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Abstract: This work presents an active thermal management system (TMS) for building a safer
module of lithium-ion capacitor (LiC) technology, in which 10 LiCs are connected in series. The
proposed TMS is a forced air-cooled TMS (ACTMS) that uses four axial DC 12 V fans: two fans are
responsible for blowing the air from the environment into the container while two other fans suck the
air from the container to the environment. An experimental investigation is conducted to study the
thermal behavior of the module, and numerical simulations are carried out to be validated against
the experiments. The main aim of the model development is the optimization of the proposed design.
Therefore, the ACTMS has been optimized by investigating the impact of inlet air velocity, inlet
and outlet positions, module rotation by 90◦ towards the airflow direction, gap spacing between
neighboring cells, and uneven gap spacing between neighboring cells. The 3D thermal model is
accurate, so the validation error between the simulation and experimental results is less than 1%.
It is proven that the ACTMS is an excellent solution to keep the temperature of the LiC module
in the desired range by air inlet velocity of 3 m/s when all the fans are blowing the air from both
sides, the outlet is designed on top of the module, the module is rotated, and uneven gap space
between neighboring cells is set to 2 mm for the first distance between the cells (d1) and 3 mm for the
second distance (d2).

Keywords: 3D thermal model; lithium-ion capacitor; air cooling system; high-power; electric vehicles

1. Introduction

The electric vehicle (EV) market is overgrowing due to the possibility to reduce
emissions by removing the dependence of the automotive sector on traditional energy
sources [1]. The main part of EVs is electrical energy storage systems (EESS) such as lithium-
ion batteries (LiBs) or electric double-layer capacitors (EDLCs) [2]. LiBs feature high energy
density while suffering from low power density [3]. EDLCs are perfect solutions for high
power demands due to high power densities and long lifetimes. However, the drawback
of limited energy density has restricted their usage for vehicular application [4]. In such
respect, a hybrid EESS has emerged that combines the advantages of LiBs with EDLCs.
Lithium-ion capacitor (LiC) is a promising technology that uses anode of LiBs and cathode
of EDLCs [5]. Despite the high energy and power density, as well as long cycle life, LiCs’
performance strongly depends on the working temperature, especially under peak power
demands [6]. Therefore, a robust thermal management system (TMS) is inevitable to extend
the lifetime of LiCs while ensuring safety [7].

In general, two types of TMS are utilized to cool down the EESS such as active and
passive [8,9]. Passive counts for heat sink [10], heat pipe [11], and phase change materials
(PCMs) [12] while active cooling counts for forced air-cooled systems and liquid cooling
techniques [13,14]. PCM is a material with the high latent heat of fusion capable of storing
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high amounts of heat by absorbing the heat loss of the cell [15,16]. However, PCM suffers
from low thermal conductivity [17], which is its primary problem to remove the absorbed
heat efficiently [18]. Therefore, a secondary material is required to enhance PCM’s capability
to reject the absorbed heat to the environment by improving its thermal conductivity.
Such a secondary system can be aluminum mesh [19], copper foam [20], nanofluids [21],
nanomaterials, graphite, or heat pipes [22]. Heat pipes are superconductors with high
thermal conductivity that generally comprise three sections: condenser, evaporator, and
adiabatic [23]. The significant drawbacks of heat pipes are their dependency on gravity [24],
their complex design [25], and low heat removal capability in high power applications.

On the other hand, liquid-based cooling systems have a high thermal capability with
susceptibility to leaks [26,27]. In addition, due to having moving parts, the maintenance
cost of liquid cooling systems is relatively high, which makes them a more costly solution.
Noise is another drawback when high pumping speed is needed [28]. Air-based cooling
systems are noise-free and less complex than liquid cooling, making them a good candidate
when the ambient temperature is not high [29]. Although the heat transfer coefficient of air-
based cooling systems is lower than liquid-based systems [30], air cooling usage is logical
if the system is well structured and the inlet–outlet positions are adequately designed to
remove the excess heat from the system to the environment [31]. A comparative study
between air-based and liquid-based cooling methods is presented by Akbarzadeh et al. [32]
for a 48 V LiB module. Wang et al. [33] optimized an air cooling system in which the cooling
efficiency of the proposed system was enhanced using parallel plates. They investigated
the position of the inlet and outlet and found that, in the best case after optimization
of the system, the maximum temperature and temperature difference were reduced by
around 6% and 91%, respectively. Kausthubharam et al. [34] investigated the cooling
performance of an air-based cooling system numerically for a cylindrical LiB module. The
inlet air velocity correlates to the power consumption and temperature of the module
directly. Additionally, they found that the generated heat of the module is proportional
to its discharge potential. Li et al. [35] modeled an air-based cooling system for a LiB
pack and optimized the configuration of the proposed design and the flow velocity. Xu
et al. [36] optimized an air-based cooling system and showed that the system with double-
layer plates diminishes the module’s temperature by 11% while reducing the temperature
uniformity by 31.5%. Karimi et al. [37] designed an air based TMS for a LiC cell in which
the cell’s temperature was reduced by 14% compared to the natural convection case study.

Based on the literature, and to the authors’ knowledge, the only published work in
LiC’s air cooling topology is Soltani et al. [38], in which they investigated an air cooling
system for a LiC module and proved that side cooling system with air velocity of 5 m/s
and gap spacing of 5 mm would be optimum design. Nevertheless, they investigated the
LiC temperature under 100 A that cannot be considered a current power that diminishes
the lifetime of the LiC [39], as it generates low heat loss around 8 W per cell, the maximum
temperature of the cell would be around 40 ◦C, in the worst scenario. Such a temperature
range can be reduced by a simple passive cooling system, which does not need any active
cooling system with moving parts and maintenance costs. The present work aims to work
with LiC technology under harsh conditions where very high power loads are applied to
the module. The driving profile of this work is 150 A continuous current rate without any
pause that generates more than double heat loss that was generated from the same LiC in
the work of Soltani et al. [38]. Therefore, the novelty of this work lies in designing a forced
air-cooled TMS (ACTMS) with four axial DC fans capable of cooling the LiC technology
under very high power demand. Without a robust TMS, the operation of the LiC will be
limited to below 500 s and will jeopardize its life span.

Moreover, a precise model is required to model the thermal behavior of the mod-
ule [40]. Therefore, an accurate 3D thermal model is designed at the module level thanks to
the COMSOL Multiphysics® software package. In the proposed TMS (ACTMS), two fans
are responsible for blowing the air from the environment into the LiC module container
while two other fans are sucking the air from the container to the environment. Experi-
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mental tests are conducted to study the thermal behavior of the module, and numerical
simulations are carried out to be validated against the experiments. The main aim of the
model development is the optimization of the proposed design. Therefore, the ACTMS has
been optimized by investigating the impact of inlet air velocity, fan position, gap spacing
between neighboring cells, and uneven gap spacing between neighboring cells.

2. Numerical Solution

This paper presents a 3D thermal model to validate and optimize a forced air-cooled
TMS (ACTMS). Computational fluid dynamics (CFD) techniques and codes were performed
to design, analyze, and optimize fluid flow processes/equipment. In this experimental and
numerical study, the 3D numerical simulation analysis has been performed using COMSOL
Multiphysics® software package. The proposed ACTMS is responsible for cooling down
the LiC 2300 F in high-power applications. The characteristics of the target cell are listed
in Table 1.

Table 1. Specifications of the lithium-ion capacitor.

Parameters Value Unit

Capacitance 2300 F
Minimum Voltage 2.2 V
Maximum Voltage 3.8 V

Weight 0.35 kg
Working Temperature −30 to +70 ◦C

Dimensions Figure 1 mm
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2.1. 3D Thermal Model

The 3D thermal model focuses on the ACTMS for a LiC module containing 10 LiC cells
in series, that is charged and discharged under an aggressive current profile. The current
profile continuously charges/discharges the cells in 1400 s without any rest between the
charges and discharges, which is more aggressive than other current profiles with only one
discharge with a high current rate. The 3D representation of the 2300 F LiC cell is shown in
Figure 1. The geometry of the LiC is designed in Autodesk INVENTOR, and then the cell
is extended to a module of 10 cells in series in the next sub-section. Finally, the ACTMS
with the proper inlet and outlets are designed and assembled.

After designing the cell/module, the model is imported into COMSOL Multiphysics
to numerically analyze its thermal behavior using two modules, including heat transfer in
the solids and fluid flow modules. The CFD model has different materials with different
thermal characteristics for the tab, electrode, and container domains. The tab domain
contains negative and positive tabs with copper and aluminum materials, respectively.
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Additionally, the container domain is made of Polyvinyl Chloride (PVC) with very low
thermal conductivity to insulate the module inside. This method is a perfect condition to
check the thermal performance and robustness of the ACTMS for high power applications
where high peak power is requested from the driver in an electric vehicle. As shown in
Table 2 for the thermal conductivity, two directions have the same thermal conductivity,
while x-direction has lower thermal conductivity than y- and z-directions. The reason for
this lies in many single layers in this direction inside the cell [41].

Table 2. Characteristics of different domains of the LiC cell.

Domains Density kg/m3 Thermal Conductivity W/(m.K) Specific Heat J/(kg·K)

Electrode 1627 λy = λz = 5; λx = 0.36 1271
Negative tab 8960 400 385
Positive tab 2700 238 900

2.2. Governing Equations
2.2.1. Heat Generation Model for the LiC

The designed geometry developed in the previous section is used for thermal analysis,
composed of 10 LiC cells in series. Such a module design boosts the voltage from 22 V to
38 V, with the same capacity. The 3D thermal model is solved for the module to investigate
the thermal behavior of the module under natural convection (NC). This method helps to
understand the impact of the designed TMS by comparing its temperature contour with
the NC case. Two heat sources are contributing to generate the power loss of the LiC
are internal and external. The chemical reactions inside the cell are internal, while the
external heat source is mainly in the tab domains. These two heat sources are inserted in
the CFD software to investigate the temperature evolution of the LiC during the 1400 s
current profile.

The main governing equation that should be solved for the heat generation of each
LiC cell under the NC case study is the first law of thermodynamics, that is, the energy
balance equation [42]:

ρCp
dT
dt

=

[
λx

∂2T
∂x2 + λy

∂2T
∂y2 + λz

∂2T
∂z2

]
+

.
q− qconv (1)

where ρ (kg/m3) and Cp (J/kg·K) represent the density and heat capacity of the LiC. Addi-
tionally, T (K), λ (W/m·K), and

.
q (W/m3) denote the temperature, thermal conductivity,

and generated heat of the LiC, respectively.
As explained in detail, the temperature distribution of the LiC is not uniform. There-

fore, the generated heat loss (
.
q) for the heat sources is divided into cell and tab domains [43]:

.
qcell =

.
qirr +

.
qrev = I (U −V)− I T

∂U
∂T

(2)

.
qtab =

R I2

Vtab
(3)

R = ρ′
l
S

(4)

.
qcell ,

.
qtab,

.
qirr, and

.
qrev represent the cell, tab, irreversible, and reversible heat generations,

respectively. Additionally, ρ′ (Ωm), l (m), and S (m2) are the resistivity, length, and the
cross-sectional area, respectively.

The convective heat transfer forms the transferred heat from the cell to the surround-
ing, which is explained as:

qconv = h.S (Tamb − T) (5)
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where h (W/m2), Tamb (K), and T (K) denote the convective heat transfer coefficient, the
ambient temperature, and the LiC temperature, respectively.

2.2.2. Forced Air-Cooled Model

Regarding the governing equations for the heat generation of the cell and the con-
vective heat transfer, the coefficient of convection for the ACTMS is different from the
NC case study. Therefore, the CFD software sets the convective heat transfer coefficient
regarding the air properties, air inlet flow rate, and gap spacing between the cells. In
this regard, the energy conversion equations are combined with the flow conservation
equations. The equations that are considered in the 3D CFD model to calculate the flow
field and temperature distribution of the module are continuity, energy conservation, and
momentum conservation equations for the air-cooled module [44]:

∇.
→
υ = 0 (6)

ρaCa
∂Ta

∂t
+∇.

(
ρaCa

→
υ Ta

)
= ∇.(λa∇Ta) (7)

ρa
d
→
υ

dt
= −∇p + µa∇2→υ (8)

where
→
υ (m/s), ρa (kg/m3), Ca (J/kg·K), λa (W/m.K), µa (kg/m.s), P (Pa), and Ta (K)

denote the inlet air’s velocity, mass density, specific heat, thermal conductivity, dynamic
viscosity, pressure, and temperature, respectively.

The inlet velocity (V) for the main case study is set to 3 m/s, and the gap spacing
between the neighboring cells is considered zero, meaning that the cells are stuck to each
other without any space. In the first step, the inlet Reynolds number should be calculated
to understand whether the flow is laminar or turbulent:

Re =
ρ.Vin.Dh

µ
(9)

The density of the air (ρ) is 1.184 kg/m3, and its dynamic viscosity (µ) is 1.86× 10−5 kg/m.s.
The hydraulic diameter (Dh) of the inlet is 0.12 m for each of the four fans. The flow state,
even for one inlet fan, is turbulent (Re ≈ 22,916). Therefore, k− ε turbulent model should
be considered for the numerical simulations. The turbulent governing equations are
explained as [45]:

∂

∂t
(ρλ) +

∂

∂xj

(
ρλµj

)
=

∂

∂xj

((
µ +

µt

αk

)
∂λ

∂xj

)
+ Gk + Gb − ρε−YM + Sλ (10)

∂

∂t
(ρε) +

∂

∂xj

(
ρεµj

)
=

∂

∂xj

((
µ +

µt

αε

)
∂ε

∂xj

)
+ C1ε

ε

k
(Gk + C3ε + Gb)− ρC2ε

ε2

k
+ Sε (11)

where λ, ε, µj, µ, µt, Gk, Gb, YM, Sλ, Sε, αk, ∂ε, and Ciε represent the turbulent kinetic
energy, turbulent dissipation rate, the component of the velocity vector, molecular dynamic
viscosity coefficient, turbulent dynamic viscosity coefficient, turbulent kinetic energy
generation result of mean velocity, turbulent kinetic energy caused by buoyancy effects,
contribution of fluctuating dilatation incompressible turbulent to the total dissipation rate,
source term of λ, source term of ε, inverse effective Prandtl number for λ, inverse effective
Prandtl number for ε, and empirical parameters, respectively. As was mentioned, COMSOL
Multiphysics is utilized for solving the equations in numerical simulations.

The graphical view of the LiC module and the ACTMS in the CFD software is depicted
in Figure 2, in which two fans are mounted on each side of the container to blow the air on
the module and to suck the air from the module to the surrounding.
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The conditions that are used to run the simulation should also be added to the CFD
software. All the initial conditions and boundaries that are set to COMSOL Multiphysics
are listed in Table 3.

Table 3. Initial conditions and boundaries of the CFD model.

Section Condition Value

LiC module domain Initial temperature 23 ◦C
LiC cell domain Heat generation (per cell) 76,477 W/m3

PVC container Initial temperature 23 ◦C
Air (coolant) Inlet temperature 23 ◦C
Air (coolant) Inlet flow rate 3 m/s
Air (coolant) Outlet pressure To ambient
Air (coolant) Wall Non-slip

The precision of the results strongly depends on the selected solver and type/number
of mesh elements. The simulation process for the ACTMS was time-consuming due to
various scales of geometry and equations’ non-linearity. The mesh independence analysis
has been applied to this model with different mesh sizes. Finally, the maximum number
of helpful mesh to solve the finite elements analysis (FEA) model using the CFD software
was selected. Based on the grid density tests, an appropriate grid system of 163,562 mesh
elements over the entire domain is considered the maximum number of elements to save
time and memory. In addition, testing the time step on the solution results in using 1 s step
time to integrate the governing equations.

The forced cooling strategy is simulated, and thermal analysis for the ACTMS is
conducted after designing the system and setting the initial and boundary conditions.
After verifying the model with experimental tests, it can be further optimized to enhance its
thermal performance. The most vital parameters to investigate the cooling system’s thermal
performance and compare it with the NC case study are the maximum temperature of the
module and the temperature difference between coldest and hottest cells. The module’s
maximum temperature can be considered the hottest zone in one of the cells regarding
the position of thermocouples. The direction of the air is considered parallel to the largest
surface of the LiC to extract the heat more effectively.
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3. Experimental Test Bench

A real-life experimental test bench is needed to investigate the proposed ACTMS
model accurately. In such context, a module of 10 LiC cells is designed in series connection
and built in the laboratory of Mobility, Logistic, and Automotive research center (MOBI),
Vrije Universiteit Brussel (VUB).

3.1. Test Bench Setup

A forced ACTMS is employed to control the temperature of the LiC module through
four axial DC fans. The employed facilities are the PEC battery tester with 12 channels
for cycling the module, a computer to control the battery tester, a data logger, and K-type
thermocouples to receive the temperature data. The data logger is PICO TS08 with ±0.2%
of reading temperature accuracy. Its overvoltage protection is ±30 V with 2 MΩ input
impedance. As can be seen from Figure 3, the LiC module is surrounded by the PVC
container. Four axial DC fans (two on each side) with a nominal voltage of 12 V are
responsible for blowing the ambient fresh air into the container and sucking the hot air
from the container to the environment.
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3.2. Experimental Results

The results of cycling the LiC module under 150 A continuous fast charging/
discharging without rest are explained in this section. The thermocouples receive the
temperature of the cells and send the temperature profile through the link between the data
logger and the computer. The maximum temperature of the module under the NC case
study without using any TMS is around 70 ◦C, which is harmful for the capacity degrada-
tion of LiC cells, the reasons for which are explained in detail in our previous published
work [39]. The temperature of the hottest cell using the proposed cooling solution (the
forced ACTMS) decreases sharply by 37%, which is quite good for such a harsh driving
profile. The experimental results of the module when employing the forced ACTMS as a
cooling solution are depicted in Figure 4. As is seen, the temperature difference between the
hottest cell (43.7 ◦C) and the coldest cell (34.7 ◦C) is 9 ◦C. In the next section, the numerical
analysis aids in optimizing the design and geometry of the system as well as the initial and
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boundary conditions to conclude with the most optimum forced air-cooling solution for
high power applications.
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Figure 4. The experimental results of the module when using ACTMS as a cooling solution.

4. Validation Results

This section deals with the numerical analysis and simulation of the proposed forced
air-cooled solution to validate the experimental results. After verification, the initial
and boundary conditions of the ACTMS, as well as its geometry and design, will be
further optimized.

4.1. Forced Air-Cooled Simulation Results

The topology explained in the previous sections is analyzed numerically in this section
using the COMSOL Multiphysics software package. In such a context, the heat transfer
module and fluid flow module are employed. The initial and boundary conditions and the
thermal parameters required to run the 3D CFD model are listed in Tables 2 and 3. The
air inlet velocity is set to 3 m/s in the main model. Additionally, there is no gap spacing
between neighboring cells in the main model. The inlet air velocity and gap spacing
between neighboring cells will be optimized in the optimization section.

Based on the exhibited simulation results of Figure 5, by checking the temperature
of all the LiC cells in the module, it is evident that cell number 1 at the beginning of the
module and in front of two fans has the lowest temperature at around 34.8 ◦C. The position
of thermocouples for all the cells is close to the positive tab made of aluminum. The reason
is that the positive tab is hotter than the negative tab for the LiC cell. Cell number 7 is the
hottest cell among the 10 cells, as it is in between the cells far from the fans. Additionally,
conduction between cells is a significant reason for the accumulation of hot spots in the
middle of the module. It is worth mentioning that gap spacing between the neighboring
cells is a determining factor for accumulating hot spots in the middle of the module. In
this design, cells number 1, 2, and 3 are the coldest cells with the temperature of 34.8 ◦C,
37.8 ◦C, and 38.5 ◦C, respectively. Additionally, cells number 6 and 8 are the hottest cells
after cell number 7, at 43 ◦C and 43.1 ◦C, respectively. The position of fans is a significant
factor for removing the hot spots from the middle of the module, which will be studied in
the optimization section.
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Figure 5. The simulation results of the module when using ACTMS as a cooling solution, this is the
main case study with inlet air velocity of V = 3 m/s, no gap spacing between the neighboring cells,
inlet air temperature of 23 ◦C, and environment temperature of 23 ◦C.

4.2. Validation

The experimental results should be compared with the simulation results to validate
the numerical analysis of the 3D CFD model. The maximum temperature of the module,
surface temperature of each cell, and temperature difference between the coldest and
hottest points on the cell surfaces are investigated by running the 3D CFD model, which is
used for comparison analysis. As shown in Figure 5, for inlet air velocity of 3 m/s when
there is no gap space between neighboring cells, the temperature difference between the
hottest cell (43.7 ◦C) and the coldest cell (34.8 ◦C) is 8.9 ◦C, in the numerical simulation.
Comparing the simulation and experimental results where this temperature difference was
9 ◦C shows that the simulation error is around 1% that is unique. It is evident that the
numerical simulations are in an excellent match with the experimental results, proving the
accuracy of the 3D CFD model.

5. Optimization of the ACTMS
5.1. Impact of the Inlet Air Velocity

In the main case study, the inlet air velocity can be examined when the gap spacing
is fixed at its original value of zero-spacing between neighboring cells. The inlet velocity
of the cooling air for the main case study is set to 3 m/s, but the optimization analysis
is reduced (2 m/s) or increased (4 m/s and 5 m/s). It is worth mentioning that the inlet
velocity of zero corresponds to natural convection or no-forced cooling. The simulated
3D CFD temperature distribution within the module after 1400 s for the different inlet air
velocities is illustrated in Figure 6 for V = 2 m/s, Figure 7 for V = 4 m/s, and in Figure 8 for
V = 5 m/s. The comparison study (3D analysis figure) is depicted in Figure 9 for all the case
studies to understand temperature distribution alongside the module better. Increasing the
fans’ velocity significantly reduces the temperature rise within the LiC cell in the module.
For instance, for V = 5 m/s, the temperature contour falls mainly into the yellow and green
areas of the temperature color legend, meaning that the coldest cell (number 1) reaches
32.1 ◦C and the hottest cell (number 7) reaches 40.3 ◦C. The temperature difference along
the module for this case study (V = 5 m/s) is 8.2 ◦C. Furthermore, compared to the main
case of V = 3 m/s, the maximum temperature rise decreases by 3.4 ◦C. For V = 2 m/s (the
least value), higher temperatures can be observed in the middle of the LiC module so the
maximum temperature rise is around 46.3 ◦C, while the temperature difference between
the coldest cell (number 1) and the hottest cell (number 7) is around 9.16 ◦C. Therefore,
increasing the inlet air velocity from 2 m/s to 5 m/s decreases the maximum temperature
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of the hottest cell (number 7) by around 6 ◦C. Figure 10 illustrates the velocity field for
these four case studies.

5.2. Impact of Inlet and Outlet Positions

Four different air inlet and outlet positions are proposed in this section to assess the
airflow direction impact on the thermal behavior of the module. In the main case study,
the fan positions are designed so two fans from one side blow the air and two fans from
the other side suck the air to the environment (Figure 2). As is depicted in Figure 11,
four various positions include: (P1) four blowing fans from both sides and one circular
outlet is designed on the top surface, (P2) four blowing fans from both sides and two circular
outlets is designed on the top surface, (P3) four blowing fans from both sides, and one
rectangular outlet is designed on the top surface, and (P4) one fan from the right side and
one fan from the left side are blowing, and one other fan from left and the other one from
right sides are sucking the air. The simulation analysis results prove that the best case
among the four simulated case studies is P1, as it can better remove the excess generated
heat from the module. The P1 case study reduces the maximum module’s temperature by
26.5% compared to the main case study.
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Figure 6. Temperature curves of all the LiCs in the module with inlet air velocity of V = 2 m/s.
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Figure 7. Temperature curves of all the LiCs in the module with inlet air velocity of V = 4 m/s.
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Figure 8. Temperature curves of all the LiCs in the module with inlet air velocity of V = 5 m/s.
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Figure 11. Four different inlet and outlet positions for the forced ACTMS; (P1) four blowing fans
from both sides and one circular outlet on the top surface; (P2) four blowing fans from both sides and
two circular outlets on the top surface; (P3) four blowing fans from both sides, and one rectangular
outlet on the top surface; and (P4) one fan from the right side and one fan from the left side are
blowing, and one other fan from left and the other one from right sides are sucking the air.

The simulation results are depicted in Figure 12, showing that increasing the number
of outlets from one circular outlet (P1) to two circular outlets (P2) leads to the worse
temperature removal from the container to the environment. Based on the depicted results,
the P2 case worsens the temperature by around −17% compared to the P1 case study. The
possible reason would also be the position of the P2 outlets in which the top surface of
the cells is not entirely empty to let the hot air passes the top surface of the module and
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continue to the environment. In addition, changing the outlet position from the circle (P1)
to the rectangle (P3) does not affect the temperature even 1 ◦C, proving that the impact of
shape and edges of the outlet should be neglected in the design of the air cooling system.
Finally, the last case in this section (P4) shows that blowing from two sides and at the same
time, sucking the air to the environment from the same sides is not logical, as the maximum
temperature of the module, in this case, will be increased by around 5% compared to the
main case study (V3), in which blowing happens from one side and sucking from the
other side.
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5.3. Impact of Gap Spacing between Neighboring Cells

By fixing the fan’s supply air velocity at V = 3 m/s (main case study—V3), the impact
of the gap spacing (d) on the maximum module’s temperature is parametrically analyzed.
The gap spacing between the neighboring cells in the main case study is zero and increased
to d = 1, 2, 3, and 4 mm in this section. It is worth mentioning that changing the gap spacing
would not change the inlet Reynolds number, so the flow remains turbulent. Utilizing the
same temperature scale (color legend), the simulated 3D temperature distribution within
the module after 1400 s are compared in Figure 13 for four gap spacing values (d = 1 for the
G1 case, d = 2 for the G2 case, d = 3 for the G3 case, and d = 4 for the G4 case studies). The
temperature scale for G1 to G4 gap spacing values are between 49.3 ◦C to 47.1 ◦C. As can
be seen, gap spacing is slightly affecting the temperature. This is due to the position of the
fans inside the module. As the gap spaces are perpendicular to the airflow, a very small
portion of air passes through the gaps. Therefore, increasing the gap spaces improves not
only the temperature but also has a reverse influence.

In this case, the temperature would be worsening by increasing the gap spacing
due to lowering the contact surface between neighboring cells. Therefore, the first cell’s
temperature will be far lower than the other cells, as it does not take the temperature of the
neighboring cells. At the same time, the first cell behaves as a barrier and stands in front
of the inlet air. The possible solution to solve this problem is rotating the module by 90◦,
based on Figure 14. GR0 case study is the rotated module compared to the main case study
(V3). As is seen, the maximum temperature of the module is decreased by around 2% by
rotating the module. Therefore, this position is better than the main case study to control
the maximum temperature of the LiC cells within a module.
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Figure 14. Temperature distribution of the LiC module for the rotated module compared to the main
case study.

5.4. Impact of Rotating the Position of the Module 90 Degrees (Side Cooling)

In this section, the module is rotated 90◦, and the temperature distribution is evaluated
for four different gap spacings between neighboring cells. In this regard, the gap spacing
in the main case (V3) was zero, in the rotated main case (GR0) was also zero, but in this
section is set to d = 1 mm for the GR1 case, d = 2 mm for the GR2 case, d = 3 mm for
the GR3 case, and d = 4 mm for the GR4 case studies. Figure 15 illustrates the defined
case studies with the same color legend for the minimum and maximum temperatures to
compare the cases. The lower limit of the color legend (23 ◦C) corresponds to the initial
temperature of the module, while the upper limit (50 ◦C) denotes a maximum temperature
to have an insight for comparison.
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Figure 15. Temperature distribution of the LiC module for the rotated module for various gap
spacings between the neighboring LiCs.

Obviously, the maximum observed temperature of the module in the rotated cases
is for the GR1 case study with 1 mm gap spacing and maximum observed temperature
of 46.2 ◦C, which is only 0.1 ◦C lower than the GR0 case study. Therefore, 1 mm gap
spacing does not help the ACTMS cooling system. On the other hand, increasing the gap
from 1 mm to 2 mm decreases the temperature by 11.9 ◦C (25.7%) compared to the GR0
case study. In addition, increasing the gap to 3 mm and 4 mm reduces the maximum
temperature of the module by 40.6% and 43.6% compared to the GR0 case, respectively.

It can be concluded that increasing the gap spacing by more than 2 mm would
reduce the maximum module’s temperature, so the observed temperature of the module
never attains the red region in the temperature color legend. Additionally, the maximum
temperature difference between the coldest and hottest cells for the GR0, GR1, GR2, GR3,
and GR4 case studies is 22.6 ◦C, 23.1 ◦C, 14.4 ◦C, 4.5 ◦C, and 3.1 ◦C, respectively.

5.5. Impact of Uneven Gap Spacing between Neighboring Cells

The gap spacing between neighboring cells is an essential factor based on the previous
simulated case studies. Therefore, the impact of uneven gap spacing is introduced in this
section, as Figure 16 shows. In the even gap spacing, the gap distance between all the cells
within the module was the same (d1), but the d1 and d2 gaps are different in an uneven
gap spacing. This will help to reduce the volume of the module, leading to optimizing the
size of EVs.
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Figure 17 illustrated the temperature distribution of the LiC module for the main case
study (V3), the uneven gap spacing of d1 = 1 mm and d2 = 2 mm (U12), the uneven gap
spacing of d1 = 1 mm and d2 = 2 mm for the rotated module (UR12), and the uneven gap
spacing of d1 = 2 mm and d2 = 3 mm for the rotated module. The uneven gap spacing is
expected to uniformize the temperature of the middle cells of the module more effectively.
It is observed that, even though the maximum temperature of the U12 case study is the
same as the V3 case study (where the gap spacing is zero), the maximum temperature
difference of the U12 case improved by 53.2% (around 12.4 ◦C) compared to the main case
study, which is of high importance. The UR12 case is the result of rotating the U12 case, in
which the UR12 reduces the maximum temperature by 19.1% (around 9 ◦C) compared to
both cases of U12 and V3. Moreover, the maximum temperature difference of the UR12
case is around 15.1 ◦C, while the temperature difference for the U12 and V3 cases is 10.9 ◦C
and 23.3 ◦C, respectively. In addition, the UR23 case improves the maximum temperature
difference within the module to 5.5 ◦C, showing 49.5% and 76.4% improvement compared
to the U12 and V3 cases, respectively.
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5.6. Comparison of the Optimization Results

The simulation results for all the cases used are summarized in Table 4, for comparison.
As can be seen, by rotating the LiC module and increasing the gap spacing between neigh-
boring cells, the maximum temperature and temperature difference can be controlled by
the ACTMS properly. In addition, uneven gap spacing reduces the size of the module with
the possibility of better controlling the temperature uniformity and maximum temperature
of the module.
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Table 4. Comparison of the optimization studies with the main case study.

Case Study Tmax (◦C) ∆Tmax (◦C) Related Figure

Main case (V3) 47.1 23.3 Figure 9
V2 49.2 24.7 Figure 9
V4 45.9 22.5 Figure 9
V5 44.8 21.5 Figure 9
P1 34.6 14.6 Figure 12
P2 41.8 18.5 Figure 12
P3 34.6 14.6 Figure 12
P4 49.6 24.4 Figure 12
G1 49.3 26.1 Figure 13
G2 49.1 25.9 Figure 13
G3 48.3 25.1 Figure 13
G4 47.1 23.8 Figure 13

GR0 46.3 22.6 Figure 14
GR1 46.2 23.1 Figure 15
GR2 34.4 14.4 Figure 15
GR3 27.5 4.5 Figure 15
GR4 26.1 3.1 Figure 15
U12 47.1 10.9 Figure 17

UR12 38.1 15.1 Figure 17
UR23 28.5 5.5 Figure 17

6. Conclusions

In this work, a module of 10 LiC cells was the target energy storage system, in
which the effect of forced air-cooled TMS (ACTMS) was investigated experimentally and
numerically. The impact of inlet air velocity, inlet and outlet position of the fans, gap
spacing between the neighboring cells, and uneven gap spacing have been examined. The
concluding remarks are drawn:

1. Without a proper TMS and under natural convection, the temperature rise of the
module is extremely high, and will result in thermal runaway.

2. The 3D CFD model can predict the temperature values of the LiC module with a
deficient error of calculation (less than 1%).

3. With a constant gap between the cells, increasing the inlet air velocity of fans reduces
the maximum temperature of the module and temperature uniformity. The first cells
have a lower temperature rise compared to those in the middle. For the V = 4 m/s
and 5 m/s, the maximum temperature of the module was reduced by 2.5% and 4.9%
compared to the main case study with V = 3 m/s, respectively.

4. Changing the inlet and outlet position led to different scenarios. The best scenario was
using four fans from the left and right sides to blow the air into the module’s surface
and designing the outlet on top of the cells. This reduced the maximum temperature
and temperature uniformity by 26.5% and 37.3%, respectively.

5. Rotating the module by 90◦ decreases the module’s maximum temperature and
temperature uniformity by around 2% and 3% compared to the main case study,
respectively.

6. Increasing the gap spacing of the rotated module results in better temperature distribu-
tion, as the fans are blowing to the side surface of the LiCs with the same gap spacing.
For the 1 mm, 2 mm, 3 mm, and 4 mm gap spacing for the rotated module, the maxi-
mum temperature decreased by 2%, 26.9%, 41.6%, and 44.6% compared to the main
case study, respectively. For the mentioned gap spacings, the temperature difference
compared to the main case reduced by 1%, 38.2%, 80.1%, and 86.7%, respectively.

7. Uneven gap spacing can optimize the volume of the module, so by setting the
d1 = 1 mm and d2 = 2 mm, the maximum temperature stays almost the same. How-
ever, the temperature difference was reduced by 53.2% compared to the main case
study. After rotating the module and setting d1 = 1 mm and d2 = 2 mm, the maximum
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temperature and temperature uniformity decreased by 19.1% and 35.1% compared to
the main case. By setting d1 = 2 mm and d2 = 3 mm, 5.5 ◦C temperature difference
was achieved. In this case, the maximum temperature and temperature difference
were reduced by 39.4% and 76.3% compared to the main study, respectively.

The future work would be proposing a hybrid TMS to decrease the power consump-
tion of the air cooling system. Therefore, a passive system can be added to the ACTMS to
reduce the temperature uniformity and minimize power consumption.
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