with Jn
i and pi becoming continuous functions of the

dimensionless regenerator coordinate ξ, we obtain:

ΣS,∆p
R = Jn

R,H R log pR,H +
∫ 1

0

∂Jn(ξ)

∂ξ
R log(p(ξ))dξ + Jn

R,L R log pR,L. (60)

Note that if Jn(ξ) was constant, we would obtain the same result as with
Equations (56) and (57). For the EEn-regenerator model, however, if Jn

R,H 6= −Jn
R,L,

Equation (57) would correspond to a piecewise constant approximation of Jn(ξ), which is
obviously a rather crude description and may introduce deviations from more detailed
regenerator models.

Therefore, in the following, we will concentrate on the EEn-regenerator model and
assume that Jn(ξ) varies linearly throughout the regenerator between Jn

R,H and −Jn
R,L.

Moreover, we assume a constant particle transfer coefficient αR with the transfer laws
Jn
R,H = 2 αR(pR,H − pR.d), Jn

R,L = 2 αR(pR,L − pR.d), and Jn(ξ) = −αR(∂p(ξ)/∂ξ). Then, the
divergence of the particle flux is:

∂Jn(ξ)

∂ξ
= −

(
Jn
R,H + Jn

R,L
)
= −2 αR

(
pR,H + pR,L − 2 pR.d

)
. (61)

Furthermore, it follows that the spatial pressure distribution in the regenerator
is quadratic:

p(ξ) =
(

ξ2 − ξ
)(

pR,H + pR,L − 2 pR.d
)
+ ξ
(

pR,L − pR,H
)
+ pR,H. (62)

Inserting these expressions into Equation (60) results in the following alternative
expression for the entropy production associated with viscous dissipation in the EEn-
regenerator model with constant particle transfer coefficient αR:

ΣS,∆p
R =

{
ΣS,∆p

R+ if psqr ≥ 0

ΣS,∆p
R− if psqr < 0

with psqr :=
(

pR,H pR,L − p2
R.d

)
and (63)
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ΣS,∆p
R+ := Jn

R,H R log pR,H + Jn
R,L R log pR,L − 2 R αR

[
− 2

(
pR,H + pR,L − 2 pR.d

)
− 2

√
psqr

(
atan

(
pR.d − pR,H√psqr

)
+ atan

(
pR.d − pR,L√psqr

))

+ pR,H log pR,H + pR,L log pR,L − pR.d log
(

pR,H pR,L
)]

, (64)

ΣS,∆p
R− := Jn

R,H R log pR,H + Jn
R,L R log pR,L − 2 R αR

[
− 2

(
pR,H + pR,L − 2 pR.d

)
− 2

√
−psqr

(
atanh

(
pR.d − pR,H√−psqr

)
+ atanh

(
pR.d − pR,L√−psqr

))

+ pR,H log pR,H + pR,L log pR,L − pR.d log
(

pR,H pR,L
)]

. (65)

Note that ΣS,∆p
R+ = ΣS,∆p

R− . However, either the former or the latter expression involves
complex numbers if psqr is negative or positive, respectively. Therefore, in order to ease
implementation, a distinction of cases is made in Equation (63).

5.2. Internal Heat Leak

Heat conduction between the hot and cold side of the regenerator represents an
internal heat leak. Such heat leaks can have decisive influence on the efficiency of heat
engines as has, for example, been shown in [50,51]. The heat leak is here modeled as
Newtonian heat transfer between the two contact points of the regenerator, for which the
entropy production is:

ΣS,leak
R := Kleak

R

(
TR,H

TR,L
+

TR,L

TR,H
− 2
)

. (66)

Here, Kleak
R is the effective heat conductance of the regenerator in the direction of the

gas flow.

5.3. Finite Heat Transfer

The third term ΣS,trans
R of Equation (55) addresses an irreversibility which occurs in

real regenerators due to a finite local temperature difference between the working gas and
the regenerator matrix. Even though this temperature difference is assumed small in the
presented models, the associated entropy production may be significant because of the
large heat fluxes that are usually exchanged by the working gas and the regenerator matrix.
Assuming Newtonian heat transfer with a small, homogeneous temperature difference
(IR,H + IR,L)/Ktrans

R and a large homogeneous conductance Ktrans
R , the line density of the

local entropy production rate becomes:

ρS,trans
Σ (ξ) := Ktrans

R

TR(ξ) +
IR,H+IR,L

Ktrans
R

TR(ξ)
+

TR(ξ)

TR(ξ) +
IR,H+IR,L

Ktrans
R

− 2

. (67)

Using Equation (21), the integration of ρS,trans
Σ (ξ) over the dimensionless regenerator

coordinate ξ yields:

ΣS,trans
R :=

∫ 1

0
ρS,trans

Σ (ξ)dξ =
IR,H + IR,L

TR,H − TR,L
log

 TR,L +
IR,H+IR,L

Ktrans
R

TR,H +
IR,H+IR,L

Ktrans
R

TR,H

TR,L

. (68)
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6. Validation

Experimental validation is the ultimate approach to obtain an estimate of the error
that a physical model involves. In the case of a reduced-order model, it can additionally
be advisable to validate it against the more detailed model that it is based on. In doing so,
the influence of the assumptions of the reduced-order model can be checked for a specific
model situation. In the current study, for example, such an assumption is the linearity of
the temperature profile of the regenerator matrix.

The EEn-regenerator model was validated numerically for an exemplary Stirling
engine in [52,53]. The results of the corresponding EEn-ST Stirling engine model were
compared to a more detailed model variant that uses a finite volume regenerator (FVM-ST
model). The comparison showed a good accordance of the models regarding entropy
production rates related with single irreversibilities, as well as power and efficiency. Fur-
thermore, in [54], a numerical validation of the EEn-regenerator model with internal
irreversibilities was conducted for a Vuilleumier refrigerator. The numerical validation was
here also performed against a finite volume regenerator model. The results were compared
regarding the entropy production rates associated with single irreversibilities as well as dif-
ferent performance measures of the refrigerator. Even though the EEn-regenerator model
incorporates significantly fewer degrees of freedom and reduced numerical effort consid-
erably, it provided reliable and accurate approximations to the results of the much more
detailed finite volume models in the considered parameter ranges, for both the Stirling and
Vuilleumier machines.

7. Summary and Outlook

In this study, we developed three variants of an endoreversible model for thermal
regenerators, referred to as ES-regenerator, EE-regenerator, and EEn-regenerator models.
The models are based on the notion of an internally reversible regenerator, which was
defined as a subsystem that internally conserves both energy and entropy. Nevertheless,
the model is not limited to the reversible description: External irreversibilities inevitably
occur in the regenerator’s interactions with the adjacent gas reservoirs due to thermal
mixing. Additionally, internal irreversibilities can be accounted for via entropy source
terms defined in further submodels. The two most important model assumptions that all
model variants have in common are:

(A) The temperature difference between working gas and regenerator matrix is small.
(B) The spatial temperature distribution in the regenerator is linear.

Moreover, an additional assumption is made for the ES-regenerator and the EE-
regenerator model:

(C) Only the regenerator matrix is encompassed by those models. The regenerator dead
space is excluded from the description.

In the EEn-regenerator model, (A) and (B) are taken over, whereas the regenerator
dead space is taken into account by an additional gas reservoir.

By help of (A) and (B), a relation between the regenerator’s temperature distribution
and its energy and entropy content was established: First, via a consideration of a continu-
ous one-dimensional solid body with linear spatial temperature distribution, expressions
for the regenerator matrix’ energy and entropy were derived as functions of the tempera-
tures at its hot and cold side (contact point temperatures). The expressions for energy and
entropy were then solved for the two contact point temperatures via polynomial approxi-
mation. In doing so, the contact point temperatures could be expressed as functions of the
energy and entropy contained in the regenerator matrix. The contact point temperatures,
in turn, could then be used in the definitions of energy and entropy fluxes which enter or
leave the regenerator at its contact points.

In the ES-regenerator model, the dynamics of the regenerator was determined via the
requirement of instantaneous conservation of energy and instantaneous balance of entropy.
This resulted in two ordinary differential equations: one for energy E and one for entropy S.
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In the entropy balance equation, an entropy source term was introduced to account for
one or several types of internal irreversibilities. These internal irreversibilities encompass
loss phenomena, which occur inside the regenerator, due to for example pressure drop,
finite heat transfer between gas and matrix, and heat conduction between the regenerator’s
hot and cold side. As opposed to the internal irreversibilities, external irreversibilities
occur in the interactions of the regenerator with the adjacent gas reservoirs. These external
irreversibilities are due to thermal mixing and cannot be avoided, even if the regenerator is
considered as internally reversible.

In the EE-regenerator model, the regenerator was given an internal endoreversible
structure with an engine and two finite heat reservoirs, each of which represents one half
of the regenerator matrix. It was shown that as an alternative to solving balance equations
for energy and entropy, the dynamics of the regenerator can be set up by using the two
internal heat reservoir’s energies E as state variables. The use of the internal endoreversible
structure brings about the possibility to consider temperature gradient evolutions that
involve sign changes in the EE-regenerator model, which had not been possible in the
ES-regenerator model.

The EEn-regenerator model is an extension of the EE-regenerator model in which a gas
reservoir was added to the regenerator’s internal endoreversible structure to account for the
influence of the regenerator dead volume filled with particle number n. Thus, the working
gas contained in the regenerator dead space is attributed the proper effective temperature,
which is the logarithmic mean of the contact point temperatures. This is advantageous for
the description of systems where changes of the average gas temperature induce pressure
changes, as it is the case, for example, in Stirling and Vuilleumier machines. Conversely,
the ES-regenerator model and the EE-regenerator model are rather suited for applications
where the exact consideration of the regenerator dead space is of subordinate importance.
For example, they could be used to describe the regenerators in gas turbine applications.

Numerical validations of the developed endoreversible regenerator models were
performed against finite volume regenerator models. For the EEn-regenerator model, such
validations were carried out for Stirling and Vuilleumier machines in parallel research
works [52–54]. Despite its significantly fewer degrees of freedom and reduced numerical
effort, the EEn-regenerator model provided good approximations to the results obtained
with the much more detailed finite volume models.

Due to their low number of degrees of freedom and reduced numerical effort, the
developed endoreversible regenerator models are predestined for applications such as
design and control optimizations. In fact, the EEn-regenerator model has already been
applied for piston path optimizations of a Stirling engine [52,53,55]. In future research
work, the developed endoreversible regenerator models should be validated for a wider
range of design parameters and operational conditions. Extensions can be made in order
to be able to describe rotary-matrix regenerators, such as those used in gas turbines.
The model can also be set up with constitutional laws other than the ideal gas law and
constant-heat-capacity matrix material. Other phenomenological transfer laws can be used
to define the model’s interactions, potentially also including terms according to Onsager’s
reciprocal relation. Further loss phenomena can be considered by adapted or additional
entropy source terms. Moreover, the inertia and the kinetic energy of the working gas may
be taken into account.
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Nomenclature

Symbols

C J/K Heat capacity

c J/(kg K) Specific heat capacity

cp J/(mol K) Isobaric molar heat capacity

cv J/(mol K) Isochoric molar heat capacity

E J Energy

Iα
i,r W Energy flux carried by extensity flux Jα

i,r

Ii,r W Overall energy flux carried by multi-extensity flux

Jα
i,r

[
Xα]/s Flux of extensity Xα into subsystem i at contact r

K W/K Heat conductance

l m Length

m kg Mass

n, Xn mol Particle number

p,−YV Pa Pressure

Q J Heat

R J/(mol K) Ideal gas constant

S, XS J/K Entropy

s J/(mol K) Molar entropy

T, YS K Temperature

U J Internal energy

V, XV m3 Volume

Xα [
Xα] Extensity

Yα J/
[
Xα] Intensity related to Xα

γ mol/(Pa s) Particle transfer coefficient

µ, Yn J/mol Chemical potential

ρ kg/m3 Mass density

ΣS W/K Entropy production rate

σ J/(mol K) Molar entropy production

Subscripts and Superscripts

.d Regenerator dead space, internal gas reservoir

g0 Reference for gas

H High temperature

.h Matrix, high-temperature internal heat reservoir

L Low temperature

.l Matrix, low-temperature internal heat reservoir

R Regenerator

R0 Reference for regenerator matrix

therm Thermal

visc Viscous

α, β Placeholder for extensity identifier α ∈ {S, n, V, ...}
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