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Abstract: Leading edge surface erosion is an emerging issue in wind turbine blade reliability, causing
a reduction in power performance, aerodynamic loads imbalance, increased noise emission, and,
ultimately, additional maintenance costs, and, if left untreated, it leads to the compromise of the
functionality of the blade. In this work, we first propose an empirical spatio-temporal stochastic
model for simulating leading edge erosion, to be used in conjunction with aeroelastic simulations, and
subsequently present a deep learning model to be trained on simulated data, which aims to monitor
leading edge erosion by detecting and classifying the degradation severity. This could help wind
farm operators to reduce maintenance costs by planning cleaning and repair activities more efficiently.
The main ingredients of the model include a damage process that progresses at random times, across
multiple discrete states characterized by a non-homogeneous compound Poisson process, which is
used to describe the random and time-dependent degradation of the blade surface, thus implicitly
affecting its aerodynamic properties. The model allows for one, or more, zones along the span of
the blades to be independently affected by erosion. The proposed model accounts for uncertainties
in the local airfoil aerodynamics via parameterization of the lift and drag coefficients’ curves. The
proposed model was used to generate a stochastic ensemble of degrading airfoil aerodynamic polars,
for use in forward aero-servo-elastic simulations, where we computed the effect of leading edge
erosion degradation on the dynamic response of a wind turbine under varying turbulent input
inflow conditions. The dynamic response was chosen as a defining output as this relates to the
output variable that is most commonly monitored under a structural health monitoring (SHM)
regime. In this context, we further proposed an approach for spatio-temporal dependent diagnostics
of leading erosion, namely, a deep learning attention-based Transformer, which we modified for
classification tasks on slow degradation processes with long sequence multivariate time-series as
inputs. We performed multiple sets of numerical experiments, aiming to evaluate the Transformer
for diagnostics and assess its limitations. The results revealed Transformers as a potent method for
diagnosis of such degradation processes. The attention-based mechanism allows the network to
focus on different features at different time intervals for better prediction accuracy, especially for
long time-series sequences representing a slow degradation process.

Keywords: wind turbine; structural monitoring; leading edge erosion; Poisson process; aeroelastic
simulations; lift and drag; deep learning; transformer; diagnostics

1. Introduction

This work was motivated by current efforts on development of a novel micro-electro-
mechanical monitoring system based on aerodynamic surface pressure and aero-acoustic
measurements for structural health monitoring of wind turbine blades, as part of the
Aerosense project [1]. Sensing nodes are distributed along the span of the blade, delivering
measurements of local sectional aerodynamic pressure distributions and aero-acoustic and
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acceleration signals (see the illustration in Figure 1). Assuming the availability of such a
monitoring system, we proposed an approach to the modeling and diagnostics of erosion
of the leading edge for wind turbine blades.

Figure 1. Illustration of Aerosense, a novel MEMS-based aerodynamic surface pressure and aero-
acoustic measurement system for wind turbines’ blades.

Leading-edge erosion (LEE) is caused by environmental variations in the blade surface,
temperature oscillations, moisture, UV radiation, raindrops, sand, and hailstones or other
particles impacting the leading edge of the blade. It could also be initiated by surface
cracks due to global strain from blade flexing [2], errors during manufacturing in terms
of paint deposits, consistency of the gel coat thickness and bonding strength, or initiating
surface damage during blade handling in transport or installation. This causes the surface
material to be removed from the blade surface, leaving a rough profile that degrades the
aerodynamic performance, and, in the long term, if left untreated, it impacts the structural
integrity of the blade. Outboard blade regions, where the relative velocity of the flow is
higher, may exhibit more prominent erosion levels as impacts with eroding elements are
more energetic. Moreover, the outboard sectional regions have a more significant role in
power production, which further exacerbates rotor performance degradation.

Bogdanoff and Kozin (1985) [3] define cumulative damage as the “irreversible accu-
mulation of damage throughout life that ultimately leads to failure.” Leading edge erosion
of a wind turbine blade represents such a process, albeit at slow degradation rates, with
effects slow to manifest and even harder to detect early on. Most diagnostic techniques
today rely on direct visual inspection [4], image processing [5], and statistical analysis,
e.g., regression or clustering of supervisory control and data acquisition (SCADA) output,
such as blade pitch, rotor speed, or electrical power [6,7]. Visual inspection and image
acquisition generally imply occasional stoppage of the turbines, resulting in loss of power
production. More importantly, they give a local (both spatial and temporal) snapshot of
the erosion condition without a direct link to the historical progression of the degrada-
tion and how it relates to environmental and operational conditions. Even though it is
better positioned to discriminate the environmental and operational conditions versus
the degradation process, long-term SCADA-based statistical analysis invariably does not
possess the necessary resolution to determine accurately the severity and spatial extent of
erosion on the blades. A gap therefore exists in the field of spatio-temporal modeling and
diagnostics of leading edge erosion for wind turbines rotor blades. In this work, we were
particularly interested in leveraging time series emanating from the novel Aerosense-based
aerodynamic surface pressure monitoring system for wind turbines’ blades. The aim was
to (1) detect the occurrence of erosion and (2) classify the severity (intensity) of erosion.
This could be regarded as either the inverse problem of reconstruction for the lift and drag
coefficients or a problem of finding the optimal discriminants for erosion versus other
effects from time-series response signals. To tackle this problem and build meaningful
diagnostics models, realistic time-series data were required for training. Our options were
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either to collect multi-year field data, where the rotor blades are known to undergo leading
edge erosion, or to develop a numerical model of erosion coupled to an aeroelastic simula-
tor. As data availability for such systems is often limited and restricted by data-sharing
protocols, we here opted for the route of numerical modeling and simulations, with the
additional benefit of delivering a model that can be used for simulating such slow leading
edge erosion degradation processes.

Towards accomplishing the goal of diagnostics and inference of erosion of the leading
edge of wind turbine blades, this work made the following contributions:

• We developed a stochastic spatio-temporal erosion model of the leading edge of wind
turbine blades, which is characterized by a non-homogeneous compound Poisson
process across discrete states, embedded in a generator of a stochastic ensemble of
degrading airfoil aerodynamic polars for use in forward aero-servo-elastic simulations.
The coupled model is able to compute the aeroelastic non-stationary response of a
wind turbine, thus reflecting its behavior under the effect of leading edge erosion and
varying turbulent input inflow conditions over a long period of degradation.

• We adapted a deep-learning multivariate time-series-based Transformer, which em-
ploys attention mechanisms to detect and classify long-term and slow leading edge
erosion processes assuming the availability of on-blade sectional monitoring data,
under short- and long-term wind inflow uncertainties and aerodynamic uncertainties
on the lift and drag coefficients of the airfoil sections along the span of the blade.

A graphical abstract of this research is presented in Figure 2.

Figure 2. A graphical abstract of modeling and diagnosing erosion of the leading edge of wind turbine blades.

The remainder of this article is organized as follows. In Section 2, we offer a review of
the state of the art in the modeling and diagnostics of leading-edge erosion. In Section 3,
we present the details of the spatio-temporal stochastic model for leading-edge erosion. In
Section 4, we present the uncertainty modeling and the aeroelastic simulations setup. In
Section 5, we elaborate the theory of the Transformer model for diagnostics and inference.
In Section 6, we illustrate the novelty and principles of the proposed framework on a
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simulations-based application and further provide discussions and list the limitations
in Section 7.

2. Review of Prior Art

We review modeling approaches of leading edge erosion in conjunction with aeroelas-
tic simulations and subsequently assess the state-of-the-art in diagnostics methods.

2.1. Modelling Leading-Edge Erosion

Several studies have quantified the impact of leading-edge erosion on the aerodynamic
and aeroelastic performance of wind turbines.

The general thread in the first set of studies amounts to describing the constitu-
tive laws, physical processes, and instigators at the micro-scale resulting in surface ero-
sion/degradation and the various stages and types of erosion severity e.g., [2,8–11]. Such
models incorporate the effect of wind speed, air density, particle size, incubation time,
and erosion intensity due to rainfall, snowfall, sea spray, and fog. It is unclear however
how the micro-scale models couple to the macro-scale aspects of leading-edge erosion and
consequently the effect on turbine performance.

The second set of studies quantified the impact on wind turbine performance via
computational approaches (aeroelastic or computational fluid dynamics simulations) or
extensive experimental campaigns in wind tunnels, coupled to uncertainty propagation
schemes e.g., [12–17]. The limitations in all these works is that they do not allow for
multiple zones along the span of the blades to be independently affected by stochastic
erosion processes.

Bortolotti et al. [18] proposed a simple stochastic model to describe the extent of blade
span-wise degradation due to leading-edge erosion via a single factor that was assumed to
follow a truncated beta distribution. However, the long-term temporal degradation process
of the blade’s leading-edge was not accounted for. Dimitrov [19] describes a first attempt
to introduce temporal progression to the damage growth for leading-edge erosion due to
rainfall events indirectly via loss of annual energy production.

To the best of our knowledge, we found a gap in the existing literature for compre-
hensive models that encompass both stochastic, spatial, and temporal elements to describe
the erosion process of the leading edge of wind turbine blades and the effects on their
performance over long periods of degradation time horizons.

2.2. Diagnosing Leading Edge Erosion

Different approaches exist to diagnose the extent of leading-edge erosion on wind
turbine blades. Traditionally, manual human inspection was used, although modern visual
approaches are being developed to utilize drones paired with computer vision [5]. Our aim
was to use data-driven continuous monitoring methods to perform diagnostics without
resorting to turbine shutdown. We review different machine learning and probabilistic
approaches that have been put forth and which, given data recorded by sensors placed
on the wind turbine (e.g., novel aerodynamic pressure sensors, SCADA, accelerometers,
strain gauges, etc.), would be able to estimate the extent of leading-edge erosion on wind
turbine blades. In this context, the diagnostics task can be described as a multivariate
time-series (MTS) classification/clustering problem; an algorithm is tasked with predicting
the degradation status/class of a blade by analyzing multiple time-dependent signals.
We therefore included MTS methods, which have not been specifically applied to wind
turbine blades in the past, allowing us to explore promising machine learning approaches
from diverse fields unrelated to structural health monitoring: activity recognition, anomaly
detection, sound analysis, human health signal (EEG and ECG), interpretation, etc. If the
forward model of the degradation process is known, the diagnostics problem becomes
a supervised classification task, seeing that each MTS data point is associated with its
degradation ground truth. Data-driven MTS classification is a field that is currently
generating a significant amount of attention, with many promising methods that have been
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recently developed [20]. Within these approaches, we can differentiate between those that
use the raw time-series data [21], known as end-to-end approaches, and those that first
extract features that are then passed to a classification algorithm [22].

Extracting features from time-series data can be accomplished in many ways, with
domain-dependent feature engineering or statistical methods often being the first choices.
Algorithms based on empirical mode decomposition (EMD) are implemented for repre-
senting MTS as a superposition of simpler well-behaved components called intrinsic mode
functions (IMFs). EMD approaches are suitable for damage detection and degradation state
recognition in the analysis of nonlinear and non-stationary signals. However, they have
shown low performance in highly stochastic signals with spike pulses and jumps [23,24].
Distance-based metrics evaluate the similarity between time-series data form another pop-
ular class of conventional feature construction methods [25]. Alternatively, in [26] and [27],
feature vectors are built from MTS data by passing the inputs through numerous random
convolutional kernels. This approach, named ROCKET, has a relatively low computational
cost, yet, when combined with a standard ridge classifier, it achieves state-of-the-art ac-
curacy on the UCR time-series archive dataset [28]. Other methods turn the time-series
inputs into feature images [29], which are then fed into convolutional neural networks
(CNNs) [30] designed for image classification, thus taking advantage of the recent advances
in computer vision performance. Although feature engineering and feature extraction can
potentially lead to accurate diagnostics with good explainability, we were interested in
implementing end-to-end methods that use raw MTS data. This is due to the fact that
feature-based methods often require large amounts of cumbersome human intervention,
which limits generalization. Robustness is another potential downside, where changing the
input, due to sensor malfunction for instance, might require re-selecting relevant features,
while it can be factored into end-to-end approaches, provided it is part of the training data.

Conventional (“shallow”) data-driven classification methods do not often use untrans-
formed MTS as inputs, due to the difficulty associated with extracting relevant information
from noisy, complex data. In contrast, deep-learning methods often excel at learning
hidden discriminative features, making them particularly well suited for end-to-end ap-
proaches [31]. CNNs have been applied to end-to-end MTS classification in the context of
prognostic health management [32], surgeon skill classification [33], and other tasks [34].
CNNs are limited by their receptive field, making their use limited to relatively short
time-series. Recurrent neural networks (RNNs) [35] are, by design, effective at solving
tasks relating to sequential data. Long short-term memory (LSTM) networks [36], cur-
rently the most commonly used type of RNNs, have been used to successfully classify
clinical measurements [37] and action recognition tasks [38]. However, RNNs are also
limited to relatively short input sequences due to memory requirements and are difficult
to train. In recent years, Transformers [39] have attracted a lot of attention in the Natural
Language Processing (NLP) community and have mostly replaced RNNs. These neural
networks leverage the power of attention mechanisms to learn the relevant interdepen-
dencies within sequences. Transformers have increasingly been applied in other domains,
such as computer vision [40], time-series forecasting [41], and multivariate time-series clas-
sification [42]. Graph neural networks [43], a class of deep data-driven methods that utilize
graph-structured data, have also been applied to end-to-end MTS classification [44]. This is
done by first constructing an adjacency matrix from the untransformed MTS data. In [45],
spatio-temporal graph Transformer neural networks (GTNN) were implemented in order
to effectively capture both dynamic spatial and temporal trends. We could envisage using
a GTNN model to leverage temporal and spatial correlations in the degrading sections of
the three blades on a wind turbine.

As previously mentioned, deep end-to-end models are, in general, better suited for
generalization than feature-extraction approaches. Moreover, they can be further optimized
for transferability [46], for instance by applying transfer learning methods, such as using
domain adaption layers [47].
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In the context of data-driven wind turbine blade condition monitoring, a number of
methods have been reported in the literature [48]. In [49] vibrational, frequency response
functions were used as input features to neural networks, in order to detect changes in the
structural health of a blade. LSTMs were trained to classify faults, based on multivariate
sensor recordings of a model wind turbine test rig in [50], while [51] implemented a CNN
to detect possible wind turbine blade breakages based on SCADA data. In [52], support
vector machines were trained on features built from active acoustic recordings to diagnose
healthy and damaged states of a model wind turbine. Another feature-extraction approach
was combined with decision trees in [53] to diagnose different fault scenarios for a model
wind turbine. Finally, ice buildup on wind turbine blades was predicted with random
forests trained on SCADA data in [54], while Weijtjens et al. [55] used Gaussian processes
trained on data emanating from low-cost tower-mounted sensors to do so.

Considering their extensive use in other domains, Transformers bear great potential
for SHM damage detection. Some researchers have made use of attention mechanisms
similar to those found in Transformers for bearing remaining useful life prediction [56],
but to the best of the authors’ knowledge, only in [57] have proper Transformer models
been used in this context. In this work, however, an end-to-end approach was not used;
instead, the model was fed a pre-processed input composed of time series features such
as Mel frequency Cepstral coefficients (MFCCs) and short-time Fourier transformation
(STFT). We chose Transformers as the base of our end-to-end approach for diagnostics.
However, we implemented additional modifications so as to be able to handle multivariate
sequences on the order of several 10s of thousands of data points while still being able
to track long-term degradation progression, reflected by newly sampled sequences with
possible discontinuities. Few, if any, of the existing MTS learning models discussed above
are capable of this.

3. Modeling Erosion of the Leading Edge
3.1. Non-Homogeneous Compound Poisson Process

Erosion initiates on the blades in the form of pits near the leading edge on the pressure
side. These pits develop gradually over time into gouges, then steadily grow in their
size and density to coalesce as delaminations. Gaudern [9] identified five categories of
erosion severity classes. In Sareen et al. [8], we find an analysis of the effect of erosion
at the leading edge on the aerodynamic performance of the DU96−W − 180 airfoil and
categorized erosion from pits to delamination in different types and stages (9 in total), as
shown in Table 1. Each combination of type and stage of erosion has associated with it
aerodynamic polar curves (CL, CD, CM) derived via measurements in a wind tunnel [8,9,12].
Throughout the article we adopt a similar labeling of the leading-edge erosion severity as
shown in Table 2.

Table 1. Types and stages of leading-edge erosion with the number of pits (P), number of gouges (G),
and magnitude of leading edge delamination (DL), modified from [8].

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Type A 100P 200P 400P — —
Type B — 200P/100G 400P/200G 800P/400G —
Type C — — 400P/200G/DL 800P/400G/DL+ 1600P/800G/DL++

Table 2. Class labels adopted for the severity categorization of leading edge erosion.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Type A 1 2 3 — —
Type B — 4 5 6 —
Type C — — 7 8 9
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We proposed a two-step empirical spatio-temporal stochastic model of LEE. Step 1
of the model includes a damage process that occurs at random times, emulating the non-
stationary time of arrival of degradation and its magnitude, with 10 discrete states based
on the non-homogeneous compound Poisson process (NHCPP) to describe the random
degradation of the blade surface and implicitly its aerodynamic properties. In step 2
of the model, the local leading edge degradation manifests by physical changes in the
aerodynamic polars. This step generates an ensemble of stochastic aerodynamic polars for
a given erosion severity of LEE in NHCPP by parameterizing the lift and drag coefficients
curves [58].

A non-homogeneous Poisson process (NHPP) is a stochastic degradation process over
a finite time horizon. The NHPP {N(t), t ≥ 0} has rate of arrivals λ(t) on the time interval
t ∈ [0, T]. A sample path of a NHCPP emulates two main properties in the proposed LEE:
(1) random time of arrival, 0 ≤ τ1 ≤ τ2 ≤ . . . : these are the time instances corresponding
to a change in the degradation level of an airfoil’s aerodynamic properties (shocks) and (2)
the magnitude of change {Yn, n ≥ 1} in the degradation level of an airfoil aerodynamic
properties at the nth time of arrival. In practice, for a probabilistic assessment, many NHPP
paths are sampled. The model incorporates one or more zones (adjacent or disjoint) along
the span of the blade(s) affected by erosion, but they are assumed to undergo independent
degradation processes. The NHCPP modifies the definition of a Poisson process so that it
can incorporate a time-dependent rate. The NHPP is suitable given the fact that the rate of
LEE is not constant in time; on the short time scales (hourly), it is dependent on the rotor
speed due to variations in the wind speed, while, on the longer time scales, it is dependent
on seasonal variations such as rain intensity and changes in environmental temperatures.
We thus inferred that the rate of occurrence of shocks is periodic, as shown in Figure 3. In
addition, LEE consists of a limited and a finite number of stages resulting in varied and non-
stationary incremental severities on the airfoils aerodynamic polars. It is in fact pragmatic
to assume that the severity of LEE has a finite number of stages, because these could
be categorized (e.g., via field observations) and their impact on aerodynamic properties
emulated and quantified via measurements in wind tunnels as demonstrated in [8]. The
impact of LEE on the lift and drag coefficients of the NACA64618 airfoil [12,15,59] for
10 severity classes is shown in Figure 4a,b.

0 24 48 72 96 120 144 168 192 216 240

Time [months]

0

0.1

0.2

0.3

R
a
te

 o
f 

O
c
c
u

re
n

c
e
, 

(t
)

Figure 3. Cyclic rate function λ(t) for the NHPP, representing the effect of weekly and seasonal
variations on the rate. λ(t) represents the rate of change in damage of LE erosion per given period.
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Figure 4. (a) Lift coefficients for NACA64618 for 10 severity classes of leading edge erosion. (b) Drag coefficients for
NACA64618 for 10 severity classes of leading edge erosion.

The NHPP is similar to an ordinary Poisson process, except that the average rate of
arrivals per period λ(t) is allowed to vary with time (Figure 3). A classic definition of the
NHPP is formulated as follows [60]. Let λ(t) : [0, ∞) → [0, ∞) be an integrable function;
the counting process {N(t), t ≥ 0} is called a NHPP with rate λ(t) if all the following
conditions hold:

1. N(0) = 0
2. ∀t, s ≥ 0, and 0 ≤ u ≤ t, Nt+s − Nt is independent of Nu
3. ∀t, s ≥ 0, P(Nt+s − Nt = 0) = 1− λ(t)s + o(s)
4. ∀t, s ≥ 0, P(Nt+s − Nt = 1) = λ(t)s + o(s), and
5. ∀t, s ≥ 0, P(Nt+s − Nt ≥ 2) = o(s)

where s is a a very short interval of time. Here, o(s) is a function that is negligible compared
to s, as s→ 0. Assuming o(s) = g(s), then:

lim
x→0

g(s)
s

= 0

One approach for generating NHPP is the “process analogue” of acceptance–rejection
called thinning, which is the scheme we adopted in our model. The procedure is as follows:

1. Choose λu such that λ(t) ≤ λu∀t ∈ [0, T]
2. Initialize t = 0 and I = 0
3. Generate u1 U(0, 1)
4. Set t← t− 1

λu
log u1

5. If t > T, stop; else go to next
6. Generate u2 U(0, 1), independent of u1

7. If u2 ≤ λ(t)
λu

, set I = I + 1; S(I) = t
8. Go to Step 3

In the above procedure, the ratio λ(t)
λu

is the thinning probability. In our model, λu was
chosen as the maximum of the rate function λ(t) (Figure 3). For long degradation periods,
it might be necessary to break [0, T] into small intervals and pick a λu for each interval in
order to avoid a high rejection rate. This is known as piece-wise thinning. At the end of
this procedure, the event times S(I) (arrival times) and the counting process are yielded
according to the non-homogeneous process. Finally, for a NHPP with rate λ(t), the number
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of arrivals in any interval is a Poisson random variable; however, its parameter can depend
on the location of the interval. More specifically, we can write:

N(t + s)− N(t) ∼ Poisson
(∫ t+s

t
λ(α)dα

)
(1)

Introducing the compounding effect to the NHPP yields the non-homogeneous com-
pound Poisson process (NHCPP). The compound Poisson process replaces the unit jumps
of a Poisson process with random jump sizes [61]. The jumps’ magnitude at the nth arrival
time has value Yn, n ≥ 1 attached to it. The successive Yn, Y = (Y1, Y2, . . . ) are assumed
to be independent, identically distributed, real-valued random variables, and are also as-
sumed independent of the underlying Poisson counting process of shocks. The compound
Poisson process associated with the given Poisson process {N(t), t ≥ 0} and the sequence
Y is the stochastic process Z = {Zt, t ≥ 0}, where:

Zt =
N(t)

∑
n=1

Yn (2)

The damage is always positive, meaning that P(Yn ≥ 0) = 1, and the damage accumu-
lates additively according to Zt in Equation (2). In our model, Zt represents the cumulative
amount of erosion incurred on the blade section at time N(t). In our model, we categorized
10 erosion severity levels reflected in the lift and drag coefficients, as shown in Figure 4a,b.
The final level of degradation (level 9 of erosion severity) leads to the loss of function of
the blade, not in the sense of a catastrophic loss (e.g., rupture) but rather implying that the
blade loses its ability to generate lift efficiently. We adopted a classical approach whereby
Y1, Y2, . . . , Yn are each exponentially distributed according to density:

gY(y) = µ exp−µy (3)

where µ is the mean jump (shock) magnitude. It follows that the sum Y1 + Y2 + . . . + Yn is
Gamma-distributed G(n)(z). For details, we refer the interested reader to [62,63]. Formally,
we adopted a truncated exponential distribution for Yn in Equation (3). The logic being that
large erosion severity magnitude jumps in one shock event are physically hard to justify.
As a result, the upper truncation limit for the shock was set to a magnitude of 4 in our
model. Furthermore, as more events arrived between [0, T], and damage was compounded
Y1 + Y2,+ . . . , we adjusted the upper truncation limit for the shock magnitude from 4
to 1 when {I ≥ 3 ∧

(
Zmax −∑

N(t)=I
n=1 Yn

)
≤ 3}. Finally, sampled jumps of magnitude

Yn > 0 for τn < T were not allowed once the compounded damage has reached its highest
compounded severity class (Zmax = 9) before the end of time horizon T has been reached.
This is reasonable as any additional shock cannot incur additional erosion, as no surface
material that can easily be eroded remains.

Finally, we introduced wind speed and blade location dependencies to the model. For
a given time of arrival of a shock, our model associated higher damage (1) in the event
when the shock is concurrent with higher inflow wind speeds due to higher momentum
(and thus kinetic energy) of the impacting particles anywhere on the blade and (2) in
the outboard sections of the blade due to the local higher relative speed of the flow. We
required the mean jump (shock) magnitude µ to comprise a linearly increasing function
of blade radial location and quadratic with wind speed. The final outcome was thus an
NHCPP degradation path as shown in Figure 5, where five zones along the span of blade
1 were chosen to undergo leading-edge degradation. Even though the exact pattern and
location of surface changes during operation is a random process, we observed that our
model tended to provide higher damage rates of the leading edge on the outboard sections
of the blade compared to the inboard sections.
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Figure 5. A sample of the NHCPP of the leading-edge erosion on 5 zones along the span of blade 1
over a 20-year period (240 months). Zone 5 is the outermost section along the span of the blade.

3.2. Stochastic Aerodynamic Polars Model

In this section, we generated a stochastic ensemble of degrading airfoil aerodynamic
polars for use in forward aero-servo-elastic simulations. The outputs of the NHCPP were
the degradation paths describing different degradation zones along the span of the rotor
blades. Each arriving shock at a given time along these paths corresponds to a jump of
a certain magnitude in the leading edge erosion severity. A jump in the erosion severity
corresponds implicitly to a degradation of the aerodynamic properties of the airfoils
affected by erosion along the span of the blade(s). However, uncertainties in the degrading
airfoil aerodynamics lift and drag coefficients curves still remained to be accounted for.
Our proposed LEE model hence takes into account the inherent uncertainty in airfoil static
lift and drag coefficients during the erosion period via a stochastic model of static airfoil
lift and drag polar curves. The details of this model can be found in Abdallah et al. [58],
with a short summary presented herein for brevity.

Lift and drag coefficients are affected by several sources of uncertainty: uncertainties
related to wind tunnel airfoil testing, 3D-flow correction uncertainties, surface-roughness
uncertainties, uncertainties related to deformations in the blade geometry (during manu-
facturing and handling or deflections induced under load), uncertainties stemming from
Reynolds number effects, uncertainties related to post-stall extrapolation of airfoil charac-
teristics, and finally uncertainties resulting from prototype testing. The joint distribution
of all these random variables cannot be quantified, and, therefore, a stochastic model was
used as suggested in [58]. In this model, the lift coefficient was parametrized by the slope
in the linear range ∂CL

∂α , the point of maximum lift (AoAmax, CL,max), the point indicating
the start of the trailing edge separation (AoATES, CL,TES) and the point where the stall
recovery is initiated (AoASR, CL,SR). This model also includes the parametrization of the
drag coefficient through a bias at low angles of attack and by the maximum drag coefficient
point at AoA = ±90◦, where the largest variation was observed. Figure 6 shows samples
of the stochastic lift and drag coefficients for NACA64618 for an erosion of severity class 5.
Based on these perturbations, modified CL and CD curves were produced that preserved
the main characteristics of the reference curves but yielded magnitudes and features that
reflect possible uncertainties related to the aerodynamic properties of the airfoil section
under actual conditions.

Putting it all together, the NHCPP coupled to the generator of stochastic ensembles
of aerodynamic polars yields realistic degrading aerodynamic polars over the degrada-
tion time horizon, for every degrading zone and airfoil section on the rotor blades. For
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example, Figure 7a shows the degrading CL over a 20-year period (240 months) for for
NACA64618 airfoil, and Figure 7b represents the corresponding degrading max lift co-
efficient. Figure 7c,d show the degrading angle of attack at max lift coefficient and the
degrading lift coefficient at α = 5◦, respectively.
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Figure 6. Samples of the generated stochastic aerodynamic coefficients of airfoil NACA64618. (a)
Lift coefficient. (b) Drag coefficient.
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Figure 7. (a) NHCPP-generated degrading static CL for NACA64618. This was used as input to the aeroelastic simulations
for Blade 1, Section 5. For each pre-selected degrading section on a blade, a set of such curves were generated. (b) Degra-
dation of the max lift coefficient for Blade 1, Zone 5. (c) Degradation of angle of attack at max lift coefficient for Blade 1,
Zone 5. (d) Degradation of the lift coefficient at α = 5◦ for Blade 1, Zone 5.
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3.3. Overview of the Algorithm

The main ingredients of the model included a (1) spatio-temporal stochastic damage
process and (2) a generator of stochastic ensemble of degrading airfoil aerodynamic polars.
The algorithm is summarized in Algorithm 1.

Algorithm 1: Spatio-temporal stochastic model of leading edge erosion.
Input :{CL, CD}: static lift and drag coefficients
Result: {CL′

MC, CD′
MC}: degrading lift and drag coefficients

1 Set the blades Bi affected by LE erosion: Bi, i ∈ {1, 2, 3} ;
2 Set the eroding zones EZi,j for Bi: Zi,j, j ∈ {1, 2, 3, 4, 5} ;
3 Set the erosion time horizon [0, T] ;
4 Associate airfoils Ai,j,k to erosion intensity range N = [0, 9], k ∈ {1, K} ;
5 for iter = 1, . . . , n do
6 Generate turbulent inflow samples for [0, T]: U, Ti, α, Ψ, and Σ;
7 foreach blade Bi do
8 foreach Zone EZi,j do
9 foreach Airfoil Ai,j,k do

10 // NHCPP
11 while t = 0, . . . , T do
12 do: sample arrival times N(t);
13 do: sample erosion jumps Yn ;
14 do: compound the erosion jumps, Zt;

// Inject smooth temporal transition
15 do: [ytrans] = GeneralizedLogisiticFunction(·)
16 end
17 // Generate stochastic airfoil data samples
18 foreach Erosion severity Zt in a given NHCPP path do
19 do: Associate severity Zt → {CL, CD} of Ai,j,k;
20 do: [CL′

MC, CD′
MC ] = Generate_Stochastic_Aero_Data(·);

21 end
22 end
23 end
24 end
25 end

4. Uncertainty Modeling and Aeroelastic Simulations

Two categories of uncertain random variables (RV) were considered: wind inflow
and aerodynamic effects. We elaborated on the aerodynamic uncertainties in the previ-
ous section. In this section, we detail the wind inflow uncertainties and the aeroelastic
simulations setup. The conventional wind turbine structural damage computation pro-
cess utilizes aeroelastic load simulations for wind turbines under normal and extreme
operation and wind inflow turbulence conditions, whereby the extreme and fatigue load
cycles determined over a short period of time at each mean wind speed are extrapolated
over the full expected lifetime. Such a process does not consider the changes in inflow
and environmental changes over long time periods, which are indeed relevant to the
LEE process.

4.1. Stochastic Models of Inflow RVs

In turbulent inflow conditions, the structural dynamic response of wind turbines is
highly influenced by factors such as average wind speed, turbulence intensity, wind shear,
and skewness of the inflow. Taking these influences into account, our simulations were set
up with the following RVs: turbulence intensity, Ti, mean wind speed, U, wind shear, α,
horizontal inflow skewness, Ψ, and the vertical inflow skewness, Σ.
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A Weibull distribution describes the mean wind speed, truncated to (4–25) m/s, with
the following parameters:

E(U) = 8.5, where AU =
2×E(U)√

π

KU = 2.0
(4)

The normal turbulence model, defined in the wind turbine design standard [64], de-
scribes the conditional dependence between the mean wind velocity U and the turbulence
σU . We chose to utilize Ire f = 0.16 as the value for reference ambient turbulence intensity,
which was the expected value of the turbulence intensity at 15 m/s. The local statistical
moments of σu ∼ LN

(
µσU , σ2

σu

)
determine this conditional dependency as:

E
(

σu | U
)
= Ire f (0.75u + 3.8)

V
(

σu | U
)
=
(

1.4Ire f

)2 (5)

As a result, we can express the turbulence intensity as: Ti =
σu
u .

A power-law relationship describes the wind profile, by defining the average wind
velocity u at height Z above ground with respect to the reference mean wind speed uh,
measured at hub height Zh:

u
uh

=

(
Z
Zh

)α

(6)

where α is the shear exponent. The conditional dependence between the wind shear
exponent α ∼ N

(
µα, σ2

α

)
and the mean wind speed U is expressed as [65]:

E
(

α | U
)
= 0.088(ln(u)− 1)

V
(

α | U
)
=

(
1
u

)2 (7)

We introduced a custom conditional dependence between the average wind velocity
U and the inflow horizontal skewness Ψ, truncated to (−11, 11) deg., Ψ ∼ N

(
µΨ, σ2

Ψ
)
:

E
(

Ψ | U
)
= ln(u)− 3

V
(

Ψ | U
)
=

(
15
u

)2 (8)

The conditional dependence between the average wind velocity U, the turbulence
intensity Ti, and the vertical inflow skewness Σ, truncated to (−6, 6) deg., was proposed
such that:

Σ ∼ N
(

µΣ, σ2
Σ

)
:

{
µΣ = −2, σ2

Σ = 1.0, if Ti ≤ 10% & α ≤ 0.1.
µΣ = 1.5, σ2

Σ = 1.0, otherwise.
(9)

The blade leading-edge degradation scenario occured over a 240-months period;
consequently, we introduced an additional element of uncertainty by allowing a time-
varying aspect of the inflow conditions, namely, the mean wind speed E(U), the shape
parameter KU of the Weibull distribution, and the reference ambient turbulence intensity
Ire f , as shown in the example in Figure 8.
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Figure 8. Long-term inflow variations: (a) varying mean wind speed and shape parameter KU of the Weibull distribution.
(b) Varying reference turbulence Ire f .

By generating samples with the Sobol quasi-random sequences, the wind inflow
and aerodynamic RVs were sampled uniformly over the unit hypercube, i.e., as evenly
as possible over the multi-dimensional input space [66]. Over the degradation period,
1200 joint samples of the wind inflow RVs were sampled, as shown in Figures 9 and 10. We
generated a realization of the inflow turbulent wind field time-series by sampling U, σU , α,
Ψ, and Σ, which, together with a sample of the stochastic lift and drag coefficients, formed
the input to the OpenFAST aero-servo-elastic simulator. Using this simulator, we could
then compute the aeroelastic response of the wind turbines structure under continuous
erosion of the blade’s leading edge.

Figure 9. samples of the environmental sources of uncertainties for Degradation Period 0.
E(U) = 8.5 m/s, KU = 2.0, Ire f = 0.09.
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Figure 10. Joint samples of the environmental sources of uncertainties for Degradation Period 5.
E(U) = 9.0 m/s, KU = 1.95, Ire f = 0.12.

4.2. Setup of the Aero-Servo-Elastic Simulations

Our coupled aero-servo-elastic simulations with the proposed NHCPP leading-edge
degradation model was based on the OpenFAST simulator. OpenFAST [67] is a cou-
pled aero-hydro-servo-elastic analysis tool for modeling wind turbines. The primary use
of OpenFAST is to run nonlinear time-domain simulations. We elected to simulate in
OpenFAST the NREL reference 5 MW wind turbine [68], which is a well-documented three-
bladed up-wind horizontal-axis wind turbine, with a rotor diameter of 126 m and a 90 m
hub height. The layout of the airfoils along the span of the blade is shown in Figure 11.
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Figure 11. Distribution of airfoils along the span of the blade. Example of the NREL5MW reference
wind turbine.

Using blade element momentum theory as the basis for the aerodynamic model, the
OpenFAST simulator includes dynamic stall, skewed inflow, and generalized dynamic
wake. Aerodynamic forces are computed by interpolating from lookup tables composed
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of provided aerodynamic polars. In our case, the aerodynamic polars correspond to the
degrading lift and drag coefficients generated in the NHCPP, such as the one shown in
Figure 7a. The Kaimal turbulence model [69] was utilized in OpenFAST to compute the
stochastic input wind field. In our setup, we assigned a maximum of five independent
zones that undergo leading-edge erosion per blade. The location of the degradation zones,
normalized by the blade length, along the span of the blades were:

EZ : (0.65, 0.68), (0.70, 0.80), (0.82, 0.85), (0.87, 0.90), (0.92, 1.00)

We simulated 20 years (240 months) worth of wind turbine operation with blades’
LEE. We generated one sample every (approximately) six days, resulting in a total of
1200 simulated samples. Every sample was a 600-s multi-variate time series with 228 sensor
signals each, sampled at 100 Hz. A few examples of the time series signals are shown
in Figures 12.
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Figure 12. (Black) beginning and (red) end of the degradation period. (a) Sample hub height wind speed. (b) Sample lift
coefficient at the airfoil profile corresponding to 95% of the span of Blade 1. (c) Sample flapwise bending moment at the root
of Blade 1.

4.3. Retained Output from Aero-Servo-Elastic Simulations

As mentioned in Section 1, this research was motivated by the development of an
aero-acoustic measurement system that can be used for SHM tasks. In this simulated setup,
we assumed one measurement node located at 0.96 of the blade length, located within
Eroding Zone 5 (near the tip of the blade). From our aero-servo-elastic simulations, we
elected to retain those output signals, which are expected to emanate from the aero-acoustic
measurements nodes, namely, lift and drag coefficients, angle of attack, and wind speed as
listed in Table 3.
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Table 3. Output sensors of the aero-servo-elastic simulations retained for diagnostics.

Sensor Name Description

Time Time steps of the simulations
Wind1VelX X-direction wind velocity at hub-height
B1N9Cl Lift force coefficient at Blade 1, Aerosense Node at 0.96R
B1N9Cd Drag force coefficient at Blade 1, Aerosense Node at 0.96R
B1N9Alpha Angle of attack at Blade 1, Aerosense Node at 0.96R

5. Diagnosing LEE via Transformers

The simulation pipeline described above allowed us to generate data that replicate the
sensory output of Aerosense nodes. Thus, we were able to produce datasets to train a deep
learning method, with the end goal being to detect and estimate the extent of leading-edge
erosion on wind turbine blades. We chose to implement a modified version of a popular
class of sequential deep learning models: Transformers [39].

To motivate the diagnostics task, we considered the case where CL time-series signals
emanate from two sections along the span of the blade. Figure 13a shows a scatter plot of
time series of CL at sections 0.96R vs 0.75R of the blade for wind speeds varying between
6–16 m/s and no LEE (clean blade). Figure 13b shows a similar plot for a fixed wind
speed 11 m/s and evolving severity of leading-edge erosion at section 0.96R. An important
property is that the relational dependency of the CL between the two sections will change
over time either due to changes in the severity of the leading-edge erosion or due to
short-term variation in inflow and operating conditions. The problem is thus to detect
leading-edge erosion and its severity, which could be regarded as a problem of finding
the optimal discriminants for erosion versus other effects (inflow, operational conditions,
aerodynamic uncertainties, etc.) from multivariate time-series response signals.

(a) (b)

Figure 13. (a) CL for wind speeds varying between 6–16 m/s and no blade erosion. (b) CL for fixed wind speed U = 11 m/s
and evolving severity of leading edge erosion.

The following are aspects we built into the diagnostics method for LEE classification,
taking into account the nature/circumstance of an operating wind turbine in the field:

• Labeled data for LEE are hard to acquire and are scarce; as a result, any method must
be designed not to suffer from over-fitting under scarce labeled data availability.

• Diagnostics shall be done with remote streaming of sensor data. Human intervention
and turbine down-time should be alleviated.
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• The data used in the diagnostics method intend to emulate the sensory output of a
single MEMS-based aerodynamic and aero-acoustic measurement node positioned in
proximity to the tip of the wind turbine blade.

• The method shall be capable of ingesting 10-min-long multivariate time-series (in-
dustry standard SCADA recording length), sampled at 100 Hz, resulting in 60,000
data-point-long sequences. A sampling rate of 100 Hz may seem excessive, but the
aim is to capture even small turbulence scales.

• A supervised scheme shall be used to train a Transformer-based network by utilizing
labeled data resulting from aeroelastic simulations of a turbine combined with the
degradation model, as presented earlier in the article.

• Physics-constraints shall be built into the loss or likelihood function.
• The output predictions should be probabilistic in nature.

5.1. Experiments and Datasets

We utilized multivariate time-series data generated via the coupled simulation pipeline
previously described. The designation multivariate stems from treatment of multiple vari-
ables, referring to signals pertaining to lift, drag, angle of attack, and inflow velocity, which
are recorded via an Aerosense node located near the blade tip. On the other hand, the
term multivariate could further refer to the use of multiple Aerosense stations at different
locations along the span of the blade(s); this, however, lies beyond the scope of the present
work. After some initial testing, we opted to utilize the four variables shown in Table 3 as
inputs to the Transformer. For instance, no performance benefit was found when including
simulated acceleration data.

Three sets of experiments, each with different data requirements, were performed
aiming to answer the following questions:

1. Are we able to learn the LEE severity classes from aerodynamic MTS data, in the
general machine learning sense, with balanced data classes and no prior knowledge?

2. In a continuous monitoring context, are we able to diagnose jumps in LEE severity
and therefore identify the degradation path that the system takes?

3. Are we able to do so in a realistic setting, with all previously described sources of
uncertainty present in the simulations?

Thus, the goal of the first set of experimental tasks was to train the neural network on
a generalized dataset with reduced uncertainty and where each degradation class appeared
in equal measure. This is not representative of a real degradation path, where the inherent
stochasticity of the NHCPP may result in some classes appearing very briefly, but we aimed
to avoid biasing the network towards a random predominant class. Moreover, this set of
experiments also aimed to understand how data availability affects classification perfor-
mance and how separable the classes are. Two datasets, corresponding to Experiments
1.1 and 1.2, were generated: one with the full 10 severity classes and one with a reduced
amount of severities (levels 0, 1, 6, and 9). For this set of experiments, no information on
previous states was used. In each of the sub-experiments, 4800 aero-elastic simulations
were gathered, then split into train, validation, and test sets in a 70/20/10 split.

The second set of experiments aimed to assess whether using full degradation paths
in a continuous monitoring setup to train the diagnostics method is a suitable strategy.
Here, the datasets were comprised of full NHCPP degradation paths, albeit with reduced
uncertainty. Due to the stochastic degradation, the datasets did not have balanced classes.
Assuming that a continuous monitoring system is in place, we therefore had access to the
previous degradation states. This allowed for degradation monotonicity to be enforced
in the prediction, thus constraining the output to physically possible solutions (i.e., it is
physically impossible to have a state that is less degraded than previous states—except for
the case of direct service intervention for repair and maintenance, which is out of scope
in this work). Another objective was to evaluate whether severity grouping is a viable
strategy. Indeed, grouping the LEE stages by type (see Table 1) could be beneficial as
a coarse predictor, if it proves to be sufficiently accurate. Thus, in Experiment 2.1, all
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10 degradation levels were used as labels, while, in Eperiment 2.2, the levels were grouped
by type. Three full NHCPP degradation paths (new sample every six days, over a 20-year
period) with 1200 simulations each were separated into training and validation sets in a
80/20 split. A full degradation path, with 1200 data points, was reserved as the test dataset
for final evaluation.

The goal of the third set was to evaluate how the model would perform in a realistic
continuous monitoring situation. Here, the dataset was also made of full NHCPP simula-
tions, but in this case, all possible stochasticity was turned on. Again, we assumed that we
had access to the previous degradation states. We also evaluated class grouping, separating
the experiment into two. Three full NHCPP degradation paths (new sample every six
days, over a 20-year period), each consisting of 1200 MTS data points, were divided into
training and validation sets based on a 80/20 split. The test dataset was comprised of one
full degradation path, with 1200 data points also unused in training or validation.

Table 4 summarizes the differences between the datasets of the three sets of experi-
ments, including the partition of data between the different subsets.

Table 4. Dataset properties of the different diagnostic experiments.

Parameter
Experiments

1.1 1.2 2.1 2.2 3.1 3.2

NHCPP severities 0–9 0, 1, 6, 9 0–9 0–9 0–9 0–9
Severity type grouping - - - 0, A, B, C - 0, A, B, C
Stochastic degradation - - X X X X
Inflow turbulence X X X X X X
Aerodynamic uncertainty - - - - X X
Weather variability - - - - X X
Num. training samples 3360 3360 2880 2880 2880 2880
Num. validation samples 960 960 720 720 720 720
Num. testing samples 480 480 1200 1200 1200 1200

5.2. Transformer Architecture

Here, we introduce the architecture of our Transformer neural network, used to
classify long-sequence multivariate time-series data and infer the degradation status of the
leading edge.

Transformers are models that rely on self-attention mechanisms to highlight and learn
dependencies within sequences. Typically, self-attention is implemented by parsing the
input sequence into into key (K), query (Q), and value (V) vectors. The attention weights
on the values are then obtained by taking the scaled dot products of the query with all keys
and then by applying a softmax function. Using the classical notation [39], this writes:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (10)

where dk is the dimension of the key and query vectors and is used to scale the dot product.
In practice, h-scaled dot-products are used in parallel, within multi-head attention layers.
A multi-head model is able to attend jointly to information gathered from different parts of
the input, providing an improvement in representation over a single attention mechanism.
The final attention vector is obtained by concatenating each of the dot-product results:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (11)

with
headi = Attention(QWQ

i , KWK
i , VWV

i ) (12)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , Vi ∈ Rdmodel×dv and WO ∈ Rh·dv×dmodel are
parameter matrices.



Energies 2021, 14, 7262 20 of 33

Multi-head attention layers are combined with fully connected networks and layer
normalization to form the base architecture of each layer of the Transformer stack. We used
a novel time-windowing Transformer model, which is based on the patch system used in
the Vision Transformer (ViT) model [40]. This architecture, as shown in Figure 14, aims to
address the quadratic attention bottleneck, an obstacle that limits the length of sequences a
Transformer can use. Indeed, the computational complexity of the self-attention layers in
Transformer models scales as O(L2), where L is the length of the input sequence. Given
our requirements, the input time-series had a length of L = 60,000, which is prohibitively
resource-intensive for standard Transformer models. To alleviate this issue, we proposed
to divide the data into N windows along the time-dimension before passing each window
through the learnable input embedding. This allowed us to use the full input time-series
without resorting to downsampling, which would entail losing information.

Before dividing the MTS into windows, each of the individual channels/variables was
normalized in time. Then, the input embedding encodes each time-series window into a
vector of size dmodel, which is the latent size used throughout the Transformer. The type of
input embedding used has a considerable impact on performance, and many embedding
types can be envisaged. We chose to use a learnable linear embedding for simplicity, based
on initial testing and the literature [40]. A class token is concatenated to the embedded
sequence such that its state at the output of the Transformer is used to infer the degradation
severity. Class tokens are commonly used in NLP tasks [70] and are an effective way to
retrieve categorical information from Transformers. Traditionally, positional encodings
are then added to the sequence in order to instill directional information into the model.
Contrary to standard NLP Transformer models, we did not use a positional encoding.
Two positional encoding methods were tested (classical sine functions and simple linear
encoding); however, both of these methods hindered classification performance.

The classification head consists of a single hidden layer multilayer perceptron (MLP)
that processes the class token at the output of the Transformer. It outputs a vector with a
size equal to the number of possible degradation classes, which, when passed through a
softmax activation, gives the likelihood scores of each class. For each class output xi, the
softmax likelihood writes:

softmax(xi) =
exp(xi)

∑j exp(xj))
(13)

If we aim to predict the degradation at multiple zones along the blade, we can simply
stack multiple MLPs, one for each zone. Table 5 summarizes the values used in the
Transformer architecture.

Table 5. Parameters of the Transformer architecture.

Parameter Value

Number of windows, n 300
Window size, w 200
Internal Transformer dim., dmodel 256
Transformer stack size, s 6
Num. self-attention heads, h 8
Self-attention head dim., dhead 64
Output MLP dim., dMLP 2048
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Figure 14. Time-windowing architecture of the novel Transformer model. The input multivariate time-series is split along
the time dimension into windows, which are then individually passed through the learnable linear embedding. The
learnable class token that is added to the sequence is used in the classification MLP head to predict the level of degradation.

5.3. Loss Functions

We first trained and evaluated the Transformer model on the datasets with equal
amounts of degradation classes, in the sense of a traditional classification problem. Thus,
the objective function for this first task was the standard cross-entropy loss:

LCE(y, ŷ) = −
n

∑
i=1

yi log(ŷi) (14)

where y is a one-hot label vector indicating the correct class, ŷ is a vector containing the
predicted softmax probabilities for each class, and n is the number of classes.

In the second and third set of experiments, it was assumed that the state of the system
is known for the previous sampling period. We used this information to enforce physicality;
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we added a second term to the loss function that penalizes a predicted degradation class
that is lower than the known previous class. This second term is the margin ranking loss:

LMR(ĉ, cprev) = −max(0, ĉ− cprev + m) (15)

where ĉ is the predicted class, cprev is the degradation class of the previous known state,
and m is the margin hyperparameter. Overall, the objective function for the second and
third experiments was therefore:

Ltot = LCE + αLMR (16)

where α is a hyperparameter used to balance the two components.

5.4. Training Regime

During training, we used a batch size of 20 along with the Adam optimizer [71] with
parameters β1 = 0.9, β2 = 0.999, ε = 10−8, and a learning rate of lr = 5 · 10−5 to perform
stochastic gradient descent. After 40 epochs of training, the learning rate decayed by a
factor of 0.2. To ensure that the trained model is able to generalize well, and does not
overfit, dropout with a 0.3 rate was used in the attention, fully-connected, and embedding
layers. Furthermore, training and validation metrics (loss and accuracy) were monitored
throughout the training sequence, allowing us to halt training without overfitting. We
found that for most experiments, training for around 60 to 120 epochs was sufficient.

6. Results

For each diagnostic experiment, a Transformer model was trained on the training
dataset, monitored on the validation dataset, and final evaluation took place on the test
dataset. All model hyperparameters were static throughout the experiments, and only
the number of training epochs varies, as we choose the epoch with the best validation
performance. We report in the following sections the results for all three sets of experiments
gathered on the previously unseen test dataset.

6.1. Experiment Set 1

The first set of experiments aimed to assess the potential of the Transformer for
diagnostics given ideal conditions: a balanced data set where each individual degradation
class appears in equal measure. Table 6 reports the testing accuracy scores gathered for
Experiments 1.1 and 1.2. We note a significant difference between the results of the two
experiments, where the 4-class setup outperformed the 10-class setup by 30% in terms
of test accuracy. Knowing that Transformers are data-intensive models that respond
well to large datasets, this discrepancy can be partly explained by accounting for the
number of simulations per individual class. Indeed, as both training sets have the same
total number of samples, there are 2.5 times the amount of samples per severity class in
Experiment 2.2. To factor out the disparity in the amount of data per class, we generated
a large version of training dataset of Task 1.1, with a total of 10,176 training samples and
2544 validation samples. In this experiment (1.1 large), the number of training samples
per class was larger than for Experiment 1.2 (1017 versus 840), yet the 4-class model still
outperformed the 10-class model by over 16%. In general, it is advantageous to train
on larger amounts of severity classes from a risk management perspective, as it allows
for more optimal maintenance intervention schemes. However, as highlighted above, a
fine-grained approach requires more training data in order to diagnose accurately with
high confidence and could result in higher amounts of false positives, which could then
lead to an increase in operation and maintenance (O&M) costs. Thus, there is a trade-off
between risk minimization via fine-grained diagnostics of LEE severity and increased costs
due to higher amounts of false positives and requirements for larger training datasets,
which can be optimized to meet risk management policies and budgetary specifications.
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Table 6. Testing classification accuracy of Experiments 1.1 and 1.2.

Experiment
Testing Accuracy (%)

All Predictions >70% Likelihood

Exp. 1.1 66.67 72.65
Exp. 1.1 Large 80.63 85.56

Exp. 1.2 96.04 97.22

The difference in accuracy can also be explained by the separability of the individual
severity classes. We show in Figure 15 the confusion matrices generated on the test sets
for Experiments 1.1. and 1.2. It can be noted that the Transformer model was able to
successfully differentiate between the lowest and highest of erosion severities, as demon-
strated by the lack of misclassified samples with large differences in severity. Similar
LEE erosion classes exhibited higher amounts of wrongly classified samples. This aligned
with our expectations: small increases in the level of erosion only marginally increased
the roughness of the leading edge, which has a minor impact on blade aerodynamics.
It is therefore more challenging to distinguish between similar LEE severities based on
integrated pressure quantities.

(a) (b)

Figure 15. (a) Confusion matrix of the predicted severity classes for the test data of Experiment 1.1. (b) Confusion matrix of
the predicted severity classes for the test data of Experiment 1.2.

6.2. Experiment Set 2

Here, we assess the use of stochastic degradation paths as diagnostic training points.
Table 7 shows accuracy scores gathered on an un-seen degradation path for Experiments 2.1
and 2.2. Figure 16a plots the predicted states of each MTS data point alongside the true
degradation path for the test dataset that contains a full NHCPP path with up to 10 possible
LE severity classes. In addition, we show the prediction confidence of each model output
based on its softmax likelihood. Figure 16b displays the median predicted severity using a
three-month rolling window.

Table 7. Testing classification accuracy of Experiments 2.1 and 2.2.

Experiment
Testing Accuracy (%)

All Predictions >70% Likelihood

Exp. 2.1 65.42 78.41
Exp. 2.2 67.75 69.48
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These results show that this approach is viable and that we were able to successfully
detect the jumps in degradation severity with some limitations. The main issue with
training on stochastic degradation paths is the data imbalance. Indeed, the training dataset
contained a majority of points belonging to Classes 0, 8, and 9, while Classes 5, 6, and 7 were
underrepresented. This is reflected in the results, where the accuracy was high for Class 0
but low for Classes 5 and 6. Moreover, the prediction confidence was, in general, lower
for underrepresented classes. A possible solution to address this was to train on grouped
severity classes. We evaluated this approach in Experiment 2.2 and plotted the resulting
predictions in Figure 17. Overall, this approach yielded a higher prediction accuracy,
but it is still limited. Grouping artificially creates a somewhat balanced set and reduces
class sparsity; however, it also leads to increased intra-class heterogeneity. As a result,
learning to set the boundaries between the classes becomes more difficult and dependent
on the number and the separability of the groups. This is reflected in the disparity of the
minimum 70% confidence accuracy results between Experiments 2.1 and 2.2. Indeed, the
low intra-class heterogeneity of the 10-class approach results in low confidence predictions
for ambiguous samples, while the same ambiguous samples are incorrectly classified with a
high likelihood in the grouped approach due to the network accounting for high intra-class
variance. There is a balance to be found between the accuracy gain and the increase in
intra-class heterogeneity induced by class grouping, depending on the number of groups.
Should grouping be desired, unsupervised clustering approaches should be envisaged, in
order to find the optimal number of groups.

In Experiments 2.1 and 2.2, non-physical predictions were penalized via the additional
loss term (see Equation (16)). The result of using this extra component is apparent in
Figures 16a and 17a: there are noticeably fewer misclassified points below the true degra-
dation path than above it (11.5% vs 23.08% for Experiment 2.1 and 6.67% vs 25.58% for
Experiment 2.2).

(a) (b)

Figure 16. Actual degradation path and predicted erosion severity classes for Experiment 2.1. (a) Predictions with a
likelihood greater than 70%. (b) Median predictions using a three-month rolling window and upper rounding.
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(a) (b)

Figure 17. Actual degradation path and predicted erosion severity classes for Experiment 2.2. (a) Predictions with a
likelihood greater than 70%. (b) Median predictions using a three-month rolling window and upper rounding.

6.3. Experiment Set 3

In Experiments 3.1 and 3.2, we assessed how the diagnostics method performs on
more uncertain degradation paths, with multiple sources of variability. Not only were there
large class imbalances due to the stochastic degradation but aerodynamic uncertainty (see
Figure 6) and long-term weather fluctuations made it challenging to distinguish between
different LEE severities. Weather variability is not commonly used for long-term aero-
elastic modeling in the wind energy industry and is somewhat unrealistic, but the goal was
to understand the limitations of the Transformer model by making inference extremely
challenging. We report in Table 8 the accuracy scores gathered on an un-seen degradation
path for Experiments 3.1 and 3.2. Overall, classification accuracy was much lower than
previous experiments, but using only a high confidence predictions yielded a larger boost
in accuracy. This can be explained by the inherent stochasticity and the high intra-class
variance of this dataset, which makes high likelihood predictions rarer.

Table 8. Testing classification accuracy of Experiments 3.1 and 3.2.

Experiment
Testing Accuracy (%)

All Predictions >70% Likelihood

Exp. 3.1 35.00 45.75
Exp. 3.2 54.67 65.22

Figure 18 shows how challenging this final task is, where we see many non-physical
misclassified points and an overall low prediction confidence. Here, the data imbalance
had a big impact on classification performance. As the training set does not contain any
samples with an LEE Severity Class 9, the network was unable to predict this severity on
the given test set. Given these harsh training conditions, it is unsurprising that performance
was underwhelming. To mitigate this, class grouping by LEE type was again tested in
Experiment 3.2 (see Figure 19). Compared to Experiment Set 2, the benefit of grouping
classes was clear here: performance was improved by almost 20%. This indicates that
class grouping is a viable approach if intra-class heterogeneity is high by default and some
classes are completely underrepresented. Nevertheless, even the results for grouped classes
are lackluster, indicating that other strategies should be examined to deal with the very
imbalanced datasets induced by the stochastic degradation paths. For instance, one could
consider conditional retraining methods. By modifying the architecture so that it outputs
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confidence metrics based on how similar a sample is to the training set, as implemented
in [72], one could then launch re-training procedures if multiple test samples that are very
dissimilar to the training space are encountered.

(a) (b)

Figure 18. Actual degradation path and predicted erosion severity classes for Experiment 3.1. (a) Predictions with a
likelihood greater than 70%. (b) Median predictions using a three-month rolling window and upper rounding.

(a) (b)

Figure 19. Actual degradation path and predicted erosion severity classes for Experiment 3.2. (a) Predictions with a
likelihood greater than 70%. (b) Median predictions using a three-month rolling window and upper rounding.

6.4. Transferability and Curriculum Learning

Here, we evaluated the transferability of the different experiments and assessed the
use of curriculum learning [73] as a method to improve accuracy on difficult results. In a
curriculum learning training setup, the network is progressively exposed to harder datasets.
In our implementation, we first trained the model on the dataset from Experiment 1.1, then
we progressively added the training data from Experiments 2.1 and 3.1. The benefits of
this approach should be twofold: (1) the data-intensive Transformer model is exposed
to a larger dataset, and (2) the weights of the model are fine-tuned on more challenging
samples, which helps to avoid local minima during gradient descent. Tables 9 and 10 show
the results of the different transferability and curriculum learning experiments.
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Table 9. Transferability and curriculum learning results.

Training Set(s)
Test Accuracy (%)

Set 1.1 Set 2.1 Set 3.1

Set 1.1 – 71.25 28.25
Set 2.1 65.00 – 29.42
Set 3.1 30.00 39.25 –

Set 1.1, then 2.1 77.71 83.50 20.33
Set 1.1, then 2.1 & 3.1 77.08 80.50 37.08

Table 10. Transferability and curriculum learning results, for high confidence predictions.

Training Set(s)
>70% Likelihood Test Accuracy (%)

Set 1.1 Set 2.1 Set 3.1

Set 1.1 – 80.21 30.19
Set 2.1 77.11 – 32.86
Set 3.1 35.58 40.97 –

Set 1.1, then 2.1 81.35 87.29 20.52
Set 1.1, then 2.1 & 3.1 84.42 88.53 50.22

We remarked the following:

• The high accuracy of transferability tests between Experiments 1.1 and 2.1 highlights
the similarity of these datasets. Moreover, the balanced dataset of Experiment 1.1
improves the prediction quality for Set 2.1.

• Although both Sets 1.1 and 2.1 contained all degradation classes, networks trained
on these sets do not transfer well to Test Set 3.1, undoubtedly due to the uncertainty
included in this experiment.

• There was better transferability between Sets 2.1 and 3.1 than between Sets 1.1 and 3.1.
This can be explained by the extra loss component which enforces monotonicity in the
second and third sets of experiments.

• The first curriculum learning experiment (Set 1.1 then 2.1) yielded a large performance
boost for Test Sets 1.1 and 2.1. This was to be expected due to the data-intensive nature
of Transformers and the similarity between these sets.

• The first curriculum learning experiment reduced transferability to Set 3.1. This is an
indication of a loss of capacity to generalize to ambiguous data.

• The best test results on Set 3.1 were obtained in the second curriculum learning
experiment. This suggests that pretraining on sets with reduced stochasticity followed
by fine-tuning on uncertain data is an effective approach.

• The second curriculum learning experiment yielded the best high confidence accuracy
for Sets 1.1 and 2.1. Thus, adding difficult, stochastic data points of Experiment 3.1 to
the training dataset helps with regularization, enabling the model to construct a better
internal representation of each severity class.

The curriculum learning test, which includes the data from all experiments, led to
the highest high-confidence accuracy for the 2.1 test set. As this set is representative of a
degradation path with standard aero-elastic simulation practices, we have plotted these
results in Figure 20.
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(a) (b)

Figure 20. Results for the curriculum learning experiment combining all datasets showing actual degradation path and
predicted erosion severity classes computed on the test dataset of Experiment 2.1. (a) Predictions with a likelihood greater
than 70%. (b) Median predictions using a three-month rolling window and upper rounding.

7. Limitations and Discussion

In the presence of the availability of comprehensive historical data, as those that
we aimed to collect via the Aerosense monitoring system, it would be possible to tune
the proposed NHCPP model parameters and calibrate all assumptions and modeling
choices and further develop our probabilistic model in order to emulate more closely
deterioration due to leading-edge erosion on operating wind turbines in the field over long
time horizons [74,75]. In addition, the impact of field data quantity and quality on model
calibration and its implication on the generated NHCPP will need to be closely evaluated.

Similar to the NHCPP, the gamma process has also been traditionally used for mod-
elling deterioration. The shocks in a gamma process follow a gamma distribution, although
the increments in the process are assumed to be independent from each other. Unlike
Poisson processes, in gamma processes, there are infinite jumps in a finite time period. This
is why the former are suited for modeling sporadic shock-induced damage, while the latter
suit continuous, monotonous, and gradual deterioration [76].

One interesting extension to our NHCPP macro degradation model is to further
couple it to a micro-model that describes the relative velocity between particles (including
their density and size) and the blade [11]. Subsequently, based on the site’s atmospheric
conditions and the wind turbine’s operational settings, the erosion severity is calculated
from the number of particles impacting the blade surface.

An important outcome of the diagnostic experiments is the fact that the Transformer
model is data-intensive. Our results point to the fact that more data almost always aids in
classification performance. Furthermore, training on balanced datasets is always desirable,
but obtaining these is difficult in real monitoring scenarios as it would require gathering
data from many systems undergoing different degradation paths. To overcome this diffi-
culty, the coupled NHCPP aeroleastic simulation setup can be used to replicate realistic
degradation and produce balanced training sets, which can then be augmented with real
field data, in a similar manner to the curriculum learning experiments.

As mentioned in the literature review, feature-extraction learning methods are often
preferred for MTS classification tasks owing to their higher precision. In this context,
we tested the state-of-the-art MINIROCKET method [27] with 10k kernels, combined
with a standard linear classifier at the output for our diagnostics problem. This yielded
an accuracy of only 55.21% on the test set of Experiment 1.1 and 68.96% on the test set
of Experiment 1.2. This highlights the fact that very long sequences are challenging to
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deal with, while many methods found in the literature are not optimized for such tasks.
Furthermore, feature-extraction methods may encounter difficulty finding optimal features,
due to the fact that this problem features a very slow degradation rate with no flagrant traits
from one stochastic sample to another. On the contrary, Transformers are well suited for
this kind of input, as the self-attention mechanisms are effective at filtering out unnecessary
data while focusing on the parts of the signal that are important.

While the loss term added to penalize non-monotonicity of the degradation process
does help to reduce non-physical predictions, it is not strictly enforced. Another option
would be to enforce this condition in the softmax output layer. Although this method would
most certainly improve accuracy, it would lead to error accumulation when implemented
in the context of a continuous monitoring setup. With our approach, erroneous predictions
can be ignored by using a rolling window for instance. The proposed model could, however,
be further improved by additional tuning of the objective function. One such improvement
involves incorporation of an inflow-dependent multiplier that reduces the importance
of samples that have highly unlikely inflow conditions. Furthermore, while the leading
edge degradation process is inherently time-dependent, time was not factored into the
final diagnostics approach. Initial tests, which included a global time stamp in the model
input, showed the Transformer overfitting to this variable. A probabilistic loss term that
penalizes unlikely severities given the amount of operational time could be a potential
solution to this.

Another possible improvement could be the modification of the training procedure to
a bi-directional procedure, similar to the BERT model [70]. In this approach, a pairwise
input would be fed into the Transformer, and during the masked pre-training phase, the
model would try to predict the class of either the first or second MTS at random. This could
lead to a better representation of the data and allow the use of known reference states for
comparative diagnostics.

Our proposed approach does not take positional information into account, yet, as
shown in Figure 13b, this may allow to more clearly distinguish the LEE severity classes
along the span of the blade. Inserting positional information into our Transformer model
can be achieved in different ways; one possible approach is to encode a graph structure in
the Transformer architecture, as implemented in [77].

8. Conclusions

In this work, we tackled the problem of leading-edge erosion of wind turbine blades
on a two-fold front. Firstly, we dealt with the development of an appropriate model for
simulation of such degradation processes, and, secondly, we proposed a monitoring-driven
method for diagnostics of such damage processes. On the first front, we proposed a
stochastic spatio-temporal empirical model for modeling leading-edge erosion degradation
based on a non-homogeneous compound Poisson process and coupled this to the non-
linear time marching OpenFast aeroelastic wind turbine computer simulator. The coupled
model was able to compute the aeroelastic non-stationary dynamic response of a wind
turbine reflecting its behaviour under the effect of leading-edge erosion, varying inflow
conditions and aerodynamic uncertainties over a long period of degradation time horizon.
On the diagnostic front, we adapted a deep neural network, namely, a Transformer, to
allow for use on very long sequence multivariate time-series. This allowed us to solve the
problem of spatio-temporal diagnostics of leading-edge erosion on wind turbine blades,
using the data emanating from the non-homogeneous compound Poisson process setup,
a scheme that intends to emulate data recorded by aero-acoustic sensors placed on wind
turbine blades. We showed that the diagnostics model effectively captured the temporal
trends induced by long-term degradation of the leading edge. An attractive feature of this
method is that it is well-suited for spatio-temporal degradation problems with a very long
time horizon.
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Abbreviations

Nomenclature

WT Wind turbine
RV Random variable
U Mean wind speed
σ Turbulence
α Wind shear exponent
Ti Turbulence intensity
E Expected value of a random variable
V Variance of a random variable
CL Aerodynamic lift coefficient
CD Aerodynamic drag coefficient
Cm Aerodynamic moment coefficient
Cp Aerodynamic pressure coefficient
MLP Multilayer perceptron
NHPP Non-homogeneous Poisson process
NHCPP Non-homogeneous compound Poisson process
R Blade radius
SHM Structural health monitoring
SCADA Supervisory control and data acquisition
EZ Eroding zone
O&M Operation and maintenance
LE Leading edge
LEE Leading edge erosion
CNN Convolutional neural network
RNN Recurrent neural network
MTS Multivariate time-series
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