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Abstract: Distributed Energy Storage Systems are considered key enablers in the transition from the
traditional centralized power system to a smarter, autonomous, and decentralized system operating
mostly on renewable energy. The control of distributed energy storage involves the coordinated
management of many smaller energy storages, typically embedded within microgrids. As such,
there has been much recent interest related to controlling aspects of supporting power-sharing
balance and sustainability, increasing system resilience and reliability, and balancing distributed
state of charge. This paper presents a comprehensive review of decentralized, centralized,
multiagent, and intelligent control strategies that have been proposed to control and manage
distributed energy storage. It also highlights the potential range of services that can be provided by
these storages, their control complications, and proposed solutions. Specific focus on control
strategies based upon multiagent communication and reinforcement learning is a main objective of
this paper, reflecting recent advancements in digitalization and Al The paper concludes with a
summary of emerging areas and presents a summary of promising future directions.

Keywords: microgrid; smart grid; control optimization; energy consumption reduction;
decentralization; centralization; multiagent; energy management; energy storage

1. Introduction

Whereas traditional electricity utility grids operated in a centralized, top-down
fashion, climate change action and the pressing need for decarbonization have seen trends
towards decentralization, digitalization, and increasing deployment of artificial
intelligence (AI) and automation. Smart grids can accomplish better generation and more
efficient transmission and distribution of the generated power [1]. Smart grids provide
comprehensive digitalization and automation of an electricity network and can be formed
of a hierarchy of microgrids connected to each other to compose a large Smart grid [2].
The typical main objectives of Smart grid are grid supervising and situation awareness,
system performance enhancements, reliability, resilience, and security improvements,
improved economic operations, and distributed real-time intelligent control and
protection of system components [1]. Furthermore, Smart grids offer support for
enhanced penetration of renewable energy, which is the main aim for all European and
non-European countries for a clean energy environment [3,4]. Within this smarter,
autonomous, and decentralized system of microgrids—operating mostly on renewable
energy sources— Energy Storage System (ESS) is considered as a key enabler in providing
effective buffering against the inherent intermittency of renewable sources [5].
Developments in controlling microgrids including ESSs are a vital branch in the field of
intelligent energy distribution systems, arising because of the need for optimized power
distribution management.
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The focus of this paper is on distributed ESSs, specifically to provide a thorough and
up-to-date review of the literature related to their decentralized management and control.
Decentralized control strategies form the starting point of this comprehensive review.
Specifically, the focus is placed upon strategies that can perform localized ESS control
tasks with no urgent need for supervising control. Droop control is the conventional
foundation of decentralized control, which can provide balanced load sharing with no
need for communication with other system components or a centralized controller. SOC-
based droop control can provide accuracy and balance to the ESS, and virtual impedance
droop control is a developed version that can also help to balance reactive power due to
mismatch in line impedance. Droop control is technology agnostic and can deal with
heterogeneous distributed ESSs, and Al-enhanced droop control has been proposed to
achieve improved accuracy and balance of the storage system voltage, current, and SOC.
Both secondary and tertiary centralized control strategies have been presented, which
perform many control and enhancement functions via supervision of decentralized
control strategies and correction of load sharing balance through trimming of voltage and
current references. Multiagent-based control strategies combine decentralization with
partial centralization by providing neighbor-to-neighbor communication between
decentralized agents. Multiagent-based control solutions have been introduced for both
secondary and tertiary services to enhance autonomy while reducing communication
overhead. To accomplish distributed intelligent power distribution management,
intelligent strategies have been presented (Q-learning, batch RL, Deep-Q-learning, and
actor-critic). Each has differing features depending on the control objective and level of
system complexity. The emerging intelligent strategies based on RL
(synchronous/asynchronous; actor-critic; multiagent; priority experience;
extrinsic/intrinsic) have been introduced when traditional intelligent strategies are
insufficient to the high complexity of the system.

This review aims to present a comprehensive and rigorous reference for researchers
working in the field of distributed energy storage in microgrids, categorizing each
approach and comparing advantages and disadvantages in each case, as well as
describing the underlying logic and mathematical background of their operation. To
further facilitate the exposition and discussions, a brief overview of methods and
architectures is now given to aid subsequent classification of schemas, along with an
introductory overview of the role of storage in microgrids to aid subsequent classification
of services.

1.1. Energy Storage Systems Overview, Main Techniques, Classifications, and Control
Architecture

The typical main objective of ESS in microgrid is to store energy that is generated out
of consumer current need, e.g., in off-peak hours, and then re-inject it to enhance energy
balance and sustainability when generation is not adequate to demand, e.g., in peak hours
[1]. In contrast, there are many existing challenges, the majors are: charging/discharging
balance, safety, reliability, size, lifecycle, cost, in addition to the overall control and
management [6]. The traditional main ESS techniques are explained through the following
points:

1. Lithium-ion: The typical lithium-ion battery energy storage consists of four main
components: a cathode, anode, electrolyte, and a separator. All the components
collaborate in accomplishing the objective of storing excess energy. The growing
demand of the energy storage market encourages a progressed development of
commercial lithium-ion to achieve batteries with higher energy densities, better
safety, lower cost, and more prolonged life [7].

2. Fuel cell: It is an energy storage technique that converts the stored chemical energy
to electrical energy via an electrochemical process. Polymer Electrolyte Membrane
(PEM) fuel cells are the major application of fuel-cells, and are recently widely
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desired because of their low operation temperature, high power density, high
efficiency, and low emissions [8].

Flow battery: The flow battery is a fully rechargeable electrolyte-based electrical
energy storage technique, in which fluids are pumped through a cell in order to
enhance reduction/oxidation at the ion exchange layer. A redox flow battery is
considered a distinguished storage unit because of its high capability of storing
electricity, which makes it more desirable than traditional batteries [9].

Compressed air: It is typically a technique to store energy through compressed air
during low-demand times, and this air can be used later to rotate a motor-generator
and generate electricity [10].

Flywheel: This technique is based on storing energy in the form of kinetic energy in
a vacuum, and then using it to rotate a motor-generator and generate electricity [11].

ESS of microgrid network can likewise be classified depending on location and

storage technology into three configurations:

1.

Aggregated: Modelling is simplified when all ESSs are in one location of a
predetermined microgrid network [12].

Distributed: Distributed ESSs are scattered around different locations within a
predetermined microgrid network [13].

Hybrid: A combined application of ESSs with different storage technologies, which
is necessary due to the lack of any ESS technologies which can individually provide
all the mandatory characteristics [14].

All the benefits that are accomplished by ESS serve a major objective, which is the

transition from the traditional microgrid network of centralized generation and control,
to a smart, decentralized network of distributed sources and storage which is mostly
based on renewable energy [15]. These benefits were aided by the accelerated trend in the
field of renewable energy introduction as explained in the following points:

1.

The urgent necessity to increase the introduction of renewable energy resources, such
as photovoltaics and wind generators, has simulated the movement toward
decentralized distributed ESS [16]; consequently, it has paved the way for a
successful and beneficial transition to smart microgrid networks and reduced
pollution [17].

The gradual degradation of ESSs cost has prompted an increase in their use, for the
purpose of storing excess energy, and other purposes [18].

The typical standard hierarchical control architecture of a microgrid model network

is classified into three levels, as demonstrated in Figure 1, which relates to the hierarchical
architecture of control levels and their specific roles of an AC-connected microgrid. These
levels are explained as below:

1.

Primary Decentralized Control: The objective of this level is to regulate the load
sharing of distributed energy resources and storage, via the control of their linked
converters output voltage and frequency, to attain balanced and autonomous
operation of these distributed systems [19,20]. The most typical strategy of this is
droop control, which is responsible for implementing balanced load sharing for the
distributed resources and storage, with no necessity for time-critical communication
links [21]. As demonstrated in the AC microgrid of Figure 1, droop control is present
at each distributed ESS as a primary control. It receives measured active and reactive
power and creates voltage and frequency offsets for the local controller. This, in turn,
implements load participation that accomplishes the overall balance of the load
sharing in the microgrid.

Secondary Centralized Control: Centralized secondary control has the responsibility
of correcting voltage and frequency offsets that are achieved by the primary control.
Therefore, it plays the role of an observer for the primary control. Moreover, it offers
some additional roles, such as reactive power-sharing, accurate frequency regulation,
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and PQ compensation [22,23]. The application of an AC microgrid in Figure 1
illustrates the role of secondary control in correcting droop control offsets to the
nominal microgrid references provided by tertiary control. The correction is based
on the measured output voltage and frequency offered by each ESS.

Tertiary Centralized Control: This is the highest control level of the control hierarchy.
Typically, it is liable of two major objectives. Firstly, adjusting voltage setpoints, or
providing optimal voltage references. Secondly, managing power entering or leaving
microgrid, or solve optimal power flow problem (OPF)[24]. In addition, it operates
in conjunction with other entities to implement overall objectives of providing
balanced and sustainable load sharing [25,26]. Figure 1 clarifies how tertiary control
in AC microgrid receives power flow management constraints and objectives, and
then creates voltage magnitude and angle references that implement optimal power
flow management.

Microgrid AC Bus

Storage 1 Storage 2 Storage N
[ 3 j E 1 |

Energy Storage System

.I

Measured active and reactive power

 Secondary Control et [
:

4

Voltage Magnitude and
Angle References

Tertiary Control Objectives and Constrains

Figure 1. Hierarchical control architecture of AC microgrid.

1.2. Energy Storage Systems Roles and Objectives of Microgrid

ESS in general, and specifically when distributed within a predetermined microgrid

network, provide several fundamental roles and services. It is typically cooperated with
its mandatory power electronic converter, to support power-sharing optimization and
autonomous operation reliability. These beneficial roles can be explained in the following
classifications [27,28]:

1.

Grid voltage support: Means power provided by ESS of a microgrid network, for the
objective of maintaining voltage within a mandatory level, or acceptable range. This
can be accomplished through the control of distributed ESS reactive power based on
real energy generated.
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Grid Frequency Support: It is active power that can be delivered by distributed ESS
in a microgrid network, to compensate for any imbalance of frequency that is due to
a sudden increase in load or generation.

Grid stability: ESS offers the opportunity of decreasing oscillation from the rapid
introduction of an event during microgrid operation.

Peak shaving: Typically, the energy generated during the availability of generation
or during off-peak times is stored in ESS and shafted to support during high demand
time or absence of generation. Furthermore, distributed ESS can implement a short-
term demand independently with no obligation of generation. This, in turn, provides
excellent support to distributed renewable energy resources, such as photovoltaic
and wind turbines.

Spinning reverse: ESS offers support backup power for islanding.

Enhancing quality of power: ESS participates in improving power quality, through
the involvement of reducing typical issues related to it, such as maintaining voltage
and frequency offsets, reducing harmonics, maintaining the balance of voltage, and
improving power factor.

Support reliability: ESS is collaborating on enhancing system reliability in
implementing consumer demand.

Ride through support: ESS can offer essential energy during the conditions of a
disturbance or voltage sag, which affects system reliability. This, in turn, helps to
keep electric units connected for the duration of these disturbances.

Compensation of unbalanced load: The collaboration of ESS through the individual
injection/absorption of power supports the compensation of an unbalanced load.

Figure 2 illustrates and summarizes the control strategies of controlling ESSs in the

microgrid, providing the relevant taxonomy for later reference.

-

Figure 2. Control strategies of ESS in microgrid with the relevant reviewed research works.
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1.3. Contribution and Paper Structure

Given the historic and more recent developments in this research area, this paper
aims to provide a comprehensive review of control strategies for energy storage in
microgrids. In this review paper, existing research challenges are presented and areas for
further research are subsequently identified. The methodology employed to search the
literature and select relevant works in each category was as follows. Research that aims to
provide distinctive, clear, and comprehensive implementation to the control strategies—
and addressing them as a main objective of the paper or article—were first selected. Out-
of-scope, incremental or similar work was then removed. In total, 131 of the most relevant
and non-incremental have been selected for this review, distributed across each of the
categories in Figure 2. The remainder of this review paper is indexed as follows. Section 2
covers decentralized control strategies and concepts, while centralized control strategies
are presented in Section 3. Section 4 covers multiagent-based control methods. Intelligent
control strategies are presented in Section 5, along with an explanation of the most
promising directions of further research. A distinctive summary is presented for each
section, which highlights the major strengths and weaknesses of each strategy. Section 6
is reserved for the emerging intelligent techniques and then a final summary and
conclusion are presented in Section 7.

2. Decentralized Control Strategies of Distributed ESSs

To achieve sustainable and balanced power-sharing by implementing load demand,
typically, distributed ESS in a microgrid is locally controlled by decentralized control
strategies, which includes strategies that can perform the task with no urgent need of
supervisory control and can be operated with only local information. The block diagram
in Figure 3 illustrates traditional standard decentralized control of an AC microgrid
consisting of five distributed ESSs. In which, any of the ESSs is controlled locally, with no
central or supervisory controller. Decentralized droop control is the typical, traditional
standard strategy for this role, which operates in participation with the local controller to
regulate the output voltage and load sharing current of ESS. A conventional power
electronic converter exists as an interface to the microgrid bus. The major, valuable feature
of droop control is decentralization, in addition to the lack of need for a communication
link between distributed ESSs. In contrast, it holds a weakness, which is that
implementation of unmodified droop control provides only approximation balance to the
output parameters. For this reason, the strategy has progressed through several stages of
development and updates, in order to achieve more accuracy and stability. Some are
based on the introduction of new parameters, which contribute to accomplishing more
reliability, and the others are through the integration of other strategies to play its
mandated role as a stage of a comprehensive strategy. This paper presents the major
feature of these developments, each of them having accomplished successful solutions to
a specifically diagnosed major drawback or weakness. The achievement of State of Charge
(SOC) balance of ESS is fundamental to accomplish overall load sharing balance, in
addition to maintaining safety and supporting prolonged life of the storage. The
introduction of virtual line impedance is a great solution to transmission line impedances,
which, in turn, support accomplishing optimized stability as well as reducing losses and
maintaining infrastructure. The control of distributed ESSs in different technologies is no
less important than what has been mentioned, which specifically aims to adapt droop
control to be qualified for balancing load sharing for heterogeneous ESSs [29].
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Figure 3. Decentralized control of AC microgrid.

2.1. Traditional Droop Control

Droop control is the standard decentralized strategy to control the distributed ESS
and to interface the microgrid to the bus through conventional power electronic
converters. It mimics the governor and extractor operation of synchronous generators,
which is controlling frequency based on its control of speed and fuel. This illustrates the
objective of providing balanced output voltage and frequency through the control of
active and reactive power. The idea behind it is to add virtual resistance, which differs
from genuine resistance by being unaffected by operation conditions. An example of these
conditions is the temperature, which causes losses of power. This virtual resistance is
typically named droop gain or coefficient [30]. For an AC microgrid of low voltage, the
balance of the output frequency is achieved depending on active power (f~P), and the
magnitude of output voltage is dependent upon reactive power (V-Q). The typical
features of voltage and frequency droop characteristics are demonstrated in Figure 4.

1 Y

w* E*

Emin}--------F---------3

Wnin

P* Pmax Q* Qmax

Figure 4. Conventional droop control characteristics.

As given in (1), the active power droop coefficient (Kp) is multiplied by the
measured active power (P), and then subtracted from the reference velocity (w*) to
achieve the desired velocity (w). Meanwhile, the reactive power droop coefficient, as
presented in (2), is multiplied by the measured reactive power (@), and subtracted from
output voltage reference (E*) to attain (E). Therefore, frequency is inversely proportional
to the measured active power, and voltage magnitude is to the measured reactive power
[31]. Decentralized droop control is implemented on distributed ESS in a DC microgrid,
and power-sharing is directly proportional to the values of output voltage and current (V-
I). In fact, standard droop control with no modification is unqualified to provide full
balanced power-sharing of distributed ESS, because SOC is not considered.

0w =w — Kp XP €))]

E = E*—Kq xQ ()

2.2. Virtual Impedance Droop Control

The difficulty of balancing reactive power-sharing among parallel droop-controlled
inverters in AC microgrid is an existing obstacle, especially when there is a mismatch of
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line impedances. Virtual impedance droop control is an updated version of traditional
droop control that adopts virtual impedance theory to compensate for the mismatch of
line impedances, which is considered a drawback through its effect of reactive power
balance. The theory involves a modification of inverter output voltage droop control, as
proposed in [32], to achieve the equivalent model and eventually accomplish balanced
output voltage. Reactive power is balanced when voltage drops from each parallel
inverter (Vyrop1 » Varop2) are equal (see Equation (3)). Then, first inverter virtual impedance
is stetted to zero (Z,; = 0), which qualifies another inverter virtual impedance (Z,,),
which is given in (4), to eliminate the mismatch of line impedances (Z; — Z,). The voltage
drops that occur due to the accomplished virtual impedance are subtracted from droop
control voltage reference to attain a reference voltage that implements balanced reactive
power between the inverted distributed units, as demonstrated in Figure 5, which clarifies
the introduction of virtual impedance to droop control for two inverters connected to the
same AC Bus.

Vdropl =l (Zi+ Zy) = Vdropz =1, (Zy+ Zy) 3)

Zyy =172y — Z, 4)

Output Voltage

Output Current

g
o
E
7}
-5

Reference Voltage

+

R ——

Reference Voltage with Virtual Impedance
Reference Voltage with Virtual Impedance

?

Figure 5. Virtual impedance droop control of parallel inverters in AC microgrid.

2.3. Droop Control-Based SOC

Droop control-based SOC is a modified version of traditional or standard droop
control that includes SOC of calculating or weighting droop coefficients [33,34]. The
objective is to accomplish balanced SOC of the distributed ESS, in addition to extending
its life [35]. Therefore, it is named SOC weighted droop control and it is achieved by
adding SOC as an exponent to the weighted droop coefficient [33,35]. In [36], a modified
weighted droop control has been proposed to regulate bus voltage when power changes.
It is clearly clarifying how traditional droop control is modified to accomplish the
mandatory SOC balancing. As demonstrated in (5), a droop control action-based SOC for
both discharge/charge modes (ug4.;) is accomplished through the multiplication of
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discharge/charge droop coefficient ( K(d),K(c)) by energy storage output power
(Piout), and the exponential of the computed SOC (e'/ $0¢1"y, and then subtracted from the
reference control (Ugcres)-

( Kqg X Pyt ,
Ugei = Udcref — eST Discharge
L
5
Kc X Piout ( )
Waet = Uaerer = —s5em— Charge
L

A comparison between this developed SOC-based droop strategy and traditional
droop control has clarified that the SOC-based droop strategy significantly enhances the
SOC balance of distributed ESS and improves the balance of sharing current during load
fluctuations. Furthermore, it supports a prolonged life for the storage. The objectives of
SOC-based droop control have been expanded by C. Gavriluta et al. [37] to include the
determination of microgrid voltage and frequency offsets, through its effect of adjusting
microgrid voltage and frequency when included within droop control.

A more recent dynamic SOC-based droop control strategy has been proposed in [38],
to control battery-based distributed energy storage systems (BESSs) in a DC microgrid
network including constant power loads (CPLs). The aim was to recover and stabilize
microgrid DC bus voltage and power distribution in the case of a time-varying droop
coefficient. The major contribution of this strategy was that local information of BESSs
SOC can be shared by a dynamic consensus algorithm and the introduction of a nonlinear
disturbance observer (NDO). Implementation has shown optimized system stability and
rapidity. Furthermore, DC bus voltage has been maintained with appropriate sustainable
power distribution.

2.4. Fuzzy Logic Droop Control

Droop control-based-SOC suffers from two specific weaknesses. First is the
overloading of high SOC-distributed ESSs, which is due to the lack of participation of low
SOC-distributed storage. Second is the instability of voltage and frequency, because of the
increase in droop coefficient when all distributed ESSs reach low SOC level. For these
fundamental reasons, fuzzy droop control has been developed [39,40], which is a modified
version of standard droop control to schedule droop control coefficients gains.
Particularly, involving output voltage and SOC of weighting these coefficients. The
objective is to accomplish balanced output voltage during the condition of all distributed
ESSs at a low SOC level, where microgrid output voltage (Vp¢), which is mentioned in (6),
is balanced through the regulation of droop control virtual resistance (R;) based on SOC
estimation and output current (I;). In fact, Fuzzy logic droop control has the beneficial
feature of implementing more than one control objective. It reduces voltage deviation (VE)
between microgrid bus voltage (Vp¢) and reference voltage (Vyer), as clarified in (7).
Furthermore, R, is adjusted based on fuzzy SOC estimation

Ve = Vref = (I, X Ry) (6)

VE = Vpe — Vyes @)

A decentralized control strategy based on fuzzy logic has been proposed for AC
islanded microgrid to balance the SOC of distributed energy storage [41]. Figure 6 highlights
the methodology, and how the fuzzy inference system (FIS) has been integrated to droop
control. A constant voltage charger exists to prevent the battery current from falling below
a certain level; thus, the distributed ESS is kept operating on a current control mode (CCM).
The new weighting factor (W (S0Cp,;) (see Equation (9)) has been suggested and estimated
by a Fuzzy inference system (FIS) for each distributed ESS based on SOC, to attain the
correct value of droop coefficient (m). Then, the accomplished estimation is applied to the
(p — w) droop control, which implements the balanced SOC of each energy storage based
on the correct power injection/extraction at the common bus [41].
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w= 0" — (M X Pggy ) (no fuzzy) (8)
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AC Bus

Energy Storage System

Primary Control

Figure 6. FIS-based fuzzy droop Control.

2.5. Droop Control of Different Technology-Distributed ESSs

Droop control of different technology-distributed ESSs comprises droop strategies
that are modified to control distributed ESSs of different or heterogeneous storage
technologies. These technologies are typically classified into two groups: (1) peak shaving
and regulating power quality; (2) energy shafting and spinning reserve. Ultracapacitors
are a very common example of these technologies and can significantly influence energy
balancing for ESS. Specifically, a long lifecycle, low power cost (USD KWh), and high rate
(KWh/Kg) make it applicable to accomplish the optimized quality of high-frequency load
demands. The typical ESS that comprises numerous storage technologies is known as a
hybrid system. Droop control has been implemented to control the primary frequency of
two different storage techniques ESSs, BESS, and superconducting magnetic energy
system (SMES) in a hybrid standalone AC microgrid [42].

Where (Kgnes) and (Kpqe) are battery and SMES droop coefficients, (APsygs) and
(APpgee) are battery and SEMS contribution power. As explained in (10) and (11), when
Microgrid frequency is at non-critical frequency, as chosen by the UK grid code [43], then
no action is obliged by droop control on the storage. In contrast, when the frequency is
more than critical-up frequency (f > fuon up), then the storage is charged to absorb this
excess, whereas if it is less than critical-low frequency (f > fon 10w), then they are
discharged to compensate. The introduced power-sharing method is an optimized droop
control strategy, to control the primary frequency of a heterogeneous ESS consisting of
battery and SMES. It is accomplished that frequency stability has been improved.
Moreover, the optimal output power is achieved in different power situations due to its
capability of adjusting droop gain for both storage units.
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1
( - (f _fnon_up) (Charging mode)

K.
APgpys = { fmes (10)

k_ K (f - fnon_low) (Discharging mode)
smes

1
( - (f _fnon_up) (Charging mode)

K
M= | e an

k_ K (f - fnon_low) (Discharging mode)
batt

In [44], a composite droop control strategy has been planned to control
heterogeneous ESS consisting of battery and supercapacitor in DC microgrid. In
particular, the strategy has proposed a high pass filter-based droop (HPFD) for battery
converter, and a virtual capacitance droop (VCD) controller to control the supercapacitor
(SC). Therefore, a collaboration of two control strategies has been demonstrated, and
several control objectives have been accomplished. Fast fluctuations of SC were buffered
with compensation of low-frequency power mismatch. Meanwhile, bus voltage was
regulated with a recovery to supercapacitor SOC. As given in (12), the voltage deviation
(Ry X iop) of battery output voltage (V,z) is maintained by a compensation voltage (A Vy)
that added to it. Reference or nominal voltage (V;,,,,) is increased by Ayp to compensate
for the deviation. Here, Ry is virtual resistance, and i,p is battery output current.

Vog = Vaom — (Ry X o) + AVyp (12)

A successful recent Fuzzy logic-based control strategy has been proposed by G.
Bharathi et al. [45] for a DC microgrid network consisting of a photovoltaic system, fuel
cell (FC), and BESS. The strategy has presented a Fuzzy solution to the heterogeneous
energy storage system to stabilize power distribution and regulate bus voltage. The role
of the heterogeneous energy storage system here is to retain DC bus voltage under the
control of the new proposed strategy. Specifically, droop control is mitigating DC bus
voltage fluctuations while fuzzy logic control is enriching power exchange under different
dynamic situations. Simulation of the system with the new proposed strategy has verified
an optimized performance and balanced power for different dynamics.

2.6. SOC Balancing of Modular Multilevel Converter Energy Storage System

A modular multilevel converter (MMC) has existed in many high voltage, high
power applications as an alternative to the conventional converter because of its brilliant
properties; in particular, when interfaced with an ESS to attain a modular multilevel
energy storage system (MMC-ESS) that can provide excellent support to the performance
of grid applications when connected to the grid [46]. To achieve the necessary
performance support, it is vital to ensure a smooth connection to the grid under the design
of a properly qualified control system [47]. One of the crucial diagnosed control
drawbacks is the unbalance in SOC of ESSs, which is due to different charge and discharge
speeds, and might cause more excessive drawbacks rather than the overcharge or over-
discharge of any of the storage units [48]. Unbalanced SOC might lead to two more
defects: (1) unequal battery voltages, which, in turn, can induce DC components of the
injected grid current; (2) an internal circulating current [48].

Many successful solutions have been proposed in the literature to solve this
drawback and attain a balanced SOC. A distinctive one has been proposed by F. Geo et al.
[49], who suggested a novel control strategy to optimize the performance of MMC-EES.
SOC balance was one of the objectives, in addition to the suppression of circulating
current and the grid DC current. The strategy has suggested the adjustment of real power
for each half-bridge according to the difference in SOC. The result has indicated the
success and validity of the proposed strategy with an effective balance of SOC for all
batteries, and suppression of circulating current and grid DC current. A three-level SOC
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equilibrium method has been suggested and designed by H. Laing et al. [50] to a BESS
interfaced to MMC to balance batteries energy through the balance of their SOC. The
development was an attempt towards extending life or reusing the second life of batteries
in electric vehicles. The new strategy has encompassed the introduction of power
regulations that are based on battery capacity proportion for the three-phase legs to attain
balanced SOC of batteries, among three-phase legs of upper and lower arms, in each
specific phase, and of submodules in each arm. Implementation of the developed strategy
has verified an effective overall SOC balance.

A summary of the reviewed decentralized strategies has been established in Table 1,

which highlights the major strengths and weaknesses for each of these strategies.

Table 1. Summary of decentralized control strategies.

Scheme Strengths Weaknesses
. No consideration to SOC balance.
Decentralization. . .
L. . . A fast operation cannot be achieved,
[30] DC A maintained mismatch of lines . L
. due to unavoidable initial current
impedances.
peaks.
Improved transient response.
Effective of sharing a non-linear load. A fast operation cannot be achieved,
timized active/reactive power-sharin ue to unavoidable initial current
32] AC Optimized active/ ive p haring d idable initial
without deviation of frequency and voltage peaks.
amplitude.
In the case of AC implementation,
transmission lines impedance
Balanced SOC. mismatch should be considered.
[33] DC Decentralization. The dependency of SOC exponent on
Extendable to AC microgrid. many parameters, (power rating,
maximum DC voltage deviation,
accuracy of power-sharing).
The accomplishment of SOC balance.
Decrease in cost for control and .
C e No improvement over other
communication infrastructure. ..
[35] AC . strategies, in terms of energy loss
Fault-tolerant control capability. reduction
Reduced data for communication and '
control.
Enhanced current sharing in the case of load L .
. An existing minor current
[36] DC fluctuations. .
. fluctuation.
Compensated DC voltage deviation.
Generic to different operating states.
[37] AC Decentralization. An existing drop of bus voltage but
Balanced SOC (considered of determining within the acceptable limit.
droop coefficients).
An achieved system stability and rapidity.
[38] DC Balanced SOC. A constant power loads (CPLs) (load
A disconnection of BESS with low SOC (less fluctuation has not been considered).
than 10%).
A developed fuzzy control strategy that can ~ An existing minor deviation of
[39] DC do more than one control objective. voltage but within an acceptable
J 8 P

Reduced voltage deviation. limit.
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The same controller can be selected for
different values of Rd (virtual resistance
loop).

Good balance of SOC (faster than fixed
virtual resistance strategy).
Decentralization.

Self-controlled (based on local parameters) A prioritization of SOC balancing

with good SOC balance. .
over the regulation of voltage
Modular and expandable. .
[40] DC L deviation.
Decentralization. - . i
Do An existing minor voltage deviation,
Multi-objective control. T .
Faster charge but within an acceptable limit.
Decentralization.
Good SOC balance.
No obliged modification for the introduction
of a new active generator. An existing minor voltage deviation
[41] AC Asymptotic approximation to SOC during between batteries.
storage operation. Good SOC balance but to an extant
Fast charge compared with the traditional (still some unbalance exists).
method. Furthermore, a reduced depth of
discharge.
FIS is applicable for DC microgrid.
Good frequency balance. . .
[42] AC An improved SOC balance of battery. A minor fl.uct-ua.tlon of battery SOC.
. No consideration to bus voltage.
Longer battery life.
Decentralization.
Elimination of a voltage d.eV1at10n. Still, a high snap of supercapacitor
Bus voltage restoration.
[44]1 DC . current when the load fluctuates.
Supercapacitor, SOC recovery. . .
. . A little instability of battery current.
The accomplishment of transient power-
sharing with no effect of voltage and SOC.
i lance.
. ,Qka power balance . No consideration to temperature
[45] DC Maintained system performance with offect
different dynamic situations. '
Balanced SOC. . . S
[49] MMC-BESS Suppression of circulating current. Hlg;uteozlCséiullii:elirfi;?aeﬁ(iZS 5)
Suppression of grid DC current. P ]
SOC balance of all battery modules. An existing minor deviation of SOC
[50] MMC-BESS Improvement to utilization of second-life estimation, which is affecting the final
BESS. SOC convergence.

3. Centralized Control Strategies of Distributed ESSs

Centralized control strategies offer direct control and individual monitoring of
distributed ESS in a microgrid. The block diagram in Figure 7 demonstrates the standard
centralized control of distributed ESSs in an AC microgrid, consisting of five distributed
ESSs. Here, direct control exists between the central controller and any of the ESSs. The
centralized control strategies are classified depending on the role of control action into
two types. The first (secondary) aims to regulate power quality, such as correcting
voltage/frequency, while the second (tertiary) optimizes the power flow dynamic.
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i H
D e > R e
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Figure 7. Centralized control of AC microgrid.

3.1. Centralized Secondary Control

The secondary control system has been classified within the standard hierarchical
architecture of microgrid control, as the regulator of voltage and frequency offsets to the
primary level [23]. However, control objectives have been extended in [51] to include the
correction of voltage balance at the common coupling (PCC) of an AC microgrid.
Particularly, the adjustment of power exchange depends on a central controller request to
regulate the output voltage according to the secondary control. A further secondary
centralized control objective has been accomplished by M.H. Andishgar et al. [52], in which
a powerful secondary control strategy has been proposed to improve the total harmonic
distortion (THD) at sensitive load bus (SLB). This, in turn, has optimized the THD.

Where (Kp, K;) are the integral and the proportional gains, (V44z) is the voltage in
dq frame of each harmonic. Based on the proposed development, fifth, seventh, and
eleventh harmonic distortions (HDp) (13) have been extracted depending on the dgq
voltage harmonic components of each voltage (Vi1 / Vi,), which are obtained by the
multiple-second order generalized integers and frequency locked loop (MSOGI-FLL). The
THD is calculated and compared with a reference value of the THD to achieve the total
harmonic compensation signal (ct'ihq) (see Equations (14) and (15)). The modified total
harmonic compensation signal (cj};) (refer to Equation (16)) was accomplished, and the
total harmonic at the SLC bus was improved.

_ [wer + gy 3
o = J(VJ1>2+ VY )

where h = 5,7,11

THD = |HD? + HD2 + HD? (14)
K, H
Coy = quh( ls + KP,H) (THD,.; — THD) (15)
3 X HD
ch = ¢l x (—) 16
da = Caq X\ G 2D, (10)
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With advances in technology, the objectives of a secondary centralized control system
have been expanded to include the balance of SOC. Y. Guan et al. [53] suggested a
secondary control strategy to balance the rate of discharge for the ESSs in AC microgrid.
It has eliminated the deviation of voltage and frequency that created in droop control,
which is due to the unbalance of the storages SOC. A secondary SOC-based control has
been added to enhance the primary control strategy of BESS in standalone microgrid [54].
The objective was to restore the SOC deviation that appeared at the primary level. This
deviation is caused when a variation of load happens, which, in turn, requires more active
power of battery energy storage. This demanded active power is prompting a deviation
of SOC. Then, the deviation is sent to the secondary control after a small communication
time delay to be restored. A secondary central control layer has been proposed in [55] with
the adaptive droop regulated primary level, of a developed control strategy for DC
autonomous microgrid consisting of several distributed generators (DGs) and two
distributed batteries. The role of supervisory control here is to monitor and regulate
distributed batteries charging and discharging to support a prolonged lifecycle, and to
maintain the voltage balance. According to the developed supervision protocol of the
distributed batteries, SOC in normal operation is forced by virtual resistance to be
balanced, and the one with higher SOC is the first that is fully charged. if energy
production of the system is disturbed, then batteries will discharge, in a manner that the
one that is firstly fully charged is the initiator.

As shows in (17), state of charge variation with time (SOC;(t)) of any of the
distributed batteries is based on the rate of change that subtracted of the initial state of
charge (S0C;(0)) which is inversely proportional to battery rated capacity (Cpar,;)- Here,
(n;) is charge/discharge efficiency, and (Ig4r;) is the battery current. The batteries,
according to secondary control supervision, are swapping charge and discharge with no
one falling below 90% of its full capacity.

SOC,(t) = SOC,(0) — f s IBg‘T'i(T) (t)dr 17)
0 BAT,i

Other applications of centralized secondary control for balancing SOC of distributed
ESS have been presented in [56,57]. Here, secondary control has implemented the
objectives of managing the amounts of energy and power of distributed ESSs, which were
essential for maintaining the instabilities of generation, balancing load demand,
improving power quality, and enhancing backup power. Furthermore, the balance of SOC
has achieved a fundamental objective of reducing the maximum depth of discharge that
supports a more prolonged life of the distributed storage. Ultimately, system
sustainability and overall efficiency have been optimized. The control strategy proposed
by Z. Jin et al. [58] is an advanced application of secondary centralized control in DC
distribution, which is deemed as one of the most current trends for future mobile power
systems. A secondary centralized control has been acted within a hierarchical control to
accomplish the objectives of a large-scale mobile power system of shipboard that consists
of a DC network and ESS. The management control system has collaborated with a
primary adaptive inverse droop control to verify comprehensive control treatment and
achieve two main objectives: (1) the management of control level, which, in turn, supports
the collaboration of BESSs to coordinate number and fuel consumption for running
agents; (2) the restoration of voltage level through the compensation of voltage drops at
droop control.

Rule-based control (RBC) is an outer or secondary control that has been applied to a
BESS, for the aim of controlling charge/discharge on an hourly basis, and creating a
controlled current reference that is convenient for this role. Additionally, the proposed
controller has considered an SOC balance and charging constraints [59]. As shown in
Figure 8, the controller is taking renewable generated power from wind or scholar, hourly
dispatched power set point, battery SOC, and battery voltage, as inputs. Output is a
current reference ( ipess), and within a limit of maximum charge and discharge current
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(imax,ch » tmax aiscn), as illustrated in (19). The SOC is kept within the obliged lower and
upper limits (SOC;;, , SOCy,) (refer to Equation (18)).

S0C,, < SOC (t) < SOCy, (18)

imax,ch =< ibess (t) = imax,dis (19)

g
g]
=]
&

Battery Power
e

Energy Storage System

Ibess (Reference)

Battery output Voltage Renewable Power

Hourly Dispatched

Battery SOC power set point

_

Figure 8. Rule-based control.

The rule-based secondary control strategy has been applied in [60] to a distributed
energy storage system consisting of a vanadium redox battery and supercapacitor and fed
by photovoltaic generation. The aim was to manage (charge/discharge) on an hourly basis
and with the introduction of mandatory constraints. It is of scientific and technical interest
to explain the purpose of using a supercapacitor with the vanadium redox battery, despite
its high storage capacity. Vanadium redox battery’s main characteristics are independent
with its energy and power densities, a long lifecycle, no limitation of discharge depth, and
good efficiency. However, its response time is limited by an electrolyte that controlled by
a pump. Therefore, their flow rate needs to be maintained. On the other hand, the
supercapacitor major features are storing energy in a form of electricity and no need for a
conversation to other kinds, very high efficiency and power density, deep discharge, and
long lifecycle. Despite this, it has a very low energy density and cannot be used for long-
term storage. The benefit of using a supercapacitor in parallel with the vanadium redox
battery is reducing the rating of the redox battery. Furthermore, combining the good
features of both storage techniques allows us to obtain a qualified ESS that satisfies its
purpose when connected to a PV system [61,62]. Another effective application has been
proposed by C. Wang et al. [63] to involve RBC as a secondary controller in a combined
control strategy of a central controller and local controllers, for the aim of controlling ESSs
power flow on an hourly basis.

Economic Model Predictive Control (EMPC) has been implemented for a residential
distributed ESS that was fed by photovoltaic generation in [64]. The aim was to optimize
their power flow (charge/discharge) based on a time varied tariff. As demonstrated in (20),
which demonstrates the overall power that supplied and drawn from the ESS at time K.
The EMPC controls the power flow of the distributed ESS at a time interval (K) (Pg(K)),
which is the summation of charge and discharge power (P, , Py;5) (refer to Figure 9) and
based on a SOC within a minimum and maximum limitations (S0Cyi,, SOCrayx), as
explained in (21). The block diagram in Figure 9 clarifies control objectives of the specific
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strategy. This demonstrates that the controller takes net load power, renewably generated
power, Tariff of importing power from the grid, Tariff of exporting power to the grid, and
tariff of using power from the battery storages, as inputs. Moreover, measured SOC at
time K is as feedback. Control objective was to provide control of power at charge and
discharge for every K, which, in turn, accomplished optimized economic cost of
residential houses demand based on different time tariff.

Pp(K) = Pep(K) + Pyis(K) (20)

SOCpmin < SOC(K) < SOCpmax 1)

Load Power

Charge power, Pck
Renewable Generated Power E

Tariff of Importing Power
Tariff of Exporting Power

Tariff of Using Battery Power Discharge power, Pdis

Measured SOC at time K

Figure 9. Economic module predictive Control.

It is clearly clarified from the objectives of RBC and EMPC strategies that both are
managing charge/discharge for the storage in a constrained manner, which, in turn,
implements low power consumption based on energy storage support. In contrast, the
major difference is that RBC does not consider the cost of electricity, and the cost of
batteries’ lifecycle degradation when controlling their charge and discharge. For
comparison, both strategies were applied to systems of identical characteristics, and
independently operated with no grid supply to store excess PV generation, and then used
later in peak times. The result of an aggregated demand for 30 consumers shows that
EMPC had implemented a reduction in peak demand during peak times (between 17:00
and 20:00), more than RBC. In contrast, reduction in RBC is higher at off-peak (between
0.00 and 7:00). This proves that EMPC has predicted peak demand and shafted it to off-
peak times, which is the time of energy storage recharging. Therefore, EMPC was more
successful than RBC in improving a 1-day load profile for the nominated group of
consumers.

3.2. Centralized Tertiary Control of AC Microgrid

The major objective of tertiary centralized control is to provide optimal voltage
references or offsets. Moreover, it manages power flow into and out of microgrid
predetermined network [24,25]. AC optimal power flow problem can be defined as a
nonlinear and non-convex problem of enhancing generation dispatch in a manner that
accomplishes the lowest cost that is accepted by consumers. Besides, it considers the
availability of active and reactive power [65]. Therefore, the non-convexity adds more
complexity to the computation. Additionally, only approximate solutions are provided.
These are the major drawbacks of the microgrid tertiary level. The execution of OPF
focuses on managing power flow from the main grid to the microgrid, and vice versa. In
addition, the optimum use of the available generation and storage units reduces power
consumption. Tertiary control strategies in AC microgrid can be divided into four
classifications depending on the approximation and ESS power management.

3.2.1. Single/Aggregated Distributed ESSs

It comprises dynamic optimal power flow (DOPF) solutions of distributed ESSs that
represent single or aggregated capacity. Tertiary centralized strategy controls power flow
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between single/aggregated distributed ESSs and the main utility grid. No management is
provided by tertiary towards power flow between these distributed storages. The control
strategy that has been proposed in [66] is an effective application. In this, a tertiary energy
management system (EMS) has been applied to the developed control strategy to
accomplish balanced power within the microgrid network. The overall management has
comprised two control managements; the first is for power flow of each converter, and
the second is for power in the microgrid network under different generation and load
circumstances. As given in (22), the clarified power management aims to accomplish
power balance between PV generation (Ppy), the summation of AC/DC load power
(Pacr » Ppcr), and battery power (Py,.). Therefore, the balance is implemented whenever
loss power (P,s5) is reduced. Another application of single/aggregated tertiary central
control of distributed ESS has been introduced in [67].

Ppu = Pross = Pact + Pper + Ppar (22)

3.2.2. Ideal Real Power Transfer

Tertiary DOPF solutions consider the management of real power transfer between
distributed ESSs. The energy management system that has been proposed by A. Ouammi
et al. [68] offers clear clarification of this. A central controller and an energy management
unit (EMU) have been combined with a model predictive controller to manage power
exchanging scheduling among a group of interconnected smart microgrids. Several
fundamental roles have been outlined; the most important of these was the support for an
autonomous operation of microgrid through the management of its components, such as
distributed generation control and charge/discharge schedule, while also providing
information on power production and prices to the introduced module predictive
controller to control power exchanging. Another important role was interfacing microgrid
components to the central or global controller (GCC). Consequently, the microgrid
exchanges power with other microgrids or disconnects, in the case of network failure,
while the ESSs compensate power shortage via charge/discharge, depending on the
operated task.

EF. Garcia-Torres et al. [69] proposed a tertiary central control as part of an optimized
energy storage management system of two hybrid ESSs distributed in an AC-connected
microgrid. The main aim of the MPC-based strategy was to solve the lack of competition
in the electricity market due to the unpredictability and deviations of renewable energy.
This strategy takes advantage of the high storage density of hydrogen as one of the
distributed energy storage units, and an optimized energy management system based on
MPC has been designed to support more economical benefits and to support a reduced
degradation of the distributed ESS. Another application of tertiary control to minimize
the expected operation cost of microgrid has been suggested in [70]. Here, stochastic
dynamic programming has been proposed as a solution to the optimum Microgrid
operation that is determined by unity commitment (UC) and the economic dispatch (ED).
A one-day to one-week preform of start-up, shut-down, and operating costs have been
used. This was followed by an ED preformation for a few minutes to one hour, for the
economic online allocation of units, and with a consideration of all system units and
constraints.

3.2.3. Convex Approximation

Convex approximation or optimization of OPF means relaxing some constraints of
the original problem and obtaining a convex model. This approximation can be used for
a high reactance to resistance ratio (X/R) network to approximate the DC power flow
under the assumption of reactive line impedance and a small difference of voltage angle
[71]. An advanced application to the convex approximation to slave DOPF problems has
been presented in [72]. Here, a developed strategy has been proposed as an EMS to single-



Energies 2021, 14, 7234

19 of 46

phase or three-phase AC microgrid with distributed generation and storage units. Robust
convex optimization was employed for a limited time horizon to minimize the cost of
energy, import, export, and dispatch of the DG, in addition to the operation of ESSs.
Moreover, it considers the self-discharging rate and SOC of the distributed energy storage.
The developed EMS has been assessed via the Mount Carlo simulation method, and
success has been verified, which states that power balance in the microgrid network is
determined by the main utility grid and ESSs in connection mode through a collaboration
to estimate the difference between local consumption and local production. K. Garifi et. al
[73] proposed a convex relaxation to neglect constraints that were enforced of charge and
discharge for ESSs in a grid-connected microgrid network. The solution was through the
introduction of an MPC-based DC OPF penalty improvement approach. The specific
development comprises a modification to the cost function to include a penalty function
to remove charge/discharge constraints. Furthermore, Kuhn-Tucker conditions have been
utilized to confirm satisfaction of the convex relaxation to the constraints. Simulation of
the proposed system has been run off a multiple IEEE test system, to achieve reduced
computation time, compared to the previous approach with constraint ESS.

3.2.4. Non-Convex Approximation

Non-convex strategies introduce non-convex approximation solutions when the
objective or any constraints are non-convex, which comprises a combined mixed-integer
linear programming and nonlinear programming of solving DOPF in a Microgrid that
includes ESSs within its predetermined network. Furthermore, unbalanced phases are
considered by the non-linear programming [74]. One of the solutions based on stochastic
gradient descent-based optimization of parameters has been applied in [75] to optimize
the non-convex problem. The microgrid nominated for the experiment consisted of
distributed ESSs, microchips as a controllable DG, and uncontrollable DG. A developed
version of central EMS has been proposed in [76] to optimize power dispatch of
distributed ESS in an isolated microgrid. The development was through formulated
mathematical programming centralized EMS with the help of MPC. Additionally, with
generation and operational limits, this version was proposed to manage generation,
balance power flow, and to provide settings of system operation and the balance-
distributed ESS. Moreover, it was proposed to support the backup power of islanding.
The decomposition of the mixed-integer nonlinear formulation problem (MINLP) into the
mixed-integer linear programming (MILP) and UC was a sign that this solution might be
superior to other solutions that were previously presented. Simulation of the proposed
solution has demonstrated less computation time compared to other solutions [76]. D.E.
Olivares et al. [77] raised objectives of the previous strategy to include stochastic mixed-
integer programming formulation, in addition to a second stage OPF, and under the
employment of nonlinear programming formulation. Therefore, both stages have
cooperated in addressing the uncertainty of the same isolated microgrid. Decisions have
been made via the proposed two-stage process in which a commitment was decided by
the linear stochastic unit commitment (SUC), while final dispatch was accomplished by
the shrinking horizon optimal power flow (SHOPF). Since SUC was responsible for
commitments, it supports a fixed SOC boundary for the distributed ESS.

3.3. Centralized Tertiary Control of DC Microgrid

Solutions to the DC dynamic power flow problem (DC-DOPF) in DC microgrids have
been suggested in the literature through many successful attempts. One distinctive
solution is a power flow management based on MPC that has been proposed to solve the
DOPF problem in a DC microgrid network [78]. The objective was to manage the power
flow of DG units based on renewable predictions. Moreover, the capacity for controlling
distributed ESSs power flow depends on their SOC. Another successful proposition has
been suggested by M. Gulin et al. [79], in which a stochastic optimization problem has
been diagnosed and solved through the design of a developed tertiary management
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system; specifically, a two-stage programming solution with the incorporation of an MPC
to compensate for the uncertainty of the feedback mechanism. One of the valuable
achievements was a successful integration between the ESS and the grid, in addition to
the optimized energy management and minimized operating costs.

A centralized tertiary control has been acted within a hierarchical control approach
in a most recent study by J. Zhang et al. [80] in DC microgrid supplied by distributed
BESSs. The tertiary control has evaluated current sharing weights depending on the
batteries SOC. While secondary control has included a unit control error (UCE) for the
roles of restoring DC voltage of microgrid and accomplishing an accurate load sharing of
batteries depending on the weights achieved by the tertiary level. The main aim of the
developed strategy was to attain an optimized battery discharge management, which
leads to a balanced sharing of the demand. Simulation of the new strategy has proved
system validity and effectiveness.

A summary of the reviewed centralized strategies has been presented in Table 2,
which explains the major strengths and weaknesses of each strategy.

Table 2. Summary of centralized control strategies.

Strategy Microgrid Type

Strengths Weaknesses

An existing voltage deviation and
Accurate sharing of an unbalanced load. & &

[51]1 AC . unbalance when load fluctuates
Balanced output voltage. Active power flow. .
(compensate in 2 s).
Successful in compensating THD. No improvement in terms of the results
[52] AC No additional equipment has been installed. than the previous strategies. Same
Less complexity control structure. objectives have been gained but a simpler
Fast tunning. control structure.
Control DG based on ESS capacity and SOC
[53] AC level (prevent overcurrent). Only applicable for AC Microgrid.
Capable of balancing SOC. There was a communication cost.
Fast transient/Good robustness.
Balanced SOC and not affected by power Communication failure of BESS when
[54] AC fluctuations. changing control mode.
Maintained frequency to a nominal value and Difficult recognizing of DG role due to the
not affected by power fluctuations. intermittent change of their output power.
The capability of coordinating a multiple Despite SOC balance, there was some
[551DC charged battery. fluctuation and instability.
Balanced SOC of the batteries.
Unclear if circulating current was existing
Balanced SOC of all batteries. or not during the convergence of SOC
[56] DC Total batteries power of charge/discharge was (during discharge convergence, the
adequate for the desired operation. response shows some batteries discharge
while the other charge).
Balanced SOC. . . .
[57] AC Newly developed droop control has been Life and protection of ?:;attenes have not
. been mentioned.
achieved.
Balanced power-sharing of different resources
depending on their actual power and energy
[58] AC rather than the rated capacity. A degrade of fuel efficiency under load
Efficient fuel consumption to a limited extent. variations.

Accomplished power-sharing of onboard
sources independent of load conditions.
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Balanced SOC within the mandatory levels.
The battery current has been directed to the

[59] DC renominated limits. Limited exploitation to batteries capacity
Great catch on for injected power to set points. (30-100%).
Better performance than the wind case
method.

The capability of dealing with solar
forecasting error up to 60% with no brake to

dispatch rules.
[60] AC Optimized dispatch performance than basic Thresholds and HESS are required to be re-
control (delta-balance). evaluated.

Active, less-complex computation, and easy
for practical application.
Adapted to other electricity markets.

Frequency fluctuations exist until steady at
Optimized power management-based q Y y

Hz.
[63] AC hierarchical control. . >0 _Z .
Voltage fluctuations exist until steady at 311
Plug and play of loads and sources. v

Greater reduction in the annual cost compared
to standalone PV and ESS that uses rule-based
controller.

More battery prolonged life compared to rule-
[64] DC based co‘ntr(')l. . Limited to one PV and one ESS.

The greater annual saving in all operational
scenarios.

Capability of flattening the aggregated feeder
of 30 consumers for one day. Evening demand
reduced by 20% compared to the rule-based.
Convergence has been assured.
Effective computation compared to other

[65] AC strategies. Expected convergence issues.
Providing solutions with linear and nonlinear Inaccurate approximation.
solvers.

AC viable recovery of SOC-OPF design.
Stable voltage in both islanded and grid-
connected modes.
The good exploitation of reactive powerin  There was an overshoot of current when
[66] AC/DC supporting main grids against voltage transfer from autonomous to the grid-

variation. connected.
Balanced power management.

Proper charge/discharge balance.

Optimized economical operation compared to

other existing strategies. No consideration for heat recovery.
[67] AC An advantageous tradeoff between peak No demonstration for reactive power
demands and consumers has been achieved exploitation.

through an acceptable restriction.

Future planning of, power exchange, and
charge/discharge profile, of each ESS, among
different Microgrid networks, has been
predicted via an MPC-based algorithm.

Real-time communication failure with some

[68] Smart grids of the system.
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Optimized operational scheduling (because

rice variation with time). . .
P ) Formulation complexity under the use of

[69] AC The effect of ESS towards a dispatchable MPC.
generation.
MPC has minimized the cost function.
Ecorli?ilitiz)sc?jzfikcl;:zsfzefir;tfilf)‘gjcxzhom Due to the limitation. of batteries” discharge
[70] AC function. depth, they barely dlsch.jslrge for only some
An optimized operation with day-ahead .. h ours at night. .
scheduling and high probability. Electricity price has not been considered.
More flexible and faster than stochastic. Convenient for short-term energy
The applicability of offline solutions, since management scenarios (this could be an
[72] AC implementation has proved that execution advantage or disadvantage based on the
times are steady with expectations of mixed-
integer programming. purpose).
Satisfied ESS charge/discharge in the situation Unsatisfied charging/discharging in the case
[73] DC of a taken relaxation. of non-simultaneous ESS.
Reduction in computation time. No participation of load in demand
Negligible influence of penalty time. response.
Improvement of performance.
Uncomplicated implementation. Convergence was after 1000 iterations.
[75] AC Less computation time. However, stability value was 0.4 <1, which
Active in implementing large system improves the activity of large system
solutions. solutions.
Reduction of the cost compared to MPC.
Reduced computation time. .The quality of S.O.I utions nefeds fo be
[76] AC The decomposition of the MINLP problem has lmprove;;ii{’::;fl(:iggﬁ e;sl.mpact of
enabled the solution to be solved within the . .
desired time. More robustness against uncertainties is
mandatory.
Improved total operational cost.
[77] AC Qualified accounl;irr;f1 iocftitcj)rrllzertainty in power Convergence failure.
Improved computation time.
An optimized operation, because of the
accomplished scalable solution. Slight improvement of power consumption
[78] DC Good interaction between the proposed than non-convex QP (0.036%)
controller and the local controllers. ' '
Lower average solution time.
Allows more flexibility, through an PerTalizing 'any COl"lStraint wi‘th higher/lovx'/er
advantageous tradeoff between constrains prices for 1mport1ng/ exporting energy w1l¥
[79]1 DC violations and the achieved revenue. not prevent constraints violation but keep it
Minimized microgrid operation cost. as small as poss?bl.e (violation is still
existing).
Balanced SOC.
[80] DC Successful restoration of DC voltage. Tested only for two batteries.

Accurate sharing of batteries current.
System effectiveness has been accomplished.
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4. Distributed Control Strategies Based on Multiagent Communication of Controlling
Distributed ESSs

Decentralized control strategies are incapable of exploiting the full capacity of
distributed ESS since it only depends on local information. Centralized control strategies
require an adequate infrastructure for maintaining communication between the
distributed ESSs. Therefore, both have a weakness in optimizing the combined energy and
power of the storage system. This results in an urgent need for strategies that combine
decentralization, in addition to communication with other units. Distributed multiagent
systems have been developed for this purpose, as presented in Figure 10 which shows the
application of a multiagent neighbor-to-neighbor communication network on the AC
microgrid consisting of five distributed ESSs, each representing an independent agent. It
exists under two main categories: secondary and tertiary.

Agent | (1) Agent| (5)

Multiagent Neighbor -to-Neighbor
Communication Network

Figure 10. Distributed multiagent based control of AC Microgrid.

4.1. Secondary Multiagent of Controlling Distributed ESSs

Under this category, each distributed ESS agent operates autonomously with a
presence of a neighbor-to-neighbor communication. Accordingly, they share information,
such as SOC level, load current, output voltage, and power consumed, for the aim of
balanced implementation for load demand. It addresses the problem of a cooperative
consensus of distributed ESSs under a multiagent neighbor-to-neighbor information
sharing [81]. Then, development has been carried out of the implementation for the
distributed secondary multiagent to include the introduction of an optimal controller [82].
The classical theory has been extended to a networked system through the design of a linear
quadric regulator based on an optimized control strategy at each node. S. Mondal et al. [83]
recently proposed a successful application that highlights the impact of secondary
multiagent control in the form of an integral consensus protocol by synchronizing the
combined energy and power of a distributed BESS according to a multiagent neighbor-to-
neighbor network of energy and power. This strategy has developed and has accomplished
an independent energy and power consensus that is unaffected by load variations and
batteries scenarios.

SOC balancing of distributed ESS has been incorporated by distributed secondary
multiagent control, as one of the vital objectives for both AC and DC microgrid. There
have been distinctive attempts in the literature with the aim of balancing SOC based on
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the distributed secondary in AC microgrid [84,85]. A clear clarification of the theory was
introduced in [84]. Here, SOC balance of distributed ESSs in the AC microgrid was
achieved via the design of a multiagent-based control algorithm of each agent. The
average SOC of neighbor ESS at time K (SOCmeanj(K)) was received via multiagent
communication. Then, the average SOC of the specific distributed ESS at the next time K
+1, (SOCpean (K + 1)) was determined through dynamic average consensus information.
Furthermore, the frequency that implements balanced SOC has been scheduled and
applied to primary control.

Successful development lies in the active role of the dynamic consensus, which is
clarified in Figure 11 and based on the proposed multiagent communication. An SOC that
is created by consensus was compared with the measured state of charge (SOC;) to
accomplish a balanced SOC. Then, the balanced SOC was compared with nominal
frequency (W-") to schedule the frequency that implements the obliged SOC balance. Finally,
the scheduled frequency reference (W.) was applied to primary control with a voltage
reference (E-) to achieve PWM control signal. Successful simulation of the developed
secondary, multiagent-based distributed frequency scheduling had yielded valuable
features of robustness against communication failure, in addition to its capacity for
expansion. Furthermore, any of the distributed ESSs were capable of participating at any
point of the operation.

E soc¢; W
3
5 sgcmeam(k)

—_—
E SOC,ean,(k +1)) Frequency
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Figure 11. Secondary multiagent frequency scheduling of an independent storage agent, to balance
SOC.

C. Yu et al. [86] recently suggested an application of the theory on distributed BESSs
in an islanded AC microgrid with the existence of multiagent communication. A control
algorithm was designed with the aim of restoring frequency in addition to balancing SOC.
The steady-state frequency was maintained to its nominal value via the compensation of
power difference in the microgrid system. Another objective has been gained from the
simulation rather than frequency and SOC, which is the optimization of synchronous
speed of the developed event-triggered method over the conventional one.

DC microgrid networks have also been an application field of the secondary
multiagent for the objective of balancing SOC of distributed ESS. An innovative
application of this is demonstrated in [87]. Here, a distributed multiagent secondary was
applied to a DC-connected microgrid with distributed ESSs. SOC balancing was one of
the valuable objectives of the system. The key aspects of development for this strategy
focused on two main tasks: (1) when the distributed secondary control created a voltage
control action (u}) and an average energy control action (uf), they were then added to
droop calculation to create reference voltage (V*) that was implemented to balance
output voltage for the agent with the connected DC Bus (see Equation (23)); (2) when the
developed control system has been applied to the AC/DC grid rectifier to manage power
flow and modes of the DC Microgrid in a form that provided a balanced energy level
(balanced SOC) for the distributed ESSs. The grid rectifier received information from
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neighboring ESSs regarding the voltage and energy situation. Therefore, the need for a
central controller or control mechanism to control the transition from one mode to another
was eliminated.

Ve=vm = Fr (i —w — uf) (23)

SOC balancing of distributed heterogeneous ESSs in DC microgrid has also been
solved by distributed secondary multiagent-based control. The strategy in [88] was one of
the successful propositions, in which multiagent-based energy coordination control was
applied to a control hybrid microgrid consisting of BESSs and ultracapacitors with no
need for a central controller. The various level distribution of the multi-benefits
heterogeneous distributed storages helped to achieve an enhanced control optimization.
Furthermore, more control objectives were gained. The developed strategy was a pattern
of four control scenarios; the microgrid bus voltage was maintained by leader
ultracapacitors, while ultracapacitor voltage was maintained by leader batteries. The
other ultracapacitors were followers and were responsible for implementing local urgent
load demands. On the other hand, the main objective of follower batteries was to balance
the SOC. Despite the many objectives of the strategy that were achieved, the main
objectives were to balance the microgrid power and maintain the SOC balance.

Distributed secondary multiagent strategy was developed as a solution to a
limitation of a linear consensus protocol of the distributed BESSs in a microgrid. The
limitation occurred in previously proposed strategies to balance the dynamic energy level
of the distributed BESSs [87-89]. An undesired tradeoff between dynamic energy
balancing and the equilibrium of SOC caused circulation current between the distributed
BESSs. T. Morstyn et. al [90] designed a strategy to maintain a linear consensus protocol
limitation via the balance of the SOC. Thus, a sliding mode control has been integrated to
a secondary multiagent-based control of distributed BESSs in DC microgrid. The achieved
sliding mode control action (u;(t)), as given in (24), has succeeded in controlling the level
of participation of the distributed BESSs in droop control for both charging and
discharging based on information from multiagent communication regarding average
neighbor’s storages SOC (4;(t)), measured SOC (S;(t)), and the measured participation
current per unit storage (iL;pu).

1, Si(t) = A;(t) and i} (£) > 0
(1) =91, S;(t) < Ai(t) and i;P4(E) < 0 (23)
0 otherwise

The initial implementation of the theory achieved a balanced SOC but with the
appearance of two defects. A chattering, which was due to the many rapid switches of
sliding mode control to keep the SOC of the distributed BESS equal to the average SOC of
its neighboring BESSs, and an overloading of some participating distributed BESS with a
higher storage level due to a wide range of participation in the current level. To overcome
these weaknesses, an updated sliding mode surface was introduced (see Equation (25)),
as was a new maximum per unit current limit ({¥*™**). This current was determined
from the division of maximum discharge current (i/}**) of the distributed BESS by the
battery maximum capacity (Cpq¢¢ ;). The new sliding mode control has prioritized solving
the drawback of overloading over guaranteeing accurate SOC synchronization, to reduce
chattering.

L Si(t) > A and i7" (@) > 0, i/ | > g™
wi(t) =41, S;(t) <A(t) and iPU(@) <0, |if*| > P (24)
0 otherwise
The proposed strategy gained some features over the conventional strategy,
including circulating current between the participated distributed BESSs, and the feature
of plug and play.
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A more recent development of secondary distributed multiagent-based control was
applied to introduce time-oriented SOC balancing in [91]. The idea behind the developed
consensus protocol was to achieve the obliged SOC balance through the time management
of charging/discharging modes of the distributed BESSs. As shown in (26) and (27), the
average time of discharging/charging (t7%(t),t; €(t)) at node (i) was determined by
subtracting the estimated average neighbor time of
discharging/charging (t;7%(7),t;¢(1)) from the estimated average time of
discharging/charging (t;%(r),t; “(r)) at node (i). Then, the result was added to the
measured time of discharge/charge (tZ(t),tf(t)) at the specific node. The new
development succeeded in balancing the SOC to the range of 20% as the minimum
percentage level and 90% as the maximum percentage level. Furthermore, this new
development played an important role in regulating estimated secondary voltage with the
nominated reference.

g4 = ¢ + fo ijoai,-(t;d(r) - @) dr (25)
GO = () + f Y ay (5@ - @ dr 27)
0 =0

The strategy that was proposed by J. Almada et al. [92] is more recent, in which a
secondary multiage-based control strategy was designed to operate both connected and
standalone modes of a microgrid, in order to optimize the overall system performance.
The control strategy consisted of a modified droop controller at the primary to accurately
share reactive power, and a secondary centralized multiagent-based controller. The
successful sign of the designed approach was via the adoption of an intelligent agent,
which is autonomous and can decide, detect, and operate in the given environment with
high responsibility. Therefore, it can cooperatively solve complex and distributed
problems with other intelligent agents. The system has been tested and results showed an
optimized balance of power and system stability.

4.2. Tertiary Cooperative Multiagent Based Strategies of Distributed ESSs

The main typical objective of tertiary cooperative multiagent control in a microgrid is
to attain DOPF of distributed ESSs. Despite this common objective, the controls differ
according to their specific control objective; some of them regulate the microgrid
parameters, while others track these parameters. The strategies that accomplish economic
optimization are the strategies that have priority for the preference. The preferable economic
strategies are classified, based on multiagent communication architecture, into three
categories.

4.2.1. Hierarchical Tertiary Multiagent Strategies of Implementing DOPF of Distributed
ESSs

The DOPF solutions of these strategies are achieved via a collaboration of a central
controller with autonomous distributed generation and storage agents. Each of these
agents is working independently with its local controller and under specific constraints,
while full information of power topology is provided by the central controller. K.
Worthmann et al. [93] proposed a strategy that explains the concept of the distributed
centralized tertiary; an MPC-based market maker strategy acts within three other control
levels of implementing a flattened aggregation of power consumption, and
communication is available between any of the distributed agents and the central
economic optimization control management.

The agent at node (i) exchanges information with a market manager controller, at
each time k and for N length sequence of prices. The information relates to the price to buy
power from the main grid (P) (see Equation (29)), price to sell power to the main grid
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(@) (see Equation (30)), power supplied by the main grid at time k (y; (k)) (refer to
Equation (30)), and power injected to the main grid at time k (y; (k)) (refer to Equation
(31)). The objective was to attain the obliged solution of managing the cost. Cost
management was the scenario of increasing selling and buying electricity prices when
demand exceeds the average predicted and vice versa.

P = @@),....p(k + N — 1)) (28)
q =(@qk),....... ,q (k)T (29)
i (k) := max {y;(k), 0} (30)
yi (k) := max {-y;(k), 0} (31)

A more recent effective implementation of the hierarchy-based tertiary multiagent
distributed control was proposed in [94], in order to control the AC microgrid network
with distributed energy resources, distributed ESSs, and loads. The three hierarchical
control levels were used to achieve an optimized distributed power system. Tertiary
control with a partnership of all distributed agents was responsible for solving the OPF
problem. As demonstrated in (32), the mathematical formulation of the AC OPF problem
as a function of tertiary control variable (x*) was intended to produce an economic
generation with the application of convex reduction to power flow constraints (h(x*")), and
generation limit constraints (g(x*)) (See Equation (33)). Implementation of the developed
control strategy has demonstrated optimized scalability of solving AC OPF based on
multiagent communication.

minJ (x") (32)

Sth(xt) =0 , g(xt) <0 (33)

The exact diffusion strategy has been one of the most recently developed strategies
for implementing an optimized economic dispatch of multiagent distributed agents in a
designed microgrid, which consists of distributed generations, storage, and loads [95].
Tertiary centralized control was the higher level of the proposed hierarchical control that
acted as power distribution optimizer rather than a central controller in accomplishing the
economic operation of the microgrid. A microgrid global central controller (MGCC) agent
transmits schedules to the distributed agents to optimize agents’ power dispatching.
Additionally, it uses an optimization of the consensus algorithm for quicker convergence
and increasing of stability and expansibility.

4.2.2. Topology-Based Multiagent DOPF Solutions

Topology-based solutions consider multiagent sparse communication between the
distributed agents that reflects the power network topology of a predetermined
distributed microgrid network. Each distributed agent has a bidirectional information
exchange with all its neighbors. A comprehensive application to the theory has been
achieved through a proposed decentralized control of distributed multi-smart-microgrid
power network in [96]. The idea behind the development was to take the advantage of the
distributed ESS agent at each smart microgrid network in order to achieve internal
implementation of the demand. Furthermore, the network exchanges power locally with
neighboring smart grids and the main utility grid.

The main objective of the proposed control strategy in [96] was to accomplish
distributed cooperative control for any of the distributed smart grids according to the
topology-based multiagent communication as shown in Figure 12. Each smart microgrid
(SMG) was considered an agent and communicated with neighbor agents through a
power link to optimize its power exchange. Information exchange was in progress
between neighbor agents regarding the current and expected power availability. The
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effective computation for many Microgrid systems was one of the signs of success to
achieve all decentralization features. W. Kang et al. [97] proposed a strategy with a
topology-based multiagent communication layer of distributed BESSs, DGs, and loads, in
a microgrid. A systematic method was designed which uses multiagent information to
accomplish SOC and reactive power balancing.

Power Link (2, 4)

+ ¥
Agent  PowerLink(1,2) | Agent | Powerlink(2,3)  Agent Agent
1 2 3 4
4 4

Power Link (1, 3)

Figure 12. Topology-based multiagent communication of multi-smart microgrids power network.

4.2.3. Fully Distributed Tertiary Multiagent DOPF Solutions

Fully distributed DOPF solutions are based on topology-free communication, and
only communication between close neighbor agents is mandatory. Therefore, it is
achieved if at least a bidirectional communication between the distributed agent and one
neighbor is achieved. The strategy that has been proposed in [98] clears up the application
of the fully distributed solution and its effectiveness in coordinating distributed energy
units. The specific energy management employed a (consensus + innovations) method to
organize all energy units of the microgrid network. Each of these units included storage
systems as an agent connected to a specific node. Therefore, full distribution multiagent
sparse communication was implemented. Furthermore, it exchanged the cost and load
demand information between neighbor’s agents, in order to ensure that the bulk energy
of the microgrid is sufficient for load demand. The optimized operation of the distributed
ESSs and the inclusion of ramp rate constraints were behind the successful solution to the
DOPEF problem. T. Morstyn et al. [99] applied a fully distributed DOPF to a microgrid
network that included distributed ESSs for the aim of achieving a scalable solution that
mimics the increase in distributed ESSs in future power networks. The work also
eliminated the requirement for a central controller. The development in [99] comprised
the division of the DOPF problem over the distributed agents to be solved based on local
information provided by the autonomous agent. Thus, enhanced flexibility was achieved,
in addition to more robustness.

4.3. Tertiary Competitive Multiagent Solutions

In the cooperative multiagent, distributed ESSs are involved in implementing DOPF
optimization. Despite this objective, it can be difficult to implement further specific roles,
such as the independent sale of energy and the increase in the overall microgrid profit. To
understand the theory, a complete description of market-based Microgrid networks with
competitive ESS agents was presented in [100]. A multiagent communication-based
competitive game theory was employed for an AC microgrid of renewable energy
distributed agents. The distributed agent was committed to hour-ahead information of
the market for a whole day. Figure 13 [101] shows how the agent was updated with the
environment through a multistage platform, which enabled it to perceive the environment
through the sensors and make decisions. These decisions were sent to the actuators. One
of the significant advantages of ESSs here is that the price of energy was proportional to
the SOC, so the price is low whenever the SOC is high.
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Agent Platform

Figure 13. Competitive agent behavior.

Multi-microgrid multi-consumer systems are fundamental. Therefore, they have been
a field of competitive multiagent application and there has been a great deal of work
directed towards solving the management of energy distribution for such a system [102]. To
this end, a multilevel Stackelberg gaming solution was established to consider the multi-
microgrids as leaders that decide the mandatory level of generation. Furthermore, support
from central energy management was available for an optimum energy tariff, and to earn
more profit, in addition to the participation of consumers or followers in deciding the
optimal consumption. Therefore, ESSs at the follower agents were deciding the optimal
demand, which in turn has resulted in more profit for the specific Smart grid [102].

4.4. Combined Cooperative Competitive Multiagent Solutions

A combination of cooperative and competitive solutions can be achieved for attaining
more intelligent solutions of power distribution management in smart grids. For example,
providing multilevel energy trading and marketing, thus consumer level trading, in
addition to the individual whole model marketing. For example, the multi-objective
power management solution that was recently proposed in [103] to solve the power
management problem. The new idea behind the development was to model the power
management problem so that the distributed agents were involved in a bargaining game.
This was attained by introducing a Nash bargaining solution. Furthermore, the
implemented agent decision-based computation eliminated the need for a central
controller. The employment of the Nash bargaining solution for solving the power
management problem was extended to a multi-microgrid power distribution network in
order to obtain a cooperative, agent-based, Pareto-optimal treatment of power
management [104]. Furthermore, a utility supplier is the common factor in the coupling
of all the agent microgrids that support the power exchange of a multi-microgrid network,
and represents the main market to accomplish the necessary cost reduction.

The multilevel energy market demonstrated success in the multiagent distributed
power system in [105]. The operation of the Smart multi-microgrids has been enhanced
through hierarchical, three-level marketing propositions. Here, the double-auction, day-
ahead marketing mechanism was at the first level, while the other two levels were an
hour-ahead real-time marketing. The concept of the hierarchical multilevel solution was
to accomplish a multi-decision-makers system in a format where the upper-level decision-
makers are leaders, while the lower levels are followers. The qualified multiagent-based
communication that uses data distribution service (DDS) under the employment of real-
time publish-subscribe (RTPS) implemented fast, reliable, and scalable communication.
Furthermore, microgrids within power systems were capable of increasing system
flexibility and accomplishing economic operations.

Table 3 demonstrates a summary of the reviewed multiagent strategies, which
comprises the major strengths and weaknesses for each of these strategies.
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Table 3. Summary of distributed multiagent control strategies.

Strategy Application

Strengths Weaknesses

[83] 2nd order multiagent system  Achieved energy and power fixed time

Synchronization of energy and power

levels of th ing th
evels of the battery during the Neglect of the dynamics of the system,

inner loops, control of secondary
frequency, and control of power, to

charging/discharging mode.

consensus regardless of

charging/discharging. simplify the design.
Robustness.
A negative influence of frequency
[84] AC microgrid/multiagent Balanced SOC. control if neighbors tracking error is
system suddenly changed.
A slight disturbance of the consensus
result of SOCy,eqnduring
communication disconnection of unit 3
Balanced SOC. and 1.

[85] AC microgrid/multiagent
system

Robustness against communication failure. Visible delay of frequency, in the case
Plug and play. of an increasing delay time.
Active for different topologies. A high time delay because of the low
Unaffected by Communication failure. pass filter.
Power network topology and lifetime
maximization have not been
considered.

[86] AC microgrid/multiagent
system

Balanced SOC.
Active restoration of frequency to the
nominal at steady state.

Short oscillation of the controller
before steady state.

[87] DC microgrid/multiagent
system

Robust, extensible, and flexible.
Regulated DC voltage in all operational
modes.

Intermittent of renewable generation.
Delay of communication.
Accurate demand implementation.

[88] DC microgrid/multiagent

Decentralized coordination of
heterogeneous storage systems. A high- The minimum voltage achieved (367.5

frequency load has been provided by V) is still above the minimum

system ultracapacitor, while short frequency load microgrid rating (360 V).
was by battery.
Balanced SOC. Communication fail (multiagent

[89] DC microgrid/multiagent

Regulated bus voltage to a specific range. communication topology is

system
Y Less communication dependency. changeable).
Balan .
. aa ced SOC Despite balanced SOC, the overloading
. . . No circulating current between the L
[90] DC microgrid/multiagent .9 problem has been prioritized over the
participated BESSs. .
system . .. accuracy of SOC synchronization, to
No overloading of any of the participated 1 .
reduce sliding mode chattering.
BESS and plug and play.

[91] DC Microgrid/multiagent
system

Elimination of average voltage deviation
based on nominal voltage.
Balanced SOC at the limits.

Smooth transfer from charge to discharge

A difference in nodes voltage is
existing, but the average of the
microgrid is balanced.

SOC is only balanced when reach

and vice versa. limits (90% higher, 20% lower).
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Robust against, load fluctuations and
different ESS capacities.
Active for both connected and standalone

modes.
More realistic environment for microgrid to transfer from an operating mode to
the other.

Frequency deviation when switching

[92] Multiagent-based microgrid
network
control and management.
Optimized power flow.

The optimized performance level that
provided by MPC does not last,
because of the fast increase in an

optimization problem with the
expansion of the network.

Optimized performance.

[93] Residential ESSs. (multi-
Lowering local optimization problems.

microgrid network)

hari

[94] Multiagent-based microgrid Highly robust to link failure. . Current sharing CE%l’ll’lOt‘be .

network Excellent scalabilit implemented, as the failed link will

Y isolate the agent.
Faster convergence.
Economic and stable operation.

[95] Multiagent-based microgrid Robust to the c}langtles in communication Transmission losses are not

network Op0 08 considered.

Plug and play of distributed systems.

Guarantee optimal operation of resources
with economic optimization.
Effective computation, even if the number
of Smart grids is increased.

Indivi 1 ti t
[96] Smart Microgrids (SMGN) . nleld.ua cooperation .o ver Sme}r S .
grid operation (no need for information for number. Thus, computation time will

other Smart grids status). be increased.
Scalable and robust.
Normal variation of voltage, and within

The increase in PLAs iterations with
the increase in involved smart grid

the mandatory range. Packed losses are existin
[97] Multiagent-based microgrid Fast convergence balanced SOC. - & .
. Delay of communication, and link
Balanced load sharing of BESSs. failure

network
Easy-designed control strategy.

Battery health and life were enhanced.

Optimal communication has not been
considered. Instead, extra
communication links were introduced.
Power flow constraints have not been
considered.

Arbitrage behavior of storage has reduced
generation level.
Economical operation.
Optimal utilization of storage.

[98] Multiagent-based microgrid
network

Reduction in power quality due to the
VSC references.
Slight increase in power consumption,
compared to central (0.13%).

Expandable to many distributed ESSs
networks (network topology was not an
effective parameter of control).
More flexibility and enhanced robustness.
Compatible with industry applications.
The possibility of large-scale
implementations for the proposed
microgrid has been proven.

[99] Multiagent-based microgrid
network

[100] Multiagent based grid A voltage drop at PCC is recognizable
but small.

connected Microgrid

[102] Multi-microgrid multi- Enhancement to energy adequality. A delay in energy supply.

consumer network
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Economical operation of each microgrid of
the network.

[103] Multiagent microgrid
applications.

The multi-objective power management  Limitation of exported power to 4.2
(MOPM) problem has been solved fora MW, lower than congestion limit 7.5

grid connected and islanded microgrids. MW
[104] Multiagent-based multi- Lower computational load per iteration.
Microgrid network Active for wide-scale applications in real- Computational delays.
time.

[105] Multiagent multi-microgrid
network

Minimized, implementation time.
Capable of using all of the agents’ capacity
to minimize cost, in addition, to raising A minor real-time mismatch.
system flexibility for deregulated fields.
Less dependence on utility.

5. Intelligent Control-Based Reinforcement Learning

One of the influencing factors that enhances system reliability is the integration
between renewable resources and ESSs, so that excess generation of renewable energy can
be stored. Therefore, multiagent communication is the gate towards decentralization and
the accomplishment of this integration. Above all, the main objective of decentralization
is the transition towards smart, decentralized microgrid networks. Reinforcement
learning (RL) is one of the gold standards for smart intelligent power distribution
management, especially with the trend towards a clean and economic environment, and
with the increase in electric vehicles (EVs). The aim of the RL agent, as illustrated in Figure
14, is to increase the total reward via a sequential interaction with the environment status
that includes a power distribution management within it [106]. The best action is learned
for every state through the design of a qualified reward [107].

State
Action

Power Distribution —
Management System

Figure 14. Reinforcement Learning Agent.

As given in (34), the state function explains that if a new state (x) visits, then action
is taken to move to the next state (y) via the provision of an urgent reward (r(m(x))).
Furthermore, future returns that exist in the current state are regulated by an action factor
(v € (0,1)). Here, P is the probability sequence from current to next state [107].

VIG) = r@e) +y ) PG VT) (34)
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5.1. Balance of Exploration and Exploitation

The aim of a learning scenario is to explore from statuses and exploit from rewards
in order to decide the RL action. Therefore, both exploration and exploitation need to be
balanced to avoid jamming in local peaks. Balancing exploitation/exploration is not an
easy task because of the experience essential for optimizing the actions and handling so
much mandatory data. Because of that, the actions need to provide as many rewards as
possible in order to achieve the desired action, which provides a high reward; this action
is named the greedy action (a,) if it delivers the maximum reward. Solution policies for
the balance problem between exploration and exploitation were presented in [106].

E-Greedy Policy

A model-free, e-greedy, reinforcement learning was proposed as a lower-level
control for managing the energy of battery pack storage and two driving motors of a
hybrid-tracked electric vehicle system [108]. It succeeded, with its Q-learning algorithm
optimizing control based on online transition probability matrix (TPM) computation. E-
greedy policy-based Q-learning RL has been nominated as a solution for the difficulty in
obtaining EVs mobility and its charge/discharge profiles, which are desirable for the
mobility-aware control algorithm (MACA) that proposed to optimize charge/discharge
scenarios [109]. Since EV in the Vehicle-To-Grid (V2G) system can consume power in
charging and supply power in discharging, then it can represent an autonomous
microgrid with a storage unit. Z. Tan et al. [110] used a module-free, e-greedy,
reinforcement learning of Q-learning solution as a non-convex top layer of a fast-learning
optimizer, in order to implement the real-time optimal energy management (OEM) of a
connected microgrid. The proposed strategy was an intelligent contribution for a
combined management method of classical control and an intelligent model-free
reinforcement learning, which in turn, enhanced the speed and the value of the quality
optimization.

5.2. Q-Learning

Q-learning is a qualified method of model-free learning, mostly based on
reinforcement learning, for the rule () of the decision-maker. It refers to how successful
the process of deciding an action (a) is for the current state (x) (see Equation (35)).
Therefore, the state function of the desired action can be represented as quality of taking
that action [106].

Q) = v ), PGV ) 35)

Q-learning has been involved in microgrid power management with the aim of
achieving fast and high-quality optimization. The three proposed strategies [108-110],
presented in the previous section all followed a Q-learning method of their module-free
reinforcement learning involvement. The introduction of Q-learning RL of optimizing
power flow for an EV charging station highlighted its development compared to classical,
programming-based optimization [111]. This is due to the capacity of RL to complete and
save solutions offline. Model-free RL has been recommended to enhance energy
consumption scheduling, through gaining more information about power consumers and
suppliers. The strategy highlighted the impact of involving RL in multiagent-based energy
management through the accomplishment of agents’ (consumers and suppliers)
information.

5.3. Batch Reinforcement Learning

Despite the wide range of applications of a model-free learning method, it is still not
robust enough for application in some policies and is limited in its data. Therefore, there
is a need for a more efficient RL methodology. Batch reinforcement can provide more
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efficient and stable solutions by having full knowledge of the experiences in the
environment prior to an update, as illustrated in Figure 15, which clarifies that batch
experiences are saved and applied before taking the action; this differs from Q-learning,
which updates Q-values at the action time [112].

Batch RL Policy

T

Collecting Data

Traditional RL Policy

; I ;
H K] ki
Power td
System

Figure 15. Batch Reinforcement Learning.

The application of batch learning in scheduling power management in a microgrid,
specifically in the power flow of an ESSs, was highlighted in [113]. A combination of Q
and batch-learning was proposed to achieve an optimized proposal of a battery operation.
An optimized operation of the battery was decided by the nominated RL agent based on
storage SOC, demanded load, inverter efficiency, and PV generation. A developed batch
Q-learning was proposed by G. Shi et al. [114] to manage the energy of an eco-based
microgrid network that consisted of an office as a demand, photovoltaic generation as
renewable supply, and a battery storage unit. The system used the full knowledge of the
optimized performance over a period of time to prepare for a real-time electricity rate and
demand, which, in turn, accomplished the objectives of the developed Echo-RL-based
strategy of optimizing charge/discharge of the battery that implements the optimized
reduction in the total cost.

5.4. Deep Q-Learning

Deep Q-learning is a combined solution of supervised and reinforcement learning,
which combines deep learning and batch-based Q-learning [115]. Figure 16 shows that
deep Q-learning is comprised of two neural networks. One network estimates or predicts
the current Q, while the other uses the old estimation to estimate the next Q or targets Q.

The application of deep Q-learning in managing energy, in a microgrid consisting of
DGs, BESSs, and PV, was applied in [116], as a solution to the uncertainty in renewable
generation, demand, and their prices. The development was through a formulation of
Markov decision-making in scheduling the specific microgrid operation in real-time. RL-
based deep Q-learning was introduced for solving Markov decision learning [116]. Then,
action was approximated via the proposed deep Q-learning, and the designed deep
forward neural network. Implementation proved that deep Q-learning-based scheduling
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predicted uncertainty of operation with no explicit model, unlike traditional RL that
requires a specific model. The application of deep Q-learning in a multi-microgrid smart
grid was proposed by X. Lu et al. [117], to balance supply with the demanded load.
Therefore, deep Q-learning serves the aim of achieving an energy trading policy via the
intelligent prediction of renewable generation, future demand, and level of storage in the
battery. Simulation has verified the system’s success in maintaining the mismatch
between generation and demand, which gives a reduction in plant scheduling of 12%, and
a rise of Microgrid renewable generation utility of 22.3%.

State, Action

Figure 16. Deep Q-learning network.

A new deep RL control approach was recently suggested by L. Desportes et al. [118]
for a power distribution network consisting of a hybrid ESS of lead battery and hydrogen
storage, a photovoltaic system as a renewable resource, and a consumer, represented by
a partial islanded building. The main aim of the designed approach was to accomplish a
35% long-term renewable feeding for the building and reduce emission impacts due to
fuel generation. To successfully achieve this goal, a control strategy-based new deep
deterministic policy gradient DDPGy,., algorithm was suggested. Particularly, the
problem was reformulated to minimize components of the action to one component,
(Krep (£)). (Se) is the state of hydrogen storage. Simulation implementation showed that
the newly suggested strategy learned the policy (my : S¢ = a;¢p(t)). Additionally, the
main goal of reducing carbon impact was achieved when the efficiency of the hydrogen
storage was adequately large. The smart deep RL-based strategy that was proposed in
[119] was the most recent distinctively successful attempt to control a complex hybrid
electrical and thermal storage system that was fed by a PV system of a residential building.
The main aim of the new strategy was to reduce energy obliged for heating, cooling, and
providing hot water. The developed RL-based strategy demonstrated success in dealing
with the complexity of the thermal system. The implementation of the new strategy has
been compared with a rule-based control and demonstrated better system management
as well as significant cost and energy-saving enhancement.
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5.5. Actor-Critic Algorithms

The actor-critic algorithm is a combination of two deep Q-learning networks in order
to maximize the total reward. They are operating cooperatively in a scenario where the
actor policy network delivers an action for a state from the environment. The critic policy
network monitors two inputs from the environment, state and reward, that are created by
the actor’s action, and then the accomplished action is returned to the critic and is also
sent to the actor [120]. As an application to actor-critic in terms of optimizing stored power
management, a deep deterministic policy gradient (DDPG) algorithm has been employed
within a battery power management system in a microgrid to minimize consumption cost
and steadying battery SOC [121]. Massive and intensive training has been conducted by
DDPG, in addition to the avoidance of over-fitting, to optimize battery power flow based
on different preference consumers. Results have shown success to accomplish an increase
in profit by 55%, and a decrease in SOC instability by 67.5%. A more recent intelligent
application of the actor-critic deterministic deep learning policy was designed by L. Yu et
al. [122], to manage the energy scheduling of energy storage systems, in addition to other
requirements, for a Smart home. A challenging drawback of uncertainty in renewable
generation, unshifted high demands, outside temperature, and consumption tariffs,
encouraged the authors to design intelligent power management. Then, a deterministic
deep learning-based system was designed, which demonstrated effectiveness and
robustness in accomplishing the desired energy management.

In a more recent study, A. Joshi et al. [123] proposed a new actor-critic RL-based
method named polynomial deterministic policy gradient (PDPG) in order to design a new
RL-based control approach to controlling a residential household, fed by a photovoltaic-
battery renewable system. The objectives were to reduce consumption cost, enhance
battery scheduling and boost roles of consumers of the management policy. The proposed
design is a model-free Q-learning capable of accounting for continuous action and
learning a deterministic policy under the introduction of an actor-critic dependent upon
a deterministic policy gradient. Implementation of the policy has shown progress over
state-of-the-art designs in terms of reducing computational time and electricity cost
reduction.

Table 4 summarizes the major strengths and weaknesses of the reviewed intelligent
strategies.

Table 4. Summary of intelligent strategy-based reinforcement learning.

[108] Hybrid tracked vehicle

Strategy Application Strengths Weaknesses
Balanced SOC trajectory to the level of
DP-based. No improvement of SOC trajectory
Good fuel consumption. over the other strategies.

Faster computation.

[109] Vehicle-to-grid microgrid Optimal charge/discharge

Achieved microgrid autonomy. Battery health and life has not been

considered.
management.

[110] Grid-connected microgrid Fast computation.

High-quality optimization.
51 Y op Convergence is the same as the

Qualified real-coded memory. classical method.

[111] Electric vehicle charging station

Higher reward achievement compared
to conventional.
Lower cost by 14% compared to
conventional.

Dimensionality, and lack of policy.

Enhanced learning.

[113] Microgrid network Improved control policy. Increase in computation time.

Economic benefits.
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An increase in battery usage rate.

An existing error of modeling includes
[114] Office distribution network Opti.ma'l .battery char.ge/c.lischarge. renewable energy errors, errors of
Significant reduction in cost. energy demand, and the error of
electricity ratings.

A side effect exists in reducing batch

The capability of predicting size, which is that the full advantage of
[116] Microgrid network uncertainty without a specific model. samples was not taken and leads to an
g y p p
Economical operation. ineffective Q-network. This reduces the
performance.
Convergence has been achieved.
[117] Smart grid consisting of N Effective strategy (decrease power A tradeoff between computational
g . & plant introduction and increase complexity and power plant
microgrids
microgrids utility). scheduling.

Less computation time.

I . Cannot assess a day or an hour
Successful monitoring of hybrid y

storage.
Long-term minimization of carbon

because of similar or near
consumptions; for example, cannot
[118] Distribution network (storage, distinguish between 1 am and 4 am at

. 1 o) (i .
PV, and building) impact at least 35% (minimum is one

year).
Active with storage models comprising

night because these times are showing
the same consumption. Or between
cloudy summer and clear winter

a non-linearity. L .
v because of the similar consumption.

A successful deal with system

complexity. Lack of accuracy.
[119] Residential building Better system management. More identification of project
Significant cost reduction and energy feasibility is needed.
saving.

Islanded mode was disregarded.

. . . Only daily consideration to the
Action space is continuous.

[121] Microgrid network Cost reduction.
Improved SOC.

reduction in cost and improvement of
SOC. Furthermore, they were limited.
User favoriting is not considered.
Power losses are existing.

Effective and robust.
Increase and stabile average reward.
[122] Smart home Reduction of energy cost. A variation of performance for the
Reduced temperature deviation. same system parameters.
An effective tradeoff between thermal

comfort and cost of energy.

Active battery scheduling.
Less computational tame compared to Limited to one consumer (as consumer

[123] Residential household fed by PV- the existing strategies. role is enhanced, it is advantageous in
battery system. Reduced electricity cost. reducing electricity cost to achieve the
Enhanced role of the consumer in the decision of several consumers).

management policy.

6. Emerging Reinforcement Learning Techniques of Power management in Micro and
Smart Grids

Reinforcement learning techniques have become the smart solution to many defects
that were dilemmas in the past. Furthermore, it has added extra success and intelligence
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to the existing solutions. However, traditional techniques are not always sufficient;
therefore, emerging reinforcement learning techniques have been introduced, which are
developed versions of the traditional techniques to solve power management issues in
some complex power distribution applications that cannot be solved by the traditional
strategies. Research is still in the early stages of this sector; therefore, future research work
is planned to be comprehensive research of these emerging techniques, and specifically of
energy management optimization. Synchronous and asynchronous learning have been
developed because of the instability of Q-learning in some complicated applications [106].
Asynchronous actor-critic (A3C) was developed earlier, and is a developed version of
actor-critic. Specifically, it is a combination of several neural network agents trained
asynchronously with different environments [124]. Then, it has been noticed that despite
the intelligence of the asynchronous approach, its complexity is a drawback. Therefore,
an uncomplicated synchronous actor-critic version (A2C) has been designed to provide
intelligence with no complexity [125]. Multiagent reinforcement learning (MARLA)
strategies use more than a single reinforcement learning agent; each of them is interacting
with the environment to learn the desired optimization of the control system [126].
Therefore, it is introduced when a single reinforcement agent is insufficient of the purpose
[126]. The vital need for multiagent reinforcement learning strategies is increasing with
the trend towards decentralization of power distribution in micro- and smart grids,
especially when the distribution network is more complicated and consists of a group of
decentralized energy agents that distribute far from each other within a microgrid
network. The key for transfer in reinforcement learning is to use the knowledge that is
achieved by solving a specific problem to solve another one; in other words, to transfer
the knowledge or solution [127]. Priority experience can be defined as the scenario of
sampling past experiences of an RL agent for accomplishing a learning objective [128].
Traditional RL techniques elect an immediate extrinsic motivation for the agent, for
implementing the objective of the learning process. Due to the un-scalability of the
developed reward of the traditional RL, and the immediate impact that is needed of RL
action in some complex environments such as modern power networks, intrinsic
motivation methods have been introduced in [129], so that the reward is produced by the
RL agent independent of state transition. The curiosity meaning of RL is the prediction
error of state transition. Furthermore, actions that provide higher intrinsic reward reduce
curiosity [130].

7. Conclusions and Recommendations

This paper has presented a comprehensive review of historic and state-of-the-art control
strategies for distributed energy storage systems in microgrids, smart grids, and intelligent
power distribution networks. The importance of ESSs in providing balancing services and to
help buffer against intermittent renewable supply is well agreed upon; therefore, it is
imperative that research related to their control and management is up to date and succinctly
summarized. This paper has set out to provide such a review. 130 research works in the area
have been dissected, and a distinctive summary has been presented for each control strategy
to highlight the major strengths and weaknesses related to design, implementation, and
service provision. Highlights are summarized in the following paragraphs.

Droop control is the traditional strategy of the primary decentralized control for similar
or heterogeneous ESSs in microgrid networks. On the other hand, application of droop
control without adaptation or consideration of SOC cannot simultaneously provide full
voltage balance and load sharing services. Fuzzy logic is one such adaptation to overcome
SOC overloading and instability of both voltage and frequency, while virtual impedance
can be deployed as a solution to unbalanced reactive power when there is a mismatch of
transmission lines impedances. Centralized strategies implement direct control of ESSs and
enable individual monitoring and trimming. The secondary control corrects or supervises
primary control, in addition to its participation in regulating load sharing and balancing
SOC. Rule-based control and EMPC seem the most successful applications, with the main
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objective of optimizing ESSs power flow on an hourly or sub-hourly basis. The strength of
EMPC over rule-based control lies in the consideration of a time varied electricity tariff to
potentially yield an economic profit. The main objective of Tertiary centralized control is to
provide optimal voltage reference. Furthermore, it helps to solve the OPF problem.
Solutions for OPF differ depending on the ESS category. Aggregated solutions manage
power flow with a consideration of ESSs as single capacity, while ideal real solutions
consider real power management between the distributed ESSs. The different
approximations affect OPF solutions, whether they are convex or non-convex.

The introduction of a central controller to many small and distributed ESSs in a
microgrid network comes with many challenges. Each of the distributed ESSs is obliged
to be controlled individually and precisely by a central controller. Therefore, expanding
the infrastructure and providing provision for real-time communications is mandatory.
In turn, communication disturbances can be introduced, in addition to privacy and
security concerns. This encourages the decentralized control that is based merely on local
information, which is with the imprecision of achieving the obliged balance and
performance. These fundamental challenges and complications have paved the path
towards multiagent control, in which a cooperative balance can be achieved by ESSs based
on neighbor-to-neighbor local information exchange only. Secondary multiagent
strategies ensure autonomous operation of distributed ESS through multiagent
information sharing of SOC, output voltage, and load current. Tertiary cooperative
multiagent strategies are classified depending on communication architecture and include
hierarchical tertiary, which is accomplished via a direct multiagent communication
between central controller and storage agents. Meanwhile, topology-based multiagent
reflects the underlying power network topology with no requirement of a central
controller. The topology-free multiagent on the other hand does not reflect power network
topology, and control can be achieved if at least a bidirectional communication with the
neighboring ESS is available. Competitive tertiary strategies differ from cooperative
strategies and are required in competitive situations (such as one featuring an
independent seller of energy), and consideration of microgrid and/or agent profit cannot
be neglected. Furthermore, cooperative, and competitive strategies can be combined for
more flexible solutions.

As mentioned previously, multiagent control is the gateway from autonomy to
intelligence, and reinforcement learning is one of the shortest paths to reach it, through its
application to power management and control. It is considered a powerful tool for
scheduling and managing power in complicated power systems. The E-greedy policy is
based on giving as much reward as possible to achieve a high reward action, while Q-
learning is a model-free learning method that is largely based on reinforcement learning
and has wide applications of power management in a microgrid. Despite that, it can still
lack robustness, and is limited in its data for some policies. Therefore, more efficient batch
reinforcement techniques have been introduced, and combined deep/batch reinforcement
learning has also been applied for more accurate estimation and prediction. A further
combination of RL architecture is the actor-critic, which consists of two deep Q-learning
networks with the aim of maximizing the total reward.

Despite the intelligence of traditional reinforcement learning techniques, they prove
insufficient in some complicated applications of managing power; therefore, further RL-
based techniques are still emerging. Synchronous and asynchronous techniques are
solving the instability of Q-learning in some complicated applications. Meanwhile,
multiagent reinforcement strategies are mandatory (e.g., when a single RL network is
insufficient), which is much applied to power management in a microgrid. Transfer RL is
a principle in which knowledge for solving a problem is transferred from one domain to
another domain; this is different to a priority technique, which samples past experiences
to implement learning objectives. The extrinsic motivation of the agent is elected by
traditional RL, but some complex environments, such as modern power networks, require
the immediate impact of RL action. Therefore, intrinsic motivations methods were



Energies 2021, 14, 7234

40 of 46

developed to provide the solution. Such emerging techniques have been applied to solve
more complicated applications of power distribution management, or to follow the
envisioned future trend of decentralization and autonomy in the design of power
distribution systems; however, research is still in the early stages. The principal finding of
this comprehensive review is that research gaps related to emerging decentralized
intelligent strategies based on RL, and their applications to renewable energy control,
management, and optimization in the context of microgrid energy storage mechanism
remain. This review has provided a clear taxonomy and description of each control
strategy, its methodology, applications, and the major strengths/weaknesses. This in turn
fosters clarity of understanding of the topic by the reader, providing insight as to the
nature of these research gaps and indicating how knowledge in this field may be extended
effectively by future scholarly works.
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Nomenclature

SOC State of charge

ESS/ESSs Energy storage system, systems

FIS Fuzzy inference system.

MPC Module predictive control

EMS Energy system management

DG Distributed Generation

BESS/BESSs Battery energy storage system, systems
OPF Optimum power flow

DOPF Dynamic optimal power flow

RL Reinforcement learning

EV/EVs Electric vehicle, vehicles

SEMS Superconducting magnetic energy storage
HPFD High pass filter-based droop

VCD Virtual capacitance droop

SC Super capacitor

PCC Point of common coupling

THD Total harmonic distortion

SLB Sensitive load bus

MSOGI-FLL Multiple-second order generalized integers and frequency locked loop
RBC Rule-based control

EMPC Economic module predictive control

EMS Energy management system

EMU Energy management unit

GCC Global central controller

ucC Unity commitment

ED Economic dispatch

MINLP Mixed integer nonlinear formulation problem
MILP Mixer integer linear programming

SuC

Stochastic unit commitment
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SHOPF
HESS
PV
MGCC
SMG
PLA
DDS
RTPS
TPM
MACA
V2G
OEM
DDPG
A3C
A2C
MARLA
DP
TRPO
PWM
PEM
NDO
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Tariff
UCE
MMC
MMC-ESS
X/R
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Shrinking horizon optimal power flow
Hybrid energy storage system

Photovoltaic

Microgrid global central controller

Smart Microgrid

Power Link

Data distribution service

Real time publish subscribe.

Transition probability matrix
Mobility-aware control algorithm

Vehicle to grid

Optimal energy management

Deep deterministic policy gradient
Asynchronous advantage actor-critic
Synchronous actor-critic version
Multiagent reinforcement learning
Dynamic programming

Trust-Region Policy Optimization

Pulse width modulation

Polymer Electrolyte membrane

Nonlinear disturbance observer

Fuel cell

How energy provider charges consumers for using energy
Unit control error

Modular multi-level converter

Modular multi-level converter energy storage system
Reactance to resistance ratio

Artificial Intelligence

Active power droop coefficient

Reactive power coefficient

First and second inverter virtual impedances
First and second line impedances
Discharge/Charge droop coefficients
Exponential of the computed SOC
Discharge/Charge Droop control action
Fuzzy logic droop control virtual resistance
Fuzzy droop control correction

Battery and SMES droop coefficients
Critical-up frequency

Critical-low frequency

Deviation resistance

Voltage in dg frame

Total harmonic compensation signal
Modified total harmonic compensation signal
Battery rated capacity

Charge/Discharge efficiency

Power flow of the distributed ESS at time K
Charge, discharge power at time K
Microgrid reference voltage

Voltage control action

Energy control action
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Si(t) SOC at of agent i at time ¢
A; (D) Average neighbors” agents SOC of agent
i Participation current of agent i per unit energy storage
gumaex Maximum current of agent i per unit energy storage
a;j Communication weight from node j to node i.
yit (k) Power supplied by the main grid at time K
y; (k) Power injected to the main grid at time K
s Rule or policy
V™ (y) Value of state y
r(m(x)) The immediate reward
Q(x,a) Value function (degree of goodness of taking an action a)
a Action
CPLs Constant power loads
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