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Abstract: Hybrid systems have gained significant attention among researchers and scientists world-
wide due to their ability to integrate solar cells and supercapacitors. Subsequently, this has led to
rising demands for green energy, miniaturization and mini-electronic wearable devices. These hybrid
devices will lead to sustainable energy becoming viable and fossil-fuel-based sources of energy
gradually being replaced. A solar photovoltaic (SPV) system is an electronic device that mainly
functions to convert photon energy to electrical energy using a solar power source. It has been
widely used in developed countries given that they have advanced photovoltaic (PV) technology
that reduces dependence on fossil fuels for energy generation. Furthermore, a supercapacitor is an
alternative solution for replacing heavy batteries and it is a system with a prominent high power
density and a long life cycle. Its unique properties of high capacitance with low voltage limits lead
to this highly in-demand material being incorporated into goods and services that are produced by
the electrical and electronics industries. It is another option for grid-based power or large batteries.
Since supercapacitors have the ability to store huge amounts of energy, they allow for a novel system
that integrates supercapacitors with solar cells in which energy generation and energy storage are
combined into one system. This paper explores the common materials that are used for solar cells
and supercapacitors, the working mechanisms, the effectiveness of the integrated device and the
technical challenges that are encountered when refining this device. Hence, this review serves as
a guide for choosing the right materials and methods in order to produce an integrated PV solar
cell–energy storage device for various applications.

Keywords: PV solar cell; supercapacitor; energy storage; integrated device; power conversion
efficiency; levelized cost of energy (LCOE)

1. Introduction

The conventional supercapacitor-charging method using photovoltaic (PV) was origi-
nally designed using a solar cell and supercapacitor to operate as two independent units
that are connected by wires. Despite being able to simultaneously generate and store en-
ergy, the system faces some technical challenges, such as being bulky, inflexible, expensive
and, in particular, it loses energy through the external wires connecting the two units [1].
Such disadvantages can be overcome by integrating the supercapacitor and PV cell into
one device so that it is compact, flexible, modular and minimizes energy loss, as no wires
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are required to connect the two units. This invention is in line with the current smart
technology that allows for volume minimization, practicality and flexibility such that it
can operate in various industries, such as small-scale and large-scale consumer electronics,
electric vehicles, smart grids and wearable sensors [2–4]. Previously, batteries were used to
integrate PV cells, but due to some inadequacies, such as slow charge/discharge capability
and short life cycles, supercapacitors are preferred for integration with PV cells. This is
attributed to its rapid charging/discharging ability since, first, there is no chemical reaction
required, and second, the energy density is reported to be about ten times higher than
batteries with the same weight [4,5]. Figure 1 depicts a comparison between batteries,
capacitors, supercapacitors and other energy storage devices in terms of specific energy,
specific power and the charge/discharge time.
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Figure 1. Ragone plot of the properties of various power sources.

Since the concept of PV cell–supercapacitor integration was introduced in the year
2004, it has sparked interest in many researchers to carry out experimental and simulation
work on the fabrication of this device and assess its performance. For instance, a study
by [5] integrated hydrogenated amorphous silicon (a-Si/H) solar cells, NiCo2O4 battery
supercapacitor hybrids (BSHs) and f light emission diodes (LEDs) into one system. The
whole system could work independently with an overall efficiency of 8.1% and the storage
efficiency reached 74.24%. These values indicated that the self-driven integrated system
was stable for PV conversion and had efficient energy storage. The fundamentals of
supercapacitors and solar cells need to be analyzed accordingly before they are integrated
into one system in order to achieve high efficiency. Figure 2 below shows the schematic
diagram of the integrated device.

A supercapacitor’s performance highly depends on the electrode materials that are
used. Hence, investigation on the electrode materials for supercapacitors has been a very
important topic in this research area. As technology changes, which it currently does at a
rapid rate, consumers greatly rely on energy technology to cater to their electrical/electronic
needs. Solar energy is a renewable energy resource and can be harnessed from all parts of
the world where the relevant technology is viable. Solar energy is obtained by converting
sunlight into electrical energy and it can serve industrial and domestic purposes. An energy
storage system is needed to store this electrical energy in order to avoid energy loss during
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its operation and the supercapacitor comes in handy due to its fast charging/discharging
properties alongside its long life cycle. When compared to batteries as energy storage
systems, supercapacitors possess higher energy conversion with a low equivalent series
resistance; these values have made supercapacitors a very suitable device for energy storage
applications for solar cell panels [7].

Energies 2021, 14, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 2. The schematic diagram of (A) planar/monolithic three-electrode system and (B) coaxial 
fiber parallel system. Reprinted from [6]. 

A supercapacitor’s performance highly depends on the electrode materials that are 
used. Hence, investigation on the electrode materials for supercapacitors has been a very 
important topic in this research area. As technology changes, which it currently does at a 
rapid rate, consumers greatly rely on energy technology to cater to their electrical/elec-
tronic needs. Solar energy is a renewable energy resource and can be harnessed from all 
parts of the world where the relevant technology is viable. Solar energy is obtained by 
converting sunlight into electrical energy and it can serve industrial and domestic pur-
poses. An energy storage system is needed to store this electrical energy in order to avoid 
energy loss during its operation and the supercapacitor comes in handy due to its fast 
charging/discharging properties alongside its long life cycle. When compared to batteries 
as energy storage systems, supercapacitors possess higher energy conversion with a low 
equivalent series resistance; these values have made supercapacitors a very suitable de-
vice for energy storage applications for solar cell panels [7]. 

Adding the energy storage part will increase the thickness of the cell. However, it is 
still more preferable than combining the two units separately because of the overall com-
pactness and reducing the whole system’s volume. It was established that external con-
nection was often associated with elevated resistances [8], rigid/heavy devices [9] and 
having a complicated manufacturing process [10]. It is worth noting that the main chal-
lenge of developing supercapacitors is increasing their energy and power densities with-
out compromising their long life cycle and fast charging/discharging properties [10,11]. 
Consequently, the integration of these devices is feasible and could enhance their perfor-
mance. Table 1 below highlights the overall efficiency and storage efficiency of the PV–
storage system integrated devices that were discussed in previous studies. Research on 

Figure 2. The schematic diagram of (A) planar/monolithic three-electrode system and (B) coaxial
fiber parallel system. Reprinted from [6].

Adding the energy storage part will increase the thickness of the cell. However, it
is still more preferable than combining the two units separately because of the overall
compactness and reducing the whole system’s volume. It was established that external
connection was often associated with elevated resistances [8], rigid/heavy devices [9] and
having a complicated manufacturing process [10]. It is worth noting that the main chal-
lenge of developing supercapacitors is increasing their energy and power densities without
compromising their long life cycle and fast charging/discharging properties [10,11]. Con-
sequently, the integration of these devices is feasible and could enhance their performance.
Table 1 below highlights the overall efficiency and storage efficiency of the PV–storage sys-
tem integrated devices that were discussed in previous studies. Research on the integrated
device from various materials and integration techniques reported storage efficiencies
ranging from 20 to 80% and an overall efficiency of up to 8%.
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Table 1. The storage and overall efficiencies of integrated devices that were documented in prior studies.

Energy Storage Device Storage Efficiency (%) Overall Efficiency (%) Refs.

Ruthenium(IV) Oxide (RuO2)//RuO2 Supercapacitors (SCs) 26.67 0.8 [12]
Titanium@Titanium dioxide//Carbon nanotube (Ti@TiO2//CNT) SCs 75.7 1.2 [13]

Ti@TiO2//Multiwalled carbon nanotube (MWCNT) SCs 65.6 0.82 [14]
Carbon//carbon SCs 46.77 2.9 [15]

Poly(3,4-ethylenedioxythiophene (PEDOT)//carbon SCs 73.78 4.7 [16]
Carbon//carbon SCs 79.78 7.1 [17]

NiCo2O4//active carbon SCs 74.24 8.1 [5]

Storage efficiency is defined as the percentage of maximum energy that is used from a
total energy capacity and it can be calculated based on Equation (1):

Storage efficiency (%) =
maximum used energy

total energy capacity
× 100 (1)

Meanwhile, the overall efficiency (ηss) of an integrated device can be calculated based
on Equation (2) when both efficiencies of the solar cell and energy storage device are
provided:

ηss = ηscηs (2)

where ηsc is the solar cell efficiency and ηs denotes the energy storage efficiency. Apart
from that, the overall or total efficiency of the integrated device can be calculated using
Equation (3):

ηt = Eoutput/Einput = EsS1/(PinputtS2) (3)

where ηt is the total energy storage of the integrated device, Eoutput denotes the energy
output of the supercapacitor, Einput refers to the total incident light energy, S1 represents
the surface area of the supercapacitor, Pinput is the illuminated light density, t signifies the
photocharging time and S2 is the active area of the hybrid solar cell. What was observed
is a huge improvement in the efficiency of the devices ranging from 10% to 80% for the
storage efficiency and 1 to 11% for the overall efficiency.

It cannot be denied that smart technology is growing at a huge rate due to the rapidly
changing nature and high demands of the electronics industry. Since they require great
flexibility and portability of energy storage components, many researchers now want
to create flexible devices that are aimed toward various applications. For instance, a
high-performance hybrid supercapacitor was fabricated using 3D dendritic cell-like nanos-
tructures with Ni-Co layered double hydroxide (LDH) used as the cathode, while the anode
was a crumpled leaf-like reduced graphene oxide. The supercapacitor was integrated with
a solar cell that harvested the energy and the working potential window obtained from the
study was ~1.4–1.8 V. Meanwhile, the power and energy densities of the device at a current
density of 0.5 A/g were ~374 W/kg and ~58.4 Wh/kg, respectively. This finding strongly
suggested that high energy and power density were achievable when combining these two
devices asymmetrically [18]. The supercapacitor demonstrated a superior performance
since the coulombic efficiency was approximately 100% [19].

Based on the reviewed studies on this topic, it can be observed that solar cells absorb
solar energy and subsequently convert it to electrical energy by using a supercapacitor
as the energy transport system. Choosing appropriate active materials for the fabrication
of the integrated device is crucial to maximizing the conversion efficiency. In particular,
the other parameters that should be paid serious attention are the counter electrodes,
conducting polymers, photoactive metal oxides and redox electrolytes given that these
materials contribute to high energy conversion efficiency and would subsequently enhance
the performance and shelf life of a PV cell integrated supercapacitor. Since the integrated
device showed promising results in terms of its efficiencies and flexibility, this sparked
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great interest amongst researchers worldwide to conduct further analyses when developing
solar-cell-integrated supercapacitors with improved properties.

Since improvements in the properties of PV cells and supercapacitors are widely
studied and researched, integration of these two components is a novel technique to further
enhance the device, particularly in terms of its conversion efficiency and storage capacity.
Considering the advantages and disadvantages of PV cells and supercapacitors, these two
entities are suitable for integration in order to complement the properties of the energy
harvesting and storage system. The integrated device should be designed in such a way
that the architecture is practically feasible as an energy generator and storage system [20].
With this in mind, this paper reviews the integration of the relevant materials and the
challenges that need to be tackled while working on the fabrication of this device to provide
a new technology that is also cost-effective. The research gaps are addressed and future
research suggestions are made.

2. Solar Cells
2.1. Materials for Solar Cells

Photovoltaic technology has evolved over the past few decades to address the chal-
lenges of converting solar energy to electricity. The main parameter to be considered
for the installation of a PV cell in any device is its conversion efficiency. It is well noted
that not all sunlight that reaches the PV panel will be converted into electricity. Hence,
some of the parameters of a PV panel, such as the wavelength, recombination of electrons,
temperature and light reflection, are crucial for the best possible conversion efficiency [21].
By considering all these parameters, the PV panel would be able to optimally convert solar
energy into usable electricity for a wide range of applications. The power that is harvested
from PV cells differs according to the region because the variation in solar insolation and
seasons during a given year would greatly affect its performance [22]. To date, a wide
variety of solar cells with different characteristics have been fabricated, namely, organic
solar cells, perovskite solar cells (PSCs), dye-sensitized solar cells (DSSCs), Cu (In, Ga) Se2
(CIGS) solar cells, etc. [7,22,23].

Recently, dye-sensitized solar cells (DSSCs) have been receiving attention, mainly due
to their flexibility and cost-effectiveness. A previous study fabricated a flexible printable
DSSC/supercapacitor integrated energy device that is flexible, lightweight and portable
such that it can be used for a wide range of applications. It possesses a high voltage capacity
that could go up to 1.8 V and is environmentally friendly. Outdoor testing was carried
out with extreme mechanical loading to test its stability. The results demonstrated that the
device achieved stable performance throughout the test [23]. Another researcher developed
a flexible supercapacitor by doping graphene onto activated carbon. The supercapacitor
that performed as an energy storage system was integrated with DSSC to power an LED.
The highest capacitance was obtained by the supercapacitor doped with 0.05 wt.% graphene
with a charge/discharge efficiency of 85.29%. A bending test was conducted to analyze
any variation in capacitance. The results showed that the capacitance was maintained
throughout the test [7].

Meanwhile, Xu and co-workers integrated an MAPbI3-based perovskite solar cell
(PSC) and a PPy-based supercapacitor as an energy pack [14]. The voltage of the su-
percapacitor was set at 0.6 V and the system produced a high output voltage of 1.45 V
and an overall output efficiency of 20%. This system provided a continuous output of
electric power by using the MAPbI3-based solar cells as an energy source. Another PSC-
integrated device was developed by [24]. A semitransparent PSC was integrated with
an electrochromic WO3 supercapacitor in a vertically stacked configuration. The power
conversion efficiency that was achieved by the PV part was 8.25% and the energy density
was 35.9 mW/h. The average power density and areal capacitance were 461.5 mW/m2

and 459.6 F/m2, respectively.
One of the established solar cell devices is made of crystalline silicon, which is still

dominating the commercial PV modules in the industry despite its heavy weight, inflexibil-
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ity and high production cost. Prior research by [25] integrated a commercial polycrystalline
silicon device with a supercapacitor, which resulted in an 84% coulombic efficiency. The
design demonstrated that the polycrystalline silicon solar cell was capable of charging the
supercapacitor under an external load and that a constant current load could be maintained
through periods of intermittent illumination, indicating the feasibility of the integration
concept. Another type of solar cell that is widely used these days is an organic solar cell
(OSC). OSCs have potentially low costs and are suitable for omnipresent distribution. Re-
search by [26] integrated OSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C60-butyric
acid methyl ester with Al electrodes and supercapacitors based on graphene ink. The mate-
rials were grown on a single substrate using graphene as a common platform. The achieved
power conversion efficiency (PCE) was approximately 1.6%, while the Voc was 5 V. The
OSC-integrated supercapacitor managed to yield an overall system voltage of up to 4 V.

2.2. Performance of Solar Cells

There are four basic parameters that are used to evaluate the performance of solar
cells, namely, the short-circuit current (ISC), open-circuit voltage (VOC), fill factor (FF) and
PCE. The maximum power point (PMPP) of a solar cell is the point where the solar cell
should be operated to obtain the maximum power output, as shown in Figure 3.
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It is essential to work on reducing the solar power cost; this can be done by improving
the PCE of solar cells [28,29]. Data from past research showed that single-junction solar cells
reached the theoretical limit of PCE and it is quite difficult to be improved further. Therefore,
researchers came up with the method of stacking two or more solar cells occupying different
band gaps (Eg) and optimized the wavelength absorption range. The findings showed
that the theoretical PCE could surpass 50% depending on the number of cells that were
stacked [30]. Previous work reported the PCE value to be approximately 40% by developing
III-V multi-junction cells. However, the limitation for the use of III-V semiconductor-based
tandem devices is due to its high production and material costs, which makes it applicable
to only spacecraft and satellites at present [31]. The PCE is the most important parameter
for solar cells, other than its efficient preparation technologies and flexible structures.
Table 2 summarizes the power conversion efficiency of the various types of solar cells from
previous studies.
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Table 2. Power conversion efficiencies of various types of solar cells.

Material Power Conversion Efficiency (%) Reference

Perovskite/Cu (In, Ga) Se2 (CIGS) 28 [32]
Organic–inorganic perovskite

formamidinium tin iodide 19.08 [33,34]

Ternary polymer solar cell 15.5 [35]
Triboelectric nanogenerator/silicon
(TENG/Si) tandem hybrid solar cell 22.4 [36]

Gallium arsenide solar cell 30.6 [37]
Silicon heterojunction solar cells 26 [27]

Piezo-phototronic multijunction solar cells 33 [38]
Lead iodide perovskite-based solar cells 25 [39]

The fabrication of various types of solar cells and the combination of materials showed
a significant improvement in their power conversion efficiencies as the technology is
advancing and demand from industries keeps increasing. This simultaneously allows
researchers to come out with notable techniques and technology to fill the gap for each
problem that is faced when building solar cells. To date, substantial growth has been
achieved in the development of various types of flexible solar cells, where researchers
managed to increase their conversion efficiencies due to technological advancements that
are crucial for the development of solar cell integrated devices.

3. Supercapacitor as the Energy Storage Component for an Integrated Device

Supercapacitors are mainly classified into three types, which are electric double-layer
capacitors (EDLCs), pseudocapacitors and hybrid capacitors. EDLCs operate by storing
the charge at the surface electrode through reversible ion absorption/desorption to form
an electrical double-layer capacitance [40]. It was noted that an EDLC can be used as a
substitute for rechargeable batteries owing to its capability of fast charging/discharging,
especially for a device that necessitates rapid energy harvesting. A pseudocapacitor, on
the other hand, operates using fast and reversible redox reactions on or near the electrode
surface. The charge passes across the double layer and results in a faradaic current passing
through the supercapacitor cell, which is termed pseudocapacitance [41]. Meanwhile,
a hybrid capacitor is a combination of a porous carbon electrode and another material,
such as a conducting polymer, metal oxides or metal-doped carbons, which are used to
enhance the performance of EDLCs and pseudocapacitors [42]. Table 3 summarizes the
performance evaluation of different types of supercapacitors. The main challenge regarding
supercapacitors is to increase the energy densities while maintaining their long life cycle,
high power density and fast charging/discharging. The commercialization of energy
storage devices based on hybrid supercapacitors has been a viable option to manufacturers,
which highlights the importance of these new materials for a wide range of applications.

Table 3. Performance parameters for different types of supercapacitors.

Types Operating
Voltage (V)

Energy Density
(Wh/kg)

Power Density
(W/kg) Refs.

Electric double-layer
capacitor Up to 3.5 ~3–5 ~900–10,000 [40]

Pseudocapacitor Up to 2.3 ~1–10 ~500–5000 [43]
Hybrid capacitor ~3.8–19 ~8–80 ~200–1500 [44]

Materials for Supercapacitor Electrodes

Carbon materials, such as carbon nanotubes (CNT), graphenes and MXenes, have been
widely utilized as supercapacitor electrodes due to their high specific area and outstanding
conductivity. Generally, CNTs possess a tensile strength of 100–200 GPa [45], electrical
conductivity of ~107 S/m and thermal conductivity of ∼2000 W/m·K [46]. A past study
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by [47] fabricated an all-solid-state integrated device from free-standing and aligned carbon
nanotube films. The integrated device exhibited an overall photoelectric conversion and
storage efficiency of approximately 5.12% owing to its aligned structure and outstanding
electronic property of the film electrode. In addition, the device’s flexibility makes it suitable
for a wide range of applications, especially in portable electronic equipment. Another
promising finding was obtained by [48] after integrating a DSSC with a supercapacitor
by using a CNT film as the common electrode. The authors reported a PCE of 6.1%,
a specific capacitance of 48 F/g and a storage efficiency of about 84%. The device is
lightweight, flexible and the overall photoelectric conversion and storage efficiencies that
were achieved were about 5.12%. Graphene, on the other hand, is synthesized using
various methods, such as mechanical exfoliation, chemical exfoliation [49], chemical vapor
deposition [50], chemical synthesis [51] and microwave synthesis [52]. Due to its high
specific surface area, graphene is found to be more efficient at storing electrostatic charges,
thus making it suitable for use in supercapacitor electrodes [53,54]. Even though graphene
is considered a new and emerging material, extensive research has been carried out to
incorporate graphene into the solar cell–energy storage integrated system. Recently, a DSSC
employing a compact and mesoporous titania (TiO2) film as the anode was integrated with
a symmetrical supercapacitor utilizing polypyrrole/reduced graphene oxide (PPy/rGO)
electrodes as the counter electrode. The specific capacitance of the supercapacitor was
308.1 F/g and the PCE of the DSSC was reported to be 2.4%. The integrated device exhibited
a specific capacitance of 124.7 F/g, and a retention percentage of 70.9% was obtained after
50 consecutive charge/discharge cycles [55]. Meanwhile, a new emerging material, namely,
MXene, has been extensively studied owing to its tremendous potential for supercapacitor
electrodes [56,57]. For instance, prior work by [58] integrated a flexible organic photovoltaic
with Ti3C2Tx MXene as the electrode and organic ionogel as the electrolyte. The authors
obtained a high power conversion efficiency of 13.6% and a high volumetric capacitance
of 502 F/cm3. This simple fabrication method achieved a remarkable storage efficiency of
88%. Another related study developed wearable electronics by integrating an MXene/black
phosphorus-based supercapacitor with a solar cell. The detailed schematic diagram of
the integrated system is depicted in Figure 4. The developed MXene/BP-based micro-
supercapacitor showed a high specific capacitance of 896.87 F/cm3 and an excellent rate
performance of 241.2 F/cm3. The system also had long-term cycling stability of 91.74% for
10,000 cycles.
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The data on studies of traditional materials for supercapacitor electrode materials
are widely reported and researchers have come out with more studies on new emerging
materials. A summary of conventional and new materials is listed in Table 4.

Table 4. Traditional and emerging new electrode materials for supercapacitors [47,60–65].

Electrode Material Examples Properties

Nanocarbons CNT, Activated Carbon
(AC), Graphene

Chemical stability, high exohedral surface
area, high electrical conductivity due to

covalent sp2 bonds, high cost

Conducting
polymers

Polypyrrole (Ppy),
Polyaniline (PANI),

Poly(3,4-
ethylenedioxythiophene

(PEDOT)

More versatile, outstanding specific
energies

Metal oxides MnO2, Nb2O5, V2O5
High theoretical capacitance, rapid faraday
redox reaction, high cost, toxicity concern

Metal nitrides Vanadium Nitride (VN),
TiN, Fe2N

Outstanding electrochemical properties,
high chemical stability, standard

technological approach

MXenes Ti3C2Tx
High number of active groups, large
surface area, high chemical reactivity

Metal-organic
frameworks Cu-catecholate (Cu-CAT)

Large surface area, three-dimensional
porous architecture, permeability to foreign

entities, structural tailorability

Black phosphorus Large theoretical capacity, high carrier
mobility, low redox potential

Polyoxometalates PMo12, PV2Mo10

High stability of redox states, able to
participate in fast reversible multielectron

transfer reactions

4. Integration of Solar Cells and Supercapacitors

Since solar cells and supercapacitors do complement each other, integrating them is
done with the intention of removing any disadvantages of both components. Doing so
efficiently generates and stores energy with only minimal loss.

4.1. Photo-Assisted Mechanism of a Solar-Cell-Integrated Supercapacitor

A broad range of solar cells, such as perovskite, organic, silicon and dye-sensitized
types, can be integrated with either electrical double-layer capacitors, pseudocapacitors
or even hybrid supercapacitors. The solar cell and supercapacitor must share the same
electrode or substrate in order to be fully integrated and it could be fabricated with two-
electrode, three-electrode and four-electrode modes [66]. The integrated device works
when the PV panel starts to convert the incident light into electrical energy and excites the
electrons to high energy levels. The voltage increases with the presence of light illumination
and starts returning to zero when the cell is not illuminated. The efficiency of a PV cell
is defined as the amount of electrical power that is produced from the cell upon the
absorption of sunlight, which indicates its effectiveness at converting energy from one
form to another [37]. Here, the presence of a supercapacitor on the PV panel acts as an
energy storage device to store the generated power and, therefore, the voltage of the
device will not immediately reach zero but only gradually decrease. Even when light
is not present, the delivered power will not be affected since it is already stored in the
supercapacitor and would provide a more reliable power output during its application.
The power system’s stability is greatly affected by the high fluctuations in the injected
power. Therefore, the energy storage system plays an essential role that alleviates these
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fluctuations and subsequently enhances the system’s power quality [67]. It is worth noting
that the bandgap of a PV semiconductor is very important since it indicates the light’s
wavelength that can be absorbed and converted into electrical energy. Matching band gaps
between PV semiconductors and the light would result in a high conversion efficiency of
the PV cell because it can fully employ the available energy in the system [68].

4.2. Integration Configuration

An integrated device can be fabricated using one of a few electrode configurations,
such as a planar structure (two-electrode mode and three-electrode mode) and a fiber struc-
ture. For a planar structure, the two components are typically connected in series whereby
the solar cell is placed at the top to receive light/illumination while a supercapacitor is
placed at the bottom of the device [69]. Previous research that fabricated a DSSC-integrated
supercapacitor found that the device fabricated with three electrodes resulted in better
efficiency compared to the two-electrode mode. This was due to the problems faced by
the two-electrode mode system when the electrons from the counter electrode had diffi-
culties crossing the TiO2 layer toward the shared electrode and subsequently resulted in
self-discharging of the device [70]. In short, it can be said that the two-electrode system had
a higher resistance, which decreased its efficiency. Meanwhile, a three-electrode structure
contains an extra electrode to separate the DSSC and supercapacitor. This electrode is called
a counter electrode, which functions as a barrier between the solar cell and the supercapac-
itor. In addition, it also serves as a redox electron transfer surface and as charge storage [6].
Another planar structure of a solar-cell-integrated supercapacitor was developed by [16],
where a PEDOT–carbon electrode bridges the supercapacitor and the perovskite solar
cell. This device exhibited a maximum overall efficiency of 4.70% with an energy storage
efficiency of 73.77%. However, even though planar structures have made rapid progress in
the past few years, the rigid connection hinders their applications for portable electronics.

As for the fiber structure, the principle is similar to the planar structure but only differs
in the arrangement of the components and is usually classified as coaxial, parallel-like
and twisted [66]. In contrast with planar structure, the fiber shape is less efficient and
requires complex fabrication but its flexibility and mechanical properties are well-suited for
wearable devices that only require low-power applications [71]. Research by [72] fabricated
a fiber power integrated system by incorporating a DSSC and supercapacitor, where a
stainless steel wire that was coated with polyaniline via anodic deposition was jointly
used as the electrode. The system was lightweight, inexpensive, flexible and resulted in an
overall energy conversion efficiency of up to 2.1%. Similarly, another study [13] fabricated
an all-solid-state fiber-shaped “energy fiber” by integrating a DSSC and an electrochemical
capacitor. The system achieved photoelectric conversion and energy storage efficiencies of
2.73% and 75.7%, respectively. This fiber power integrated system is highly flexible, stable
and lightweight, making it suitable for various portable electronic devices and weaveable
materials.

A prior study by Sonigara and co-workers fabricated a quasi-solid-state DSSC by using
a smart thermoreversible water-based polymer gel (poly(ethylene oxide)–poly(propylene
oxide)–poly(ethylene oxide) (PEO–PPO–PEO)) electrolyte. The system was highly flexible
and possessed self-healing behavior in which its performance recovered close to the initial
level when subjected to bending, shrinking or twisting. For instance, the quasi-solid-state
DSSC was bent at 90◦ for 300 cycles but the results showed that its performance could be
maintained at a level as high as 94% of the initial level. This aqueous DSSC device provides
a new perspective on flexible and wearable solid-state photovoltaic devices [73].

Another type of integration configuration that is being researched is a spring-like
architecture that is essential for practical applications, such as electronic textiles, that require
flexibility and stretchability. The author and co-workers prepared a fiber-shaped polymer
solar cell (PSC) by winding an aligned carbon nanotube sheet onto a spring-like electrode
that was attached to an elastic fiber as the substrate. The PSC exhibited superior flexibility
and stretchability, which makes it feasible to be woven into the desired application of
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PSC textile. The energy conversion efficiencies of the PSC varied by less than 10% after
being bent 1000 times and under stretching at a strain of above 30%. In addition, the PSC
managed to maintain 90% of its initial PCE value after 1000 cycles of bending, which is
greater than what is reported for conventional planar PSCs. However, there is a limitation
in the overall performance of this spring-like PSC, where the major part of the solar cell
was not exposed to sunlight and subsequently reduced its total power output compared to
a conventional structure [74].

4.3. Effectiveness of the Integration

Integrated devices are often associated with having higher volumetric and gravimetric
energy densities in comparison to a solar power system that was built with separate
components. This is due to its more compact structure, less wiring in the system and the
sharing of electrodes [6]. What was also reported is that vehicles that are powered by solar
cells and/or fuel cells successfully minimized the costs in terms of capital outlay, weight and
fuel with the presence of an integrated supercapacitor. Furthermore, Reference [75] revealed
that the concept of harvesting electrical energy from a PV cell for powering wireless sensors
via integration with supercapacitors is a promising concept. The authors reduced the size
of a single PV cell but they could still manage to get an upstream current. Related research
by [76] demonstrated that supercapacitors are ideal for medical applications as well, for
example, when they are used to power wireless sensors for measuring blood pressure.
Other uses are for electrocardiograms and oxygen measurements with the integration of
indoor solar cells as an electricity source. Prior research by [77] developed a power system
design by incorporating organic solar cells and supercapacitors with a maximum voltage
of 1 V. They reported a 43% reduction in internal resistance in comparison with separate
devices that were connected by metal wires.

Integrating a solar cell with a supercapacitor was found to be more promising com-
pared to using secondary batteries since it could eliminate the problem of space constraints,
is easy to handle and was shown to have better efficiency. It is best suited for such applica-
tions that require a short load cycle and high reliability [78]. The most prominent cause of
choosing a supercapacitor over batteries for an integrated device is attributed to its high
power density, which allows it to provide more energy over a short period [79]. Moreover,
batteries are prone to deterioration when there is a high load current for an instantaneous
power delivery that elevates the discharge rate and current, unlike a supercapacitor [80].

Some recent works reported improvement in the PCE for an integrated planar per-
ovskite solar cell and supercapacitor. Xu and co-workers [55] prepared a CH3NH3PbI3-
based solar cell with a polypyrrole-based supercapacitor and evaluated its performance.
The maximum PCE was reported to be 13.6% and the overall storage efficiency was 10% [81].
Another work fabricated an integrated device based on printable perovskite solar cells
and a supercapacitor with a PEDOT–carbon cathode and anode. The system delivered
a maximum efficiency of 4.70% with a high energy storage efficiency of 73.77%. There is
still room to improve the PCE by improving the workability of perovskite solar cells and
PEDOT–carbon electrodes [16]. Meanwhile, Zhao and co-workers vertically integrated a
perovskite solar cell with a MoO3/Au/MoO3 transparent electrode and electrochromic
supercapacitor. They managed to achieve a maximum PCE of 12.54% for the system. The
device provided seamless integration of energy harvesting with a storage device, automatic
and wide color tunability and enhanced photostability of PSCs. Another work designed
PVCS devices for multifunctional smart window applications that are commonly made of
glass [24]. With diversified functions and improvements in integrated solar cell devices,
various systems were developed in several industries to produce a single device that
will eventually replace conventional devices that have restricted performance or only one
application. The integration of solar cells with energy storage parts can also diminish the
fluctuation of light illumination as the power output source in the device [82].
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4.4. Photoelectrochemical Performance of Integrated Device

Photo-powered energy storage devices have made significant progress in recent years
owing to their potential applications in smart electronics and their ease of fabrication. The
devices are built in planar and flexible/fiber structures that possess multi-axial flexibility
and are economically feasible. To date, solar-cell-integrated supercapacitors have shown
outstanding overall efficiency with a wide selection of materials. Table 5 highlights the
photo-electrochemical properties of past research works on integrated devices.

Table 5. Photo-electrochemical properties of solar cell–supercapacitor integrated device.

PV Cell
Storage PV Maximum

Voltage (V) Capacitance Refs.
Electrode Electrolyte

Dye sensitized solar
cell (DSSC)

Ferroelectric membrane
Polyvinylidene fluoride (PVDF) 1M LiPF6 EC:DMC 1:1 (v/v) 0.47 37.62 mC/cm2 [83]

DSSC PVDF/ZnO nanowire array

LiI:I2:guanidinium
thiocyanate:3-

dimethylimidazolium
iodide:TBP in

3-methoxyproionitrile in AcN

−0.9 1.4 mWh/kg, 2.14 C/g [84]

DSSC Poly(3,4-
ethylenedioxypyrrole)/V2O5

1 M LiClO4/PC −1.9 224 F/g [85]

Photoelectrochemical
system KFe[Fe(CN)6] with TiN Na2S2O8 −0.9 77.8 mAh/g [86]

Polymer c-Si solar
cell Li-O2 battery I3

−/I− electrolyte 0.8 47 mWh/cm2 [70]

Organic solar cell Carbon black electrode N-methyl-2-pyrrolidone gel 0.92 130 mF/cm2 [15]

DSSC LiFePO4/CNTs LiPF6 EC:DEC:vinylene
carbonate 3.75 104 mAh/g [87]

Photoelectrochemical
system

Bismuth oxyiodide/ZnO
nanorod array

0.1 M phosphate-buffered
saline with glucose 0.48 155 mW/cm2 [88]

Organic solar cell CNT PVA with 1 M H3PO4 0.6 28 F/g, 17.5 C/g [77]

DSSC PEDOT 0.5 M LiClO4 in
3-methoxypropionitrile 0.71 0.52 F/cm2 [89]

Perovskite solar cell CuOH nanotubes PVA with KOH −0.8 1.15 mWh/cm3 [90]

Organic solar cell Graphene ink/PEDOT:PSS Et4NBF4-PC 2.0 2.5 mF/cm2 [26]

Quantum dot solar
cell Carbon mesh with Cu2S film 0.8 M Na2S, 0.8 M S, 2M KCl 0.6 56.4 µJ [91]

Polymer solar cell Ni yarn with composite 1 M LiPF6 EC:DMC 1:1 (v/v) 2.4 85 mAh [92]

c-Si solar cell Laser-scribed graphene oxide

Ionogel-silica-1-butyl-3-
methylimidazolium bis

(trifluor-omethylsulfonyl)
imide

0.38 4.6 W/cm2, 1 mF/cm2 [93]

Perovskite solar cell WO3 PVA with H3PO 0.61 430.7 F/m2 [24]

DSSC Single-walled
CNT/buckypaper PVA KOH −1.0 95.25 F/g [94]

DSSC Porous Si PEO-EMIBF4 1:3 (w/w) 0.64 0.17 mWh/cm2,
22 mW/cm2 [95]

DSSC MWCNT LiCF3SO3/PC/
poly(methylmethacrylate) 0.5 150 F/g [96]

Thin film LiFePO4/C with Li4Ti5O12 1 M LiPF6 EC:DMC 1:1 (v/v) 2.09 1.6 mAh/cm2 [97]

c-Si solar cell LIB LiCoO2/Li4Ti5O12 1 M LiPF6 EC:PC 1:1 (v/v) 5.4 0.5 mAh/cm2 [98]

Perovskite solar cell Bacterial cellulose/PPy Nanofibers/MWCNTs 1.45 572 mF/cm2 [14]

a-Si solar cell Activated cotton
textiles/graphene PVA with KOH 1.6 55.04 Wh/kg [99]
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4.5. Power Electronics for Integrated Solar Cells and Supercapacitor

From previous studies [6], it is well understood that there is always a mismatch
between solar cells and storage devices, such as supercapacitors. This mismatch between
devices due to the technical factors discussed in past research works is of great concern
in achieving an improved PCE and storage capacities. Although the voltages of both
the solar cell and supercapacitors are comparable, the system efficiency can be improved
by incorporating power electronics components in order to control the charging and
discharging process of the integrated device. Additionally, the possibility of performing
maximum power point tracking (MPPT) is quite common in most solar PV systems in order
to improve the efficiency that is not achieved as expected. Many other techniques are being
explored by researchers and scientists to include the advantages of power electronics in
attaining the targets regarding the effectiveness of integrating solar cell and supercapacitor
devices.

Various types of maximum power point tracking (MPPT) technologies were employed
to extract the maximum power from a PV array as the I-V and P-V characteristics of the PV
array, which change significantly due to variations in insolation and the cell temperature.
The technologies for MPPT focus on improving the accuracy and dynamics of the MPPT
algorithm and/or on improving the efficiency and reliability of the DC-DC converters
that interface PV arrays with a PV-grid-connected inverter [100]. A hybrid PV generation
system not only connects to the grid but also stores its excess PV-generated energy/power
to a battery/supercapacitor bank that can be used to stabilize the PV output energy or
power, respectively. However, a typical PV generation system integrates the discrete
components of PV arrays, energy storage devices, a DC-DC converter, a controller and a
grid-tied inverter externally using copper cables. The authors of [6] discussed combining
PV modules, power electronics and energy storage components in one device. This is
similar to micro-inverters with an MPPT for PV modules [101]. However, they are all
still on a device level. Batteries that are integrated with PV panels suffer from reduced
lifetimes and efficiencies due to increased temperature [102], which can increase the overall
cost of the PV-integrated energy storage system. Nevertheless, the supercapacitor can
operate at a maximum temperature twice that of a Li-ion battery and at a low temperature
of −40 ◦C [103].

4.6. Possible Applications of the Integrated Device

A solar-cell-integrated energy storage system (capacitors/batteries) is also known
as a hybrid solar energy conversion/harvesting storage system [104], photo-rechargeable
energy storage system [105,106] and a solar battery [107]. Due to notable evidence regarding
its efficiency and eminent reliability, this integrated system has been adopted for various
applications, such as low power electronic applications, electrochromic smart windows, self-
driven wearable devices, remotely-powered sensors and remote antenna tracking devices.
One of the notable applications of this integrated system is wearable electronics, which
has significantly shifted consumer electronics by eliminating the necessity to separately
carry the devices. This can be found in clothes, watches, glasses and in the skin (to release
moisturizer to the skin) [108]. The device could be worn without compromising its comfort,
aesthetic or functionality [109]. Wearable electronics in textiles are usually fabricated in a
planar structure in order to provide a large area for solar cell energy collection. Other than
that, an integrated device can also be used to facilitate intensive care for medical patients;
implanted solar-powered wireless sensors are being utilized to monitor the blood pressure
and glucose levels of patients [110,111]. Another medical device that is fabricated using the
integrated system is the sub-dermal near-flexible solar cell infra-red harvester and storage
device for powering medical implants. This device comes in handy as it is very practical
for the patients whereby they are not required to undergo further operations for battery
replacement. This would subsequently reduce surgical costs and lowers the risk of medical
complications [112]. Powering LEDs has also been one of the potential applications of the
device for use in emergency medical kits or toolkits [26]. In addition to wearable sensors
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and medical devices, the integrated system can also be used for electric vehicles whereby
solar power can be stored in the energy storage part in order to ensure the smooth running
operation of the car in the absence of light.

4.7. Challenges in Integrating Solar Cells and Supercapacitors
4.7.1. Compatibility of Materials

It is important to analyze the compatibility of materials prior to fabricating an inte-
grated device since incompatible materials and structures would result in poor conversion
efficiency, storage capacity and diminish the power delivery efficiencies of a PV-integrated
supercapacitor. The appropriate selection of PV cell and supercapacitor materials is re-
quired to reduce electron recombination and increase its conversion efficiency [113]. In
order to ensure the sustainability of the integrated device, both of the components should
also not react with one another during redox reactions.

4.7.2. Solar Energy Generation and Storage Capacity Mismatch

When designing the solar cell and supercapacitor, a critical concern involves avoiding
the mismatch between the two components whereby the storage capacity should be well
fitted with the energy generated from the solar panel [114]. For instance, if the storage
capacity is too large but the PV panel only provides a low amount of electrical energy,
it would lead to under-sizing of the storage part and subsequently result in poor effi-
ciency [115]. A common situation happens particularly during the afternoon; when the
demand is low and solar generation is high, it leads to network overvoltages and increased
network losses. Hence, supercapacitors with fast charge/discharge capability and low
energy density are more suitable for short-term energy storage purposes. This is another
research gap in this field whereby researchers are trying to increase supercapacitors’ energy
density for a more efficient system. It is crucial to carefully optimize the parameter match-
ing between solar cells and the supercapacitor, for instance, choosing a photoelectrode
with good photoelectrocatalysis activity and charge storage ability in order to efficiently
facilitate photocharging [48].

A study by [116] proposed two designs of an energy storage system with PV solar
cells to investigate the effects of mismatch between solar generation and demand profiles.
They found that the PV generation strategy (PVGS) whereby the energy storage system
is charged completely based on the total amount of PV-generated power could provide
technical benefits to the system and is more cost-effective. Another important parameter to
be considered in tackling the mismatch issue is the lifetime matching between the power
conversion (solar cell) and storage system (supercapacitors/batteries). An example is given
where a long-lifetime silicon solar cell is integrated with rechargeable batteries with a short
life cycle, which will result in an under-utilized silicon solar cell since the integrated system
is restricted by the battery part. Therefore, in this case, the silicon solar cell is more suitable
to be integrated with a supercapacitor that possesses a longer life cycle to obtain optimal
use of the system [117]. On the device level, it is important to ensure the high efficiency of
the solar cell while the supercapacitor should be well matched to minimize energy loss by
considering the electrode materials, the size of the energy storage parts and the system’s
stability.

A conversion and control circuit (CC) in a solar cell acts to manage the flow of charge
between the PV and supercapacitor. Previous research inserted a CC into an integrated
device that was built for energy harvesting and storage. The integrated circuit is compatible
with roll-to-roll manufacturing (R2R) and the newly built system was compared with the
conventional integration of PV and supercapacitors whereby the devices were directly
connected [80]. It emerged that the incorporation of a CC managed to increase the energy
that was harvested by the PV and stored in the supercapacitors. In addition, the CC
enhanced the output voltage and simultaneously balance it across the serial connection
of supercapacitors. The overall finding showed that incorporating a CC in the system
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managed to overcome the mismatch problem between a PV cell and a supercapacitor by
more than fivefold. This was achieved by balancing the voltages of the supercapacitors.

4.7.3. Leakage of Liquid Electrolyte

Liquid electrolytes are usually employed in the integrated solar cells and superca-
pacitors to provide a path for the ions to flow but a major concern is the leakages that
might occur during the process, which will affect the device’s functionality. Hence, all-solid
supercapacitors are more desirable to be used in an integrated device to avoid such issues
from occurring, as well as being able to reduce the total cell volume [118]. However, despite
its high mechanical strength, the formulation of the electrolyte is also very important in
order to ensure that it will not compromise its ionic conductivity, and it must have good
compatibility with the supercapacitor electrodes [119]. Another option to solve the problem
is by building a highly capable encapsulation for the liquid electrolyte that would act as a
barrier to leakages and could simultaneously maintain its power density. These techniques
still need more exploration as there is a wide selection of materials for the preparation of
solid electrolytes and electrolyte encapsulation. The aim here would be to dramatically
increase the ionic conductivity of the electrochemical cells and improve the assembly of the
complete integrated device.

4.7.4. Insufficient Data on Long-Term Practical Use of the Integrated Device

The available data from previous research basically focused on the new development
of both solar cells and supercapacitors. The published data for experimental work on the in-
tegrated devices concentrate on the results that were achieved from the integration, namely,
its power conversion efficiency and storage efficiency. However, there is a lack of data on
the feasibility of the devices for long-term applications; this is a concern because some
devices are greatly affected by aging processes and, consequently, this undermines their
overall performance. This is crucial for providing reliable sources in order to completely
replace the existing technology with solar cell integrated supercapacitor devices for various
electrical power-using fields, such as transportation, domestic appliances and medical
technologies. More investigation is needed on the new methods for integrating electrodes
and new materials that can prolong the life of the device. Furthermore, advanced materials
for the development of the device’s outer casing can be explored in order to protect it from
environmental effects during its service.

4.7.5. Levelized Cost of Energy

Technically, it is beyond question that integration would result in enhanced perfor-
mance of the device, especially when the energy generated from the solar cell will be
quickly stored in the supercapacitor and reduce its loss. The supercapacitor integrated into
the solar cell compensates for the intermittent power supply from the solar panel when
energy is not harvested due to partial shading or the absence of light [120]. This technology
is technically viable but at the same time should be cost-effective in the long run. Therefore,
LCOE should be paid great attention as it needs to be less expensive than the current LCOE
given the issues concerning material, operating, maintenance and replacement costs. A
simulation study by [121] showed a decrease in LCOE when integrating a supercapaci-
tor with a DSSC for an energy storage system in the United Arab Emirates from 0.36 to
0.341 USD/kWh. However, there is still limited data on the LCOE for the various types of
materials that are used for integrating these two components. For this reason, researchers
should focus on lowering the LCOE without compromising the system’s performance.

5. Conclusions and Future Outlook

This paper summarizes the concept of integrating a solar cell and a supercapacitor,
the related material properties and some challenges that are faced when ensuring that a
promising device is viable for a broad range of applications. The efficiency of a PV cell is
essential for converting the sunlight to electrical power in order to keep the device func-



Energies 2021, 14, 7211 16 of 20

tioning well and sustaining its energy. In the area of energy storage, adsorption processes
in porous carbon are crucial in order for several technologies to use them. Hence, a sound
understanding of ion desorption and a charge storage mechanism for supercapacitors is
essential if researchers are to ensure that the energy needs can be realized via new technol-
ogy and applications. Since this integration concept has enhanced the overall performance
of the device, it is vital for researchers to carry out a feasibility study on the practicability
of this device, especially for long-term usage in various fields. The analysis of the LCOE
has proven to be indispensable because inventors and consumers will not only focus on
the efficiency of the device but also on cost-effectiveness, which is of equal importance.
In addition, the device’s durability is important and must be analyzed. It is well known
that aging will lead to some defects in any materials, especially when it is exposed to the
outdoor environment. Aging tests must be carried out in order to differentiate the lifespan
of this device in relation to a common solar panel, which usually lasts for 25–30 years.
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