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Abstract: Water alternating gas (WAG) injection has been successfully applied as a tertiary recov-
ery technique. Forecasting WAG flooding performance using fast and robust models is of great
importance to attain a better understanding of the process, optimize the operational conditions,
and avoid high-cost blind tests in laboratory or pilot scales. In this study, we introduce a novel
correlation to determine the performance of the near-miscible WAG flooding in strongly water-wet
sandstones. We conduct dimensional analysis with Buckingham’s π theorem technique to generate
dimensionless numbers using eight key parameters. Seven dimensionless numbers are employed
as the input variables of the desired correlation for predicting the recovery factor of a near-miscible
WAG injection. A verified mathematical model is used to generate the required training and testing
data for the development of the correlation using a gene expression programming (GEP) algorithm.
The provided data points are then separated into two subsets: training (67%) to develop the model
and testing (33%) to assess the models’ capability. Conducting error analysis, statistical measures and
graphical illustrations are provided to assess the effectiveness of the introduced model. The statistical
analysis shows that the developed GEP-based correlation can generate target data with high precision
such that the training phase leads to R2 = 92.85% and MSE = 1.38 × 10−3 and R2 = 91.93% and
MSE = 4.30 × 10−3 are attained for the testing phase. The relative importance of the input dimen-
sionless groups is also determined. According to the sensitivity analysis, decreasing the oil–water
capillary number results in a significant reduction in RF in all cycles. Increasing the magnitudes of
oil to gas viscosity ratio and oil to water viscosity ratio lowers the RF of each cycle. It is found that oil
to gas viscosity ratio has a higher impact on RF value compared to oil to water viscosity ratio due
to a higher viscosity gap between the gas and oil phases. It is expected that the GEP, as a fast and
reliable tool, will be useful to find vital variables including relative permeability in complex transport
phenomena such as three-phase flow in porous media.

Keywords: WAG injection; gene expression programing; statistical analysis; empirical correlation;
oil recovery

1. Introduction

Water alternating gas (WAG) injection is a common enhanced oil recovery (EOR)
technique; this recovery method has been recognized as a cost-effective and successful
method for greater oil production [1,2]. Over recent decades, there have been some
field applications, numerical simulations, and laboratory experiments on WAG injection
processes [1,2]. In a study conducted by Skauge et al. [3], it was reported that WAG injection
can increase the oil recovery factor by 5–10% in the field scale.

Simulation and numerical modeling of the WAG flooding processes have been investi-
gated in the literature to explore the effect of various key parameters such as the number of
injected cycles, WAG ratio [4,5], wettability [6,7], relative permeability and hysteresis [7,8]
on the WAG performance. One of the main problems in simulating and optimizing a WAG
injection process is the development of reliable and accurate correlations for rock and fluid
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characteristics and the number of trapped phases in the porous medium [9]. The cyclic
process of the WAG operation and the three-phase flow in the reservoir cause extra burden
in terms of computational costs and modeling robustness. The main focus of most previous
simulation and optimization research investigations related to the WAG flooding has been on
the analytical methods of solving the governing equations of three-phase flow, and auxiliary
equations such as relative permeability models in the oil production process [10,11].

Despite the availability of several correlations for determination of three-phase relative
permeability and capillary pressure for WAG flooding [12,13], they fail in different situa-
tions where there is mass transfer between phases, especially when one phase disappears.
Dynamic behaviors caused by the evaporation of the trapped oil and dissolution of the
injected gas in the residual oil also add extra complications to the WAG process. Many past
studies were not able to have a proper evaluation of WAG process performance due to
incorporation of inappropriate three-phase relative permeability or capillary pressure
expressions/data in their models [14–17].

In the oil and gas industry, laboratory coreflood experiments have been conventionally
used as a representative of actual hydrocarbon reservoirs to evaluate the effectiveness of
EOR processes such as WAG flooding prior to field applications. Coreflood experiments
can be also used to quantify flow properties such as capillary pressure and relative perme-
ability curves. The acquired data from a small laboratory model can be utilized to predict
the behavior of other similar systems. In recent decades, several research investigations
have focused on WAG efficiency evaluation [18], process simulation [19], pilot tests [1,2],
process governing mechanisms [20], hysteresis effects [21], and management of WAG im-
plementations [22]. However, the WAG process has not been well-developed or understood
yet. One of the overlooked aspects in the WAG process is the development of predictive
tools prior to conducting pilot and field tests [23]. In some cases, complicated and timely
simulations and modeling approaches are employed to examine the efficiency of the WAG
process. For instance, the computational time for simulation and optimization of some
reservoirs, particularly heterogeneous cases, might be thousands of hours [24]. Moreover,
the optimization process conducted by simulation modeling approaches is based on a one
parameter at a time process, without involving the effect of interactions between uncertain
parameters on the process output [25]. Therefore, fast and low-cost tools for the assessment
of WAG injection are required to overcome this issue.

As the first step in the prediction process, it is required to provide a set of relationships
between the two systems, i.e., the given system or experimental model which is used to
estimate the behavior of the target equivalent system, and the one of actual interest (the
prototype system). These relationships are generally known as the scaling laws, similarity
laws, or similarity requirements [26]. The scaling process eventually leads to developing
dimensionless numbers, which are known as dimensionless scaling groups.

Smart computational tools have been extensively utilized for the prediction of vari-
ous properties and parameters in health, safety, and chemical and petroleum engineering,
including reservoir fluid and rock properties, process optimization, and performance assess-
ment of EOR techniques [27–32]. For instance, machine learning and artificial intelligence
have been employed to investigate/forecast the unloading gradient pressure in continuous
gas-lift systems [33], air specific heat ratios [34], CO2 absorption in piperazine [35], CO2
conversion to urea [36], permeate flux during the filtration [37], CO2 storage efficiency [38],
fouling occurrence in membrane bioreactors [39], and the recovery performance of CO2-
WAG injection processes [40,41]. In recent years, various optimization techniques such as
genetic algorithm (GA) and particle swarm optimization (PSO) have been widely used as
reliable approaches to optimize different upstream and downstream processes in the oil
and gas industry [42]. The primary version of GA was then modified into a new algorithm,
called the genetic programming (GP) approach. Gene expression programming (GEP) is
a new and updated version of GA that addresses most of the drawbacks and concerns
around previous versions [43]. Generally, GEP is able to obtain a solution for regression
problems [44]. Unlike in the GP program where the individuals’ populations are symboli-
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cally considered as expression trees (ETs), the individuals’ populations are regarded as the
linear chromosomes in the GEP algorithm [45,46]. The GEP method has been employed in
various research subjects in petroleum engineering, including estimating mixture viscosity
in solvent-assisted oil recovery process [47], CO2 solubility in crude oil [48], minimum
miscibility pressure (MMP) of live oil systems [49], petroleum emulsions’ viscosity [50],
surfactant retention in porous media [51], residual gas saturation in spontaneous and
forced imbibition processes [52], and oil price [53]. However, the application of this smart
technique has not been reported for predicting the oil recovery of the near-miscible WAG
injection process in the open-source literature. Near-miscible WAG injection studies are
limited to few experimental investigations, which are highly time-consuming, expensive,
and more importantly not comprehensive in terms of sensitivity analysis. Today, with
significant developments in computer and data science, it is feasible to introduce robust,
fast, and reliable models to forecast the performance of complex EOR processes such as
WAG injection. The main objective of this work is to conduct the scaling analysis using the
data provided by the validated and reliable implicit-pressure-explicit-saturation (IMPES)
mathematical model for the development of a robust empirical model, which is able to
predict the recovery factor of a WAG injection at the near-miscible condition.

This manuscript is structured as follows. After the introduction, in the theory and
background section, we discuss a proper description of the WAG injection technique and a
background on dimensional analysis approaches, and the introduction and fundamentals
of GEP algorithms. In the methodology section, the application of a dimensionless model
and its principles for generating the required data are discussed. Then, the design of
experiment is provided, which is required to know the number of required runs, data, and
dimensionless scaling groups. Afterwards, the analysis of variance (ANOVA), procedure
of the GEP algorithm, and the model development are described. In the results and
discussions section, the results of the ANOVA test and the relative importance of the input
parameters are elaborated. We also discuss the results of the testing and training phases,
statistical error analysis, GEP correlation, and sensitivity analysis. In the last section of this
manuscript, the summary and main conclusions are given.

2. Theory and Background
2.1. WAG Mechanisms

Primary water flooding (WF) and gas injection (GI) processes are the two most con-
ventional and common techniques in hydrocarbon production among the tertiary and
secondary methods [54]. The efficiency of these processes relies on the volumetric sweep
efficiency (the macroscopic scale) and the microscopic displacement efficiency [55].

The major drawbacks during GI processes are the gas fingering phenomenon caused
by unfavorable (high) mobility ratio and insignificant macroscopic (volumetric) production
efficiency [56]; and early gas breakthrough occurrence which has been reported in various
pilot and field applications [57–60] caused by gas fingering and channeling in layers with
high permeability. The main issues with the GI performance are related to the mobility
of the fluids and reservoir conformance [56]. On the other hand, the cyclic injection of
water and gas (in a WAG injection process) reduces the effective permeability of the gas
phase, resulting in stabilized fluids’ fronts, and thereby enhancing the overall sweep
efficiency of the system. Gravity segregation is another governing mechanism during a
WAG flooding process, which is caused by the density difference between the active phases
in the medium [61]. During the WF cycles, through displacing the oil bank at the bottom
layers of the reservoir (bypassed during the GI cycle), gravity segregation enhances the
vertical sweep efficiency of the system [61]. Figure 1 schematically depicts a general WAG
flooding process including the distribution of the injecting (gas and water) and displaced
(oil) phases in a typical porous medium.
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Figure 1. A WAG injection process and distribution of phases in a typical reservoir (Modified after [62]).

The immiscible WAG (IWAG) is generally regarded as a WAG injection process in
which the gas phase does not develop any miscibility with the oil phase. However, during
a IWAG process, a slight mass transfer between the gas slug and the oil bank may occur,
which improves the oil recovery. For a flow system with high gas–oil IFT (IWAG), despite
the connectivity of the oil phase, the recovered oil by the film flow is insignificant when
there are no other driving forces such as gravity forces. In a miscible gas-injection process,
since there is no interface between the oil and gas phases, the fluids’ behavior is the
same as a single-phase flow in which the oil recovery occurs only through dispersion of
phases and molecular diffusion mechanisms. However, WAG injection in the near-miscible
gas-injection model is another effective process from operational and economic points of
view [20].

2.2. Dimensional Analysis

Two conventional techniques are proposed to generate the dimensionless groups:
inspectional analysis [63,64], and dimensional analysis [61,62]. The inspectional analy-
sis runs based on the governing differential equations of fluid displacement, while the
dimensional analysis performs based on the pertaining variables that directly affect the
system’s behavior. In the inspectional analysis procedure, the differential governing equa-
tions of the process, including the boundary and initial conditions, are transformed into
dimensionless configurations through employing normalized variables into the differ-
ential equations [63,64]. This transformation leads to obtaining dimensionless forms of
both dependent and independent variables, and dimensionless forms of scaling groups.
In contrast to the inspectional analysis, in the dimensionless analysis, only the pertinent
variables are required, and the governing equations are not transformed. In this technique,
to obtain the dimensionless scaling groups, the power products of the variables are ren-
dered to dimensionless forms. This leads to generating a set of homogeneous, linear, and
algebraic equations [61,62]. The solutions of these equations provide a series of complete
independent, meanwhile not unique, dimensionless numbers. Applying Buckingham’s π
theorem on a set of selected variables results in generating the number and the forms of
the dimensionless groups. Many studies have focused on applications of the scaling theory
and similarity laws for flow in porous systems [61,65–76]. Initially, Leverett et al. [77] used
the dimensionless groups in a research work on immiscible displacement of oil by water,
which was later extended by Engleberts and Klinkenberg [78]. Asghari et al. [79] used the
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data provided by the previous performance of WF in the Weyburn field to generate an
empirical correlation for estimating CO2 injection performance. Two different correlations
were introduced with respect to different injection scenarios in the Weyburn field. The pri-
mary correlation was developed according to the WAG injection in vertical wells and the
second correlation was generated based on the horizontal well injection by applying the
Kinder Morgan CO2 Scoping model and utilizing the field production data. However, in
their proposed model, only the oil production rate and CO2 and water injection rates were
accounted for, and other field or operational variables were not included. Liu et al. [80]
suggested a new model for developing dimensionless CO2 injection performance such
as total injection (DTI), CO2 injection (DCI), tertiary oil production (DEOR), and CO2
production (DCP) for various WAG injection approaches. A Microsoft Excel VBA program
(for injecting CO2 pulses) was applied to develop the prototypes for forecasting the system
performance. Their new methodology (pulse method) was verified using mechanistic
simulation results of finite elements for different WAG injection processes or different CO2
injection slug sizes, or both [80]. Jaber et al. [25] introduced a simple data-driven model
to evaluate the miscible CO2-WAG injection performance in an Iraqi oil field. They em-
ployed a central composite design (CCD) to introduce a proxy model. They implemented
an ANOVA to examine the effectiveness of the variables and their combinations within
the model. The proposed proxy model determined the incremental oil recovery (∆FOE)
as a function of reservoir properties and operational conditions including permeability,
porosity, ratio of vertical to horizontal permeability, cyclic length, bottomhole pressure,
ratio of injected CO2 over water slug size, and injected CO2 slug size.

2.3. Fundamentals of GEP

Current genetic algorithm (GA) and genetic programing (GP) techniques have been
widely used in common regression engineering problems such as function fitting and time
series predictions [81–83]. In the GA algorithm, individuals are represented as the linear
strings with specified lengths (chromosomes) during all evolution levels. This prevents
GA from being applied in some complex-function fitting problems [84]. However, in the
GP algorithm, individuals are represented as nonlinear elements with different sizes and
forms. The GP algorithm is generally able to analyze complicated functions; however, in
some cases different object size variations hinder the evolutionary procedure to obtain
an optimum solution. On the other hand, gene expression programming (GEP) is a new
method in developing computer programs with a focus on learning models and discov-
ering knowledge [43]. GEP combines the features of the GA and GP algorithms, while
the chromosome encoding makes it different from these two evolutionary approaches.
In the GEP algorithm, the individuals are encoded as the chromosomes and are consid-
ered as the linear strings with specified lengths [43]. GEP is more flexible and rigorous
in probing the search space by separating the genotype and phenotype. The designed
chromosomes in GEP are simple and linear. GEP demonstrates significant advantages
over its peers; for instance, compared to the GA, GEP performs approximately 2–4 orders
of magnitude faster in analyzing the conventional problems due to its unique individual
functioning [43]. GEP is a mature genotype/phenotype system in which the genotype is
completely separated from the phenotype. However, in the GP technique, the genotype
and phenotype are one element; indeed, it is a simple replicator system. GEP works based
on two elements (e.g., chromosomes and ETs). The chromosomes encode the candidate
solution and transform the actual solution candidates into an ET. The transition process
of the chromosomes into an ET is inspired by the biological process of genes encoded (in
DNA) into proteins [85].
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3. Methodology
3.1. Data Collection

The accuracy and reliability of any proposed correlation are strongly linked to the
identified appropriate input variables as well as the validity and reliability of employed
data points used in the development stage [36,86]. The most important parameters affecting
a WAG injection process include the fluid and rock properties and operational conditions.
Due to the unavailability of adequate laboratory data for near-miscible WAG flooding
processes, a suitable and reliable mathematical model is used [20]. The mathematical simu-
lator approach is a two-dimensional model, with an implicit-pressure-explicit-saturation
(IMPES) solution scheme. In the following subsections, the main and auxiliary equations
required for developing the mathematical model are provided. For more details about the
model development, technical readers may visit the study conducted by Afzali et al. [20].

3.2. Governing and Auxiliary Equations

For a three-phase and incompressible flow system, the governing equations to be
solved include the mass or molar balances for all present fluids. The final form of the
governing equations for an immiscible system with three phases (e.g., oil, water, and gas),
after neglecting the phase dispersion and gravity effects and applying the Darcy’s Law (as
the momentum balance equation) can be written as follows:

∇.
(

ρiKkri
µi

∂pi
∂x

)
+ qi =

∂

∂t
(φρisi); i ∈ {o, w, g} (1)

Equation (2) introduces the relationship between the saturations of three phases
existing in the system:

so + sw + sg = 1 (2)

For an accurate simulation of a WAG injection process in which three phases are
involved, selecting reliable relative permeability and capillary-pressure models accountable
for three-phase flow systems is essential. Using direct measurement methods of capillary
pressure data (for three-phase systems) from laboratory coreflood tests is a tedious and
practically difficult process [87].

The pressure difference between two nonmiscible phases (i.e., nonwetting and wet-
ting phases) is called capillary pressure (pc) (see Equation (3)). Capillary pressure is a
function of fluids’ saturations and distribution, and porosity and permeability are the
rock characteristics.

pc = pnw − pw (3)

The descriptions of all parameters of Equations (1)–(3) are provided in Table 1.
In the current work, we apply a capillary pressure model appropriate for three-phase

systems, suggested by Neshat and Pope [88], derived based on the Gibbs free energy.
The proposed model is an extended/modified version of a two-phase capillary pressure
model introduced by Skjaveland et al. [89]. This capillary pressure model is capable of
being applied on all wettability states including water-wet, mixed-wet, and oil-wet systems.
The general form and description of the parameters of the employed capillary pressure
model are presented by Equation (A1), as given in Appendix A.



Energies 2021, 14, 7131 7 of 28

Table 1. Description of governing and auxiliary equations parameters (Equations (1)–(3)).

Governing Equations Auxiliary Equations

∇.
(

ρiKkri
µi

∂pi
∂x

)
+ qi =

∂
∂t (φρisi) i ∈ {o, w, g} so + sw + sg = 1

ρ Density of the fluid pc = pnw − pw
K Rock permeability pc Capillary pressure
kri Relative permeability of phase i pnw Pressure of the nonwet phase
µ Viscosity of the fluid pw Pressure of the wet phase
p Pressure s Saturation of phases
x Spatial location o Oil phase
q Source/sink term w Water phase
t Time g Gas phase

3.3. Model Assumptions and Limitations

The following assumptions are considered to develop the mathematical model:

• Gravity forces are neglected.
• The flow direction is considered as 1D horizontal in the system.
• The core and fluids are considered incompressible.
• Core is strongly water-wet and homogeneous.
• The equilibrium of capillary forces is held in the system.
• The temperature of the system is 38 ◦C and the thermal equilibrium holds in the

system.
• The capillary end effects are neglected.

In the current work, we simulate an experimental case, in which a 2-inch core sample
was utilized.

Since the diameter of the core is small, the gravity effects are insignificant, and assum-
ing one dimensional flow is satisfactory for simulations. For each cycle, the two-phase
relative permeability parameters are needed to be tuned and optimized. To do so, exper-
imental two-phase data are used for tuning the two-phase relative permeability models.
Afterwards, the tuned two-phase relative permeability models are utilized in the three-
phase relative permeability model. For each of the WF and GI injection modes in the WAG
flooding model, these parameters are optimized repeatedly to incorporate the hysteresis
involved in the saturation of phases in the cyclic injection of fluids.

In the GEP algorithm, the number of constants per gene determines the maximum
number of constants that can be allocated for a gene. The higher the number of constants,
the more complicated the model is and a more accurate algorithm is obtained. Therefore,
there should be a balance between the accuracy and degree of complexity while selecting
the optimized GEP configuration. The optimal parameters are normally found randomly
for development of any new correlation through GEP. Another limitation of the proposed
model is impotence of the system analysis during each injection mode. Since the developed
correlation only reports the recovery factor at the end of each cycle or injection mode
(N = 1–3), other vital features such as instant RF and breakthrough time are not detected
or determined.

3.4. Design of Experiment (DOE)

Due to the three-phase flow in the porous medium and the cyclic nature of the WAG
flooding, the number of influential variables is higher than other conventional oil recovery
techniques. Using a design of experiment (DOE) approach can reduce the computational
costs required for mathematical modeling runs. The key aspect of a DOE is the selection of
controlling factors. In this study, oil viscosity (µo), gas and water injection rates (qg and
qw), system permeability (K), pore volume injection of fluids (PVI), and number of cycles
(N) are chosen to determine the dimensionless numbers and their significance. Using a
two-level full factorial DOE, each parameter is studied at two levels with the upper and
lower bounds coded as +1 and −1. Table 2 lists the upper and lower levels of all variables.
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Table 2. Design matrix of factors.

Factors
Level

Low (−1) High (+1)

µo (Pa.h) 1.11 × 10−8 1.11× 10−7

qw (m3/h) 25 × 10−6 40 × 10−6

qg (m3/h) 25 × 10−6 40 × 10−6

K (mD) 65 200
PVI 0.5 1
N 1 3

In the case of six factors (variables) at two levels, the model run design is called 26

full factorial design. Thus, a total of 96 runs are required with no replicates of each run to
obtain the response.

3.5. Dimensionless Scaling Groups

As mentioned before, having an adequate knowledge of WAG processes helps use
Buckingham’s π theorem and derive the dimensional groups in the dimensional analysis.
We consider six variables, four fixed parameters, and the recovery factor (RF) as the
response variable to obtain the dimensionless numbers (see Table 3).

Table 3. Variables needed to develop the dimensionless numbers.

Variables Fixed Parameters Response Variable

µo (cP) σow (N/m) RF
qw (m3/h) σog (N/m)
qg (m3/h) µw (cP)

K (mD) µg (cP)
PVI
N

Hence, seven dimensionless numbers are introduced using Buckingham’s π theorem,
which are listed below:

π1 =
σow K
µw qw

(4)

π2 =
σog K
µg qg

(5)

π3 =
µo

µg
(6)

π4 =
µo

µw
(7)

π5 =
qw

qg
(8)

π6 = PVI (9)

π7 = N (10)

where σog and σow denote the interfacial tension between the oil–gas and oil–water phases,
respectively; µi refers to the viscosity of the phase i; qw and qg represent the water and gas
injection rates; PVI is the pore volume injection during each injection mode (WF or GI);
and N introduces the number of injected cycles.
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3.6. Analysis of Variance (ANOVA)

Lorenzen and Anderson [90] reported that ANOVA is the most accurate method
to investigate the significant effects of factors. In the ANOVA table, the F test and p
values represent the main and interaction effects, respectively [91]. The p value denotes
the probability of error involved in the obtained results [92,93]. Accordingly, the smaller
the values of p, the more significant the corresponding coefficient term is [94]. The p
value corresponds to an α value of 0.05. For a factor with α lower than 0.05, the factor is
considered as a significant parameter. In this study, we perform an ANOVA analysis for the
simulation results and corresponding dimensionless numbers. Table 4 presents the results
of the ANOVA to statistically assess the significance of each factor. Thus, the relevancy and
importance of the input variables in a WAG flooding process can be determined through
implementing the ANOVA.

Table 4. Analysis of variance (ANOVA) table to assess design parameters (dimensionless groups) in
a WAG injection process [d.f stands for the degree of freedom].

Source Sum Sq d.f F p

π1 0.0092 2 6.66 0.0018
π2 0.0159 1 10.45 0.0010
π3 0.0100 4 200.24 <0.0001
π4 0.0153 1 40.34 0.0013
π5 0.0189 1 12.39 0.0007
π6 0.0635 1 4.67 0.0023
π7 0.0614 4 348.21 <0.0001

Error 0.1564 8
Total 0.1942 22

3.7. GEP Procedure

As previously mentioned, the GEP algorithm uses two entities: the ETs and chromo-
somes. A chromosome consists of constant and variable terminals as well as prearranged
functions in one or more genes with equal lengths [85]. The function and variables are
the input data, while the constant values are generated by the algorithm within a range
specified by the user. Each gene contains a head made of functions, variables, and constants,
and a tail of terminals [85]. The size of the head (h) is specified by the user; however, the
size of the tail (t) is computed as a function of “h” and a parameter “n”, which is defined as
the number of elements in the function sets. The tail size of a chromosome can be obtained
using the following equation:

t = h(n − 1) + 1 (11)

where t and h are the tail and head of the gene; and n represents the number of elements
of the function utilized in the head of the gene. Figure 2 demonstrates an example of a
two-gene chromosome containing four functions of ×, ÷, +, and √, and three terminals
including a, b, and c. In Figure 2, both the mathematical and the equivalent expression tree
forms using Kara language are illustrated.



Energies 2021, 14, 7131 10 of 28

Energies 2021, 14, x FOR PEER REVIEW 10 of 29 
 

 

 
Figure 2. A typical two-gene chromosome with its corresponding mathematical expression (Modi-
fied after Gharagheizi et al. [46]). 

Every character is set in one spot from zero to seven, which is shown by 01234567. In 
the case of multigenetic chromosomes, all ETs are connected by their root nodes through 
a linking function such as Boolean function [95]. The computational procedure of the GEP 
algorithm is summarized in the following steps [45]: 
1. Initializing the population through generating random chromosomes of a certain 

number of individuals. 
2. Fitting the population individuals according to the fitness functions. 
3. Selecting some individuals and copying them for the next generation based on their 

fitness (simple elitism) [96]. 
4. Applying the same procedure for the new population including the selection of the 

environment, expression of genomes, selection of the population individuals, and re-
production with modification. 

5. Repeating the previous steps until the termination criteria are met. 

3.8. Model Development Steps 
Using the GEP algorithm, there is no need to assume prespecified correlation formats 

for accurate prediction of target data. Hence, the GEP’s computation process finds the 
most accurate forms of independent parameters by itself. As previously discussed, the 
main parameters affecting the RF of a WAG injection process are the oil viscosity, water 
and gas injection flowrates, permeability of the system, PVI, and the number of injected 
cycles (N). Therefore, the variables are used to generate the dimensionless numbers; these 
groups are assumed to be correlating parameters for predicting the RF of WAG flooding: 𝜋௜ = 𝑓(𝜇௢, 𝑞௪, 𝑞௚, 𝑃𝑉𝐼, 𝐾, 𝑁, Fixed Parameters) (12)

where 𝑅𝐹ௐ஺ீ = 𝑓(𝜋௜). 
The following steps are taken to develop a new WAG RF correlation: 

1. Generating the population using random chromosome individuals and applying cor-
relation formats as pars trees using the functions or operators (×, +, −), and terminals 
which are functions of input variables and output results (RF of WAG). 

2. Computing the fitness value for each individual of the generated population using 
the following objective function (OF): 
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Every character is set in one spot from zero to seven, which is shown by 01234567.
In the case of multigenetic chromosomes, all ETs are connected by their root nodes through
a linking function such as Boolean function [95]. The computational procedure of the GEP
algorithm is summarized in the following steps [45]:

1. Initializing the population through generating random chromosomes of a certain
number of individuals.

2. Fitting the population individuals according to the fitness functions.
3. Selecting some individuals and copying them for the next generation based on their

fitness (simple elitism) [96].
4. Applying the same procedure for the new population including the selection of the

environment, expression of genomes, selection of the population individuals, and
reproduction with modification.

5. Repeating the previous steps until the termination criteria are met.

3.8. Model Development Steps

Using the GEP algorithm, there is no need to assume prespecified correlation formats
for accurate prediction of target data. Hence, the GEP’s computation process finds the most
accurate forms of independent parameters by itself. As previously discussed, the main
parameters affecting the RF of a WAG injection process are the oil viscosity, water and gas
injection flowrates, permeability of the system, PVI, and the number of injected cycles (N).
Therefore, the variables are used to generate the dimensionless numbers; these groups are
assumed to be correlating parameters for predicting the RF of WAG flooding:

πi = f
(
µo, qw, qg, PVI, K, N, Fixed Parameters

)
(12)

where RFWAG = f (πi).
The following steps are taken to develop a new WAG RF correlation:

1. Generating the population using random chromosome individuals and applying
correlation formats as pars trees using the functions or operators (×, +, −), and
terminals which are functions of input variables and output results (RF of WAG).

2. Computing the fitness value for each individual of the generated population using
the following objective function (OF):
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OF =
100
N

N

∑
i

∣∣∣RFprd(i)− RFexp(i)
∣∣∣

RFexp(i)
(13)

where N is the number of data points used for the GEP implementation, and subscriptions
“prd” and “exp” denote the RF values predicted by the GEP algorithm and the RF values
generated by the verified mathematical model to be used as the experimental (or target)
data, respectively.

1. Selecting some individuals and copying them into the next generation based on their
fitness (simple elitism). In this work, the tournament method is employed to select
adequate varieties of the population in each generation [44,45].

2. Applying the genetic operators on selected chromosomes, including:

- Replication operator: This operator copies the chromosome’s structure selected
in step 3.

- Mutation operator: As the most important step in the GEP algorithm, the muta-
tion can occur anytime and at any position in a genome, as long as the mutated
chromosome meets the validity criteria. The mutation operator changes the head
and tail terminals, while the original structure of the chromosome is preserved.

- Inversion: The inversion operator is only applied to the heads of genes, where
any sequence is randomly selected and employed. The inversion operator selects
the chromosome, the gene to be modified, and the initiation and termination
points of the sequence to be inverted at random.

3. Transposition and insertion sequence elements: A portion of the genomes, which can
be activated and jump to another place in the chromosome, are called the transposable
elements of the GEP program. Ferreira [45] divided these elements into three types:
“short fragments with either a terminal or function in the first position transpose to
the head of genes, short fragments with a function in the first position that transpose
to the rest of the head of genes (root IS elements or RIS elements), and entire genes
that transpose to commencing of chromosomes.”

4. Recombination: This step normally involves two parent chromosomes to produce
two new chromosomes through combining various parts of the parents through three
approaches: linking one-point recombination, two-point recombination, and gene
recombination [35]. Accordingly, the new generation will be reproduced, and the
procedure is continued until the termination criteria are met.

In this study, the data are distributed into two categories: training and testing/validating
data subsets by a ratio of 67% and 33%, respectively. The training phase is carried out for
the developing the model. After this stage, the validation data set is used to assess the
validity of the model. Figure 3 illustrates a schematic flowchart of the procedure applied in
this study to develop a correlation for the RF of WAG.
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4. Results and Discussions
4.1. Model Development

In order to develop a new reliable correlation for estimating the RF of a WAG injection
using the GEP approach, some important factors/parameters in the GEP strategy including
population size, number of chromosomes, head size, number of genes, type of the fitness
function, map operators, and number of constants per genes, are required. The optimal
or adjusted parameters for this work are listed in Table 5. For instance, the number of
constants per gene determines the maximum number of constants that can be allocated for a
gene. The higher the number of constants, the more complicated and accurate the algorithm
becomes. Therefore, a balance should be reached between the accuracy and degree of
complexity while selecting the optimized GEP configuration. The optimal parameters are
normally found randomly for the development of any new correlation through GEP.

Table 5. The optimal GEP parameters.

Configuration Value

Population size 96
No. of chromosomes 33
Head size 8
No. of genes 4
Fitness function OF
Map operators +,−, ,̂×,÷, √, Ln, Log, . . .
No. of constants per gene 10

In this modeling method, 67% of data for the oil recovery factor is allocated to the
training step. Then, 33% of the entire database is considered as unseen data for the
testing phase. It is found that the model is satisfactory and can predict the unseen data
within almost the same accuracy obtained in the training phase. The model is developed
based on the GEP algorithm using the GeneXproTools software [97]. To examine the
accuracy of the newly developed model, a systematic error analysis should be conducted.
The statistical parameters including mean square error (MSE), root-mean-square error
(RMSE), mean absolute error (MAE), residual standard error (RSE), relative absolute
error (RAE), and coefficient of determination (R2) are used for statistical analysis of the
developed model. Thus, the error analysis can effectively test the reliability and accuracy
of the proposed model. For instance, the R2 parameter demonstrates the degree of a match
between the target data generated by the mathematical model and the calculated RF data
using the newly proposed correlation. Equations (A2) to (A6) in Appendix A express the
mathematical formulas of the statistical measures used in this study. Table 6 presents the
results of statistical error analysis for both the training and testing phases. The low values
of error as well as the high magnitudes of correlation of determination (R2

Training = 0.93
and R2

Testing = 0.92) for both phases confirm the effectiveness and precision of the new
GEP correlation.

Table 6. Statistical analysis of training and testing results.

Statistical Measures Training Testing

MSE 1.38 × 10−3 4.30 × 10−3

RMSE 3.72 × 10−2 6.56 × 10−2

MAE 3.06 × 10−2 5.25 × 10−2

RSE 7.15 × 10−2 23.29 × 10−2

RAE 26.85 × 10−2 47.87 × 10−2

Correlation coefficient (%) 96.36 87.68
R2 (%) 92.85 91.93
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Moreover, cross plots or parity diagrams and residual scattering error-distribution
plots are provided to graphically investigate the error analysis. After conducting the
ANOVA test, the selected dimensionless numbers (π1 to π7) are introduced as the variables
to the GEP simulator for generating the correlation. The final form of the developed
correlation using the GEP algorithm for predicting the recovery factor of a WAG process is
expressed as follows:

A1 =

1−
[(

1− π1 × 10−2)× C11×π4
C2

10

]
C13 × C15 × C18 × (d2 − d5)

(14)

A2 =
(
[
(π7 − C22)× π3

1 × π2 × C28 × 10−10]4 + π
C4

29
7 )

2
(15)

A3 =

[
(C35 − C32) +

(
π6 × π2

7
)
+ π5 × C32 + π6 × π7

]
4

×
π2

4
π3

(16)

A4 = exp(1 + π5 − π3)× C49 ×
[(

π2.π7 × 10−4
)
+

π3 − π5 − π2 × 10−2 − C42

2

]
(17)

RF = A1 + A2 + A3 + A4 (18)

The constant values of Equations (14)–(18) are listed in Table 7.

Table 7. The constant values obtained for Equations (14)–(18).

Constant Value

C13 −4.7530
C15 −5.4106
C18 −7.5887
C11 6.7068
C10 2.2652
C28 11.5608
C29 0.7480
C22 −59.7849
C35 −7.7281
C32 9.5931
C49 0.0875
C42 0.4019

Table 8 shows the statistical information of the input variables, i.e., dimensionless
numbers (π1 to π7) including the minimum, maximum, standard deviation, slope, intercept,
correlation, and R-square versus the response variable which is the RF.

Figure 4 demonstrates the newly developed correlation in the form of an expression
tree (ET) diagram. The generated ET consists of four sub-ETs (four genes) and each sub-ET
is linked with the “addition” operator to the others. The input values to the model (π1 to
π7) are expressed as d0 to d6 within the sub-ETs.
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Table 8. The statistics of the input variables to develop the new correlation with regards to the response variable (RF).

Attribute π1 π2 π3 π4 π5 π6 π7

Importance 1.89×10−2 1.70×10−2 3.66×10−1 1.88×10−1 2.30×10−2 1.53×10−2 3.71×10−1

Minimum 3.16×10−2 4.71×10−2 1.61 6.17×10−2 6.25×10−1 5.00×10−1 1.00
Maximum 1.56×10−1 2.32×10−1 16.09 6.17×10−1 1.60 1.00 3.00
Average 8.22×10−2 1.25×10−1 8.62 3.30×10−1 1.06 7.58×10−1 2.14
Median 7.39×10−2 1.10×10−1 1.61 6.17×10−2 1.00 1.00 2.00

Standard deviation 4.63×10−2 7.19×10−2 7.29 2.79×10−1 3.58×10−1 2.52×10−1 8.33×10−1

R2 (vs. Response) 2.62×10−3 2.30×10−4 3.24×10−1 3.24×10−1 4.51×10−3 4.12×10−3 5.67×10−1

4.2. Relative Importance (RI) of Input Variables

The importance of each input variable (e.g., dimensionless numbers) used for devel-
oping a correlation is associated with the weight and effect of the variable on the objective
function; this is important for better design and optimization of the corresponding oper-
ation. The relative importance of the dimensionless numbers generated in this study is
depicted in Figure 5. According to Figure 5, π7, or the number of WAG cycles, has the
highest impact on the developed correlation with a relative importance (RI) of 37.14%.
This is logical since through injecting consecutive WAG injection cycles (and thereby in-
creasing the number of cycles (N)), a higher recovery factor is expected from the porous
system. After π7, π3 and π4 are reported as the most important parameters. According
to Figure 5, there is a noticeable difference between the ratio of oil to gas viscosities (π3)
and the viscosity ratio of oil to water (π4) in terms of variable importance. This is due to
a considerable viscosity difference between the hydrocarbon phase and the injected gas
phase, compared to the oil and water viscosity difference. Moreover, the injection rate ratio
of the water to the gas (π5), inverse of oil–water capillary number (π1), inverse of oil–gas
capillary number (π2), and PVI injection (π6) have relative importance values of 2.30%,
1.89%, 1.69%, and 1.52%, respectively.
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Figure 5. Relative importance of all input variables included in the new correlation for RF determina-
tion of WAG injection process.

In Figure 6, the cross plots show a part of the error analysis for the training and testing
phases of the employed connectionist tool. As is clear from Figure 6 (panels a and b), a
good match is observed between the target data and RF predictions based on the newly
developed correlation. The magnitudes of the coefficient of determination R2 = 0.9285 for
the training phase, and the coefficient of determination R2 = 0.9193 for the testing phase
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confirm that the proposed correlation is reliable and accurate for predicting oil recovery
factor in a WAG injection process.
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Figure 7 shows the residual plot with the residual error, ei (Equation (19)) on the y-axis
and the predicted recovery factor values on the x-axis.

ei = RFi,Target − RFi,GEP (19)
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According to Figure 7, for both testing and training phases, the absolute residual error
values are less than 0.1. It is concluded that the obtained data are unbiased within an aver-
age of approximately zero around the zero residual line; it also indicates a homoscedastic
behavior (constant variance).
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4.3. Evaluation of Developed Correlation

To assess the performance of the newly developed correlation (Equations (14)–(18)),
the predicted recovery factors of a three-cycle WAG injection process are compared with
the experimental data and the results obtained by the mathematical model. In the selected
experiments, the WAG flooding process was conducted at the near-miscible condition
(T = 38 ◦C, and p = 12.7 MPa), and in a strongly water-wet sandstone starting with a
primary waterflooding (two-phase flow where sgi = 0). The process was then followed
with the first gas injection in which the first cycle of the WAG injection was complete
(N = 1). The consecutive flooding of water and gas continued for three cycles (N = 3).
The process was terminated after the third gas injection where no significant amount of oil
was recovered from the porous system. In the experiments, the process was conducted at a
WAG ratio of 1:1 with a constant gas injection rate (e.g., qinj = 25 cm3/h). The RF against
the number of injected cycles (N), based on the experimental data, predicted values by
the new correlation, and the estimated values by the mathematical model, is presented in
Table 9 and Figure 8.

Table 9. Comparison of RF and relative errors of WAG injection generated by the developed correlation, mathematical
model, and experimental work.

N RFGEP
(%)

Relative ErrorGEP-Exp

(%)
RFTarget

(%)
Relative ErrorGEP-Target

(%)
RFExp

(%)

0.5 59.35 18.77 50.08 18.51 49.97
1 69.20 5.50 64.64 7.05 65.59

1.5 76.08 5.65 71.94 5.75 72.01
2 81.56 3.08 79.37 2.76 79.12

2.5 86.22 1.33 84.30 2.28 85.09
3 90.32 3.48 92.00 1.83 93.58
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After the primary water flooding (N = 0.5), the recovery factor of RF = 50.00% was
obtained in the experimental run. The mathematical model can compute a magnitude of
RF = 50.08%, confirming the accuracy and reliability of the numerical model. The newly
developed correlation forecasts a RF = 59.35% at the end of the primary waterflooding.
Following the production operation by conducting the first gas injection (N = 1), the
experiment resulted in the RF= 65.59%; this was predicted by the mathematical model
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with a value of RF = 64.64%, implying excellent agreement. The proposed correlation
predicts the RF = 69.20% for this stage. After that, two more cycles were injected into the
porous medium and the final RF = 93.58%, 92.00%, and 90.32% were obtained through
the experimental phase, numerical model, and newly developed correlation, respectively.
The details of the RF at each injection mode are given in Table 9. The relative errors in
estimating the RF at different cycles (N = 1 to 3) are also listed in Table 9. According to
Table 9 and Figure 8, it is found that the correlation developed by the GEP algorithm is
able to successfully predict the RF of the intermediate cycles, and more importantly, the
ultimate RF with a relative error of 3.48% at N = 3.

4.4. Effect of Capillary Number

The efficiency of oil recovery techniques depends on the interplay between various
forces at the pore scale and the macroscopic scale [98]. The capillary and viscous forces are
not in favor of each other when implementing an EOR/IOR process. The capillary forces
are the cause of fluid entrapment during immiscible/near-miscible processes. However,
viscous forces of the injecting phase act in opposite to the capillary forces. The capillary
forces are affected by the interfacial tension (IFT) between phases, wettability state of the
system, and the pore geometry in which the blob entrapment of phases occurs. On the
contrary, viscous forces are controlled by the rock permeability, applied pressure drop, and
the viscosity of the injected fluid (the displacing phase) [99]. In the oil and gas industry,
capillary desaturation curves are well recognized for highlighting the properties and
geometry of the porous systems as well as the fluids distribution within the pores [100].
Increasing the capillary number has always been set as a target for designing EOR/IOR
processes in order to achieve a higher oil recovery from reservoirs. Capillary number
(Nca) is defined as the ratio of viscous forces to capillary forces [101]. There are numerous
expressions for the capillary number (Nca). Among the proposed versions, the capillary
number introduced by Saffman and Taylor [102] is the most common form, as given below:

Nca =
vµ

σ
(20)

where the v is the superficial velocity; µ stands for the viscosity of the displacing phase;
and σ refers to the interfacial tension between fluids.

In this work, after applying Buckingham’s π theorem, variations (inverse) of the
capillary number between the oil–water (Now

ca ) and oil–gas (Nog
ca ) systems are generated

as follows:
π1 =

σow K
µw qw

=
1

Now
ca

(21)

π2 =
σog K
µg qg

=
1

Nog
ca

(22)

where σog and σow denote the interfacial tension between the oil–gas and oil–water phases,
respectively; µi refers to the viscosity of phase i; qw and qg represent the water and gas
injection rates; and K is the permeability of the medium. Since π1 and π2 show approxi-
mately the same relative importance within the developed correlation for predicting the
RF of the WAG flooding process, a sensitivity analysis on the impact of π1 on the RF of a
WAG injection is conducted. To investigate the impact of capillary number (the inverse
of π1) on oil RF, the results of WAG RF for three cycles (N = 1, 2, 3) at three orders of
magnitude of π1 are compared in Figure 9. According to the results presented in Figure 9,
by increasing the π1 from the initial value of 8.16 × 10−5 (corresponding to the value at
the experimental condition) to 8.16 × 10−2, and 8.16 × 10−1, the ultimate RF of WAG
injection decreases from 90.32% to 85.79%, and 75.03%, respectively. This implies that
the RF of a WAG injection process decreases by 16.92% upon a decrease in the capillary
number by four orders of magnitude. The same trend of RF reduction at higher values
of π1 is noticed at the end of the first and middle injection cycles. Increasing π1 by four
orders of magnitude (corresponding to decreasing the capillary number by four orders of



Energies 2021, 14, 7131 20 of 28

magnitude) lowers the ultimate RFs of the first (N = 1), and the second (N = 2) cycles by
22% and 23.1%, respectively. This result highlights the dominancy of viscous forces at high
capillary numbers, resulting in more oil trapping in the porous medium and a decrease in
oil RF during various cycles of a WAG flooding process.
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4.5. Effect of Viscosity Ratio (π3, π4)

The viscosity of fluids in a three-phase flow of oil, water, and gas affects the mobility
ratio (M) of the displaced (oil) and displacing phases, residual oil saturation, and finally
the recovery factor of a WAG flooding process. The mobility ratio is defined as follows:

M =

kr,ing
µing

kr,ed
µed

(23)

In Equation (23) kring and kred represent the relative permeability of the displacing
(water or gas) and displaced (oil) phases, respectively. µing and µed denote the viscosities
of the displacing and displaced phases.

In this research, two of the introduced dimensionless groups describe the ratio of oil
to gas, and oil to water viscosities (π3 = µo

µg
, π4 = µo

µw
), which considerably affect the RF

of the WAG flooding. To evaluate the impact of the viscosity ratio, WAG simulations are
conducted at different values of π3 and π4 (Figures 10 and 11). All cases are simulated
using the developed correlation in all three cycles (N = 1, 2, 3), where the rest of the
dimensionless groups are fixed at the base condition corresponding to the experimental
data. We evaluate the performance of the WAG flooding process at three values of π3: 1.59
(the base value), 2, and 3. The simulation outputs are shown in Figure 10. The RF results
reveal that in all cycles, by increasing the π3 value, the RF decreases. When π3 increases
from 1.59 (RF ultimate = 90.32%) to 2 (RF ultimate = 84.14%), and 3 (RF ultimate = 76.66%), the
ultimate recovery factors of WAG injection after three cycles of injection decrease by 6.84%
and 15.12%, for π3 = 2, and π3 = 3, respectively. Increasing π3 also decreases the oil
recovery at the first and second injection cycles, significantly. The RF results at each cycle
are provided in Table 10. The results are consistent with the previous studies in which
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the greater viscosity gap between the oil and gas leads to unfavorable high mobility ratio,
bypassing the oil bank (gas channeling), and early gas breakthrough [20].
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Table 10. π3 and π4 sensitivity analysis to assess the WAG flooding process.

π3 = µo
µg

N RF (%) π4 = µo
µw

RF (%)

1.59
1 69.20

0.0611
69.20

2 81.56 81.56
3 90.32 90.32

2.00
1 63.15

0.100
62.14

2 75.46 74.89
3 84.14 84.25

3.00
1 57.00

0.120
59.40

2 70.00 73.42
3 76.66 81.19

The sensitivity analysis is also performed, considering different values of π4 = µo
µw

.
The simulations are conducted using the experimental conditions and at three cycles
of consecutive injections of water and gas for three values of π4: 0.061 (reference value
corresponding to the experimental condition), 0.10, and 0.12. The outputs of the simulations
for three cycles of WAG injection are demonstrated in Figure 11 and Table 10. According to
the simulation outputs of the WAG process using the GEP correlation (Equations (14)–(18)),
increasing the values of π4 from 0.061 to 0.10, and 0.12, lowers the ultimate RF by 6.72%
and 10.11%, respectively. This appears to be logical as the π4 (the ratio of oil to water
viscosity) increases the mobility ratio of the oil (as the displaced phase) and water (as
the displacing phase) which is unfavorable, resulting in front instability of fluids and
considerable residual oil saturation. Comparing Figures 10 and 11 also highlights the
superior impact of π3 on RF of WAG injection over the impact of π4; this is also confirmed
while assessing the relative importance of the variables (dimensionless groups). This is due
to a higher viscosity difference between oil and gas compared to the difference of oil–water
viscosities, leading to higher potential of oil trapping and early breakthrough, and thereby
the RF is affected more (greater reduction) at higher values of π3, compared to π4.

5. Summary and Conclusions

In this study, we develop a new correlation for predicting the recovery factor (RF) of
a near-miscible water alternating gas (WAG) injection process. The model is developed
using dimensionless groups made of the key fluid, rock, and process characteristics that
impact the RF of a near-miscible WAG flooding process. Seven dimensionless groups are
generated using the dimensional analysis approach through employing Buckingham’s
π theorem. The dimensionless numbers are used as the input variables for the newly
introduced evolutionary algorithm gene expression programming (GEP) model to develop
a reliable predictive tool for the RF of WAG processes. The accuracy of the proposed
correlation is verified using modeling results and data from a laboratory case study taken
from the literature in which near-miscible WAG flooding was conducted on a strongly
water-wet sandstone core sample at 38 ◦C and 12.7 MPa. Based on the error analysis, the
newly proposed GEP model shows a very good match with the target data. For example,
R2 = 92.85% and MSE = 1.38 × 10−3 are attained for the training phase. The results of the
relative importance (RI) of the input variables indicate that the number of injected cycles
(N, π7) has the highest impact on the developed correlation with an RI of 37.14%. After π7,
π3 and π4 are reported as the most essential parameters with RI values of 36.61%, 18.84%,
and 2.30%, respectively.

The predicted recovery factors of a three-cycle WAG injection process are compared
with the experimental data; the results obtained by the mathematical model show that the
correlation developed by the GEP algorithm is able to successfully predict the RF of the
intermediate cycles, and more importantly, the ultimate RF with a relative error of 3.48% at
N = 3.
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According to the sensitivity analysis, increasing oil–water capillary number leads to
an increase in RF for all cycles. In addition, an increase in the magnitudes of oil to gas
viscosity ratio or oil to water viscosity ratio causes a reduction in RF of each cycle in the
WAG flooding process. It is found that the viscosity ratio of oil and gas has a greater
influence on the RF value, compared to viscosity ratio of oil and water because of a greater
viscosity difference between the oil and gas phases.

For future work, due to the lack of predictive tools for WAG injection processes, it is
recommended to conduct similar procedures to develop empirical correlations for WAG
injection in other porous systems such as fractured and/or heterogeneous porous media.
The presented results in this work are based on experimental data of a near-miscible WAG
injection in a strongly water-wet sandstone core. This research can be extended for other
miscibility conditions such as miscible/immiscible, at other wettability states and rock
lithologies.
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Nomenclatures
Acronyms
ANOVA Analysis of variance
CCD Central composite design
DCI Dimensionless CO2 injection
DCP Dimensionless CO2 production
DEOR Dimensionless tertiary oil recovery
DOE Design of experiment
DTI Dimensionless total injection
EOR Enhanced oil recovery
ET Expression tree
GA Genetic algorithm
GEP Gene expression programming
GI Gas injection
GP Genetic programming
IFT Interfacial tension
IOR Improved oil recovery
IMPES Implicit-pressure-explicit-saturation
M Mobility ratio
MMP Minimum miscible pressure
MSE Mean square error
N Number of injected cycles
OF Objective function
PSO Particle swarm optimization
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PVI Pore volume injection
RAE Relative absolute error
RF Recovery factor
RI Relative importance
RMSE Root-mean-square error
RSE Residual standard error
WF Waterflooding
WAG Water-alternating-gas
Variables and Parameters
a Capillary exponent
Cij Correlation constant values
Ci Capillary constant [Pa]
F The main effect of factors in ANOVA
K Absolute permeability [md]
kri Relative permeability of phase i
p Pressure [Pa]
p value The interaction effect of factors in ANOVA
q Flowrate [m3/h]
R2 Coefficient of determination
si Saturation of phase i
t Time [h]
v velocity [m/h]
x Length [m]
Greek Letters
µ Viscosity [cP]
ρ Density [kg/m3]
σ Interfacial tension [N/m]
φ Porosity
θ Contact angle
πi Dimensionless number
Subscripts and Superscripts
ave Average
ca Capillary
D Drainage
ed Displaced phase (oil)
exp Experiment
g Gas phase
ing Displacing phase
I Imbibition
nw Nonwetting phase
o Oil phase
og Oil–gas system
ow Oil–water system
r Residual phase
w Wetting phase

Appendix A

The general form of the employed capillary pressure model is presented by Equa-
tion (A1), as given below:

pc, ij = σij cos(θij)

√
ϕ

K

 co(
snw−snwr

1−snwr

)ao +
cw(

sw−swr
1−swr

)aw

 (A1)

The description of the parameters seen in Equation (A1) is given in Table A1.
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Table A1. Description of parameters used in Equation (A1) [88].

Parameter Description

pc,ij Capillary pressure (in a three-phase system)
σij Interfacial tension
θij Contact angle

ci, cj Capillary entry pressure
s Saturation
a Capillary exponent

nw, w Nonwetting and wetting phases, respectively.
i, j Existing phases (oil, water, or gas)

Equations (A2)–(A6) introduce the mathematical formulas of the statistical measures
used in this study.

MSE =
1
n

n

∑
i=1

(RF(i)exp − RF(i)prd)
2 (A2)

RMSE =

√
1
n

n

∑
i=1

(RF(i)exp − RF(i)prd)
2 (A3)

MAE =
1
n

n

∑
i=1

(RF(i)exp − RF(i)prd) (A4)

RSE =

√
1

n− 2

n

∑
i=1

(RF(i)exp − RF(i)prd)
2 (A5)

RAE =
∑n

i=1

∣∣∣RF(i)exp − RF(i)prd

∣∣∣
∑n

i=1

∣∣∣RF(i)exp − ave
(

RFexp
)∣∣∣ (A6)
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