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Abstract: To establish confidence in the results of computerized physics models, a key regulatory
requirement is to develop a scientifically defendable process. The methods employed for confidence,
characterization, and consolidation, or C3, are statistically involved and are often accessible only to
avid statisticians. This manuscript serves as a pedagogical presentation of the C3 process to all
stakeholders—including researchers, industrial practitioners, and regulators—to impart an intuitive
understanding of the key concepts and mathematical methods entailed by C3. The primary focus
is on calculation of tolerance limits, which is the overall goal of the C3 process. Tolerance limits
encode the confidence in the calculation results as communicated to the regulator. Understanding the
C3 process is especially critical today, as the nuclear industry is considering more innovative ways
to assess new technologies, including new reactor and fuel concepts, via an integrated approach
that optimally combines modeling and simulation and minimal targeted validation experiments.
This manuscript employs intuitive, analytical, numerical, and visual representations to explain how
tolerance limits may be calculated for a wide range of configurations, and it also describes how their
values may be interpreted. Various verification tests have been developed to test the calculated
tolerance limits and to help delineate their values. The manuscript demonstrates the calculation of
tolerance limits for TSURFER, a computer code developed by the Oak Ridge National Laboratory for
criticality safety applications. The goal is to evaluate the tolerance limit for TSURFER-determined
criticality biases to support the determination of upper, subcritical limits for regulatory purposes.

Keywords: statistical tolerance limits; Bayesian inference; aleatory and epistemic uncertainties

1. Introduction and Mathematical Background

To establish confidence in the results of computerized physics models, a key regulatory
requirement is to develop a scientifically defendable process, known as model validation. To
ensure that code predictions can be trusted for a given application, such as the domain en-
visaged for code use, the regulatory process requires the consolidation of two independent
sources of knowledge: (1) measurements collected from experimental conditions similar
to those of the application, and (2) code predictions that model the same experimental
conditions. This is equivalent to the idea of cross-referencing knowledge obtained from
independent sources. The idea is that the consolidated knowledge will provide a higher
level of confidence than the knowledge obtained from a single source. Drawing upon an
example from criticality safety, which is the focus of this work, the analyst is interested in
predicting a response, such as keff, for an arrangement of fuel assemblies in a shipping cask,
serving as a representative application. The two sources of knowledge are (1) prior code pre-
dictions and (2) measurements for a number of critical experiments containing fuel similar
in composition, geometry, and arrangement to that of the application. The premise is that,
while both the code-calculated and experimentally measured responses have unavoidable
uncertainties, the consolidation process could produce a better estimate of keff with a higher
level of confidence than an estimate obtained with the experiments or code predictions
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alone. This process also demonstrates the applicability of the computational method to
real-world measurements. Validation to real-world measurements is required by consensus
standards and regulation promulgated by the US Nuclear Regulatory Commission (NRC).

This approach represents the core principle behind model validation, and it is de-
signed to establish confidence in code predictions. Details on how the confidence in each
knowledge source is characterized and how the knowledge consolidation process works
are not prescribed by the regulators. Instead, the regulation process mandates a minimum
level of confidence that the licensee must demonstrate in their code predictions, such as
the 95%/95% criterion often employed by nuclear practitioners. This leaves enough free-
dom to the licensees to design their own technical basis for confidence, characterization,
and consolidation, or C3.

Many statistical methods have been developed over the years to describe the C3

process: see for example Fisher 1950 [1], Hotel 1971 [2], Jaynes 1976 [3], Samaniego 2010 [4],
Stanton 2017 [5], Bolstad 2017 [6], Bishop 2006 [7], Wakefield 2013 [8], and Thornber 1965 [9].
The theory has appeared in many textbooks and is presented from two distinct, heavily
debated viewpoints—the frequentist and Bayesian statistics—with various renditions,
such as parametric, nonparametric, and order-statistics. Despite the striking differences
between the two viewpoints and their associated analysis methods, the final results could
look very similar, making it very difficult for practitioners to see the value of all the
theoretical subtleties. This work maintains that this classical presentation diminishes the
value to engineering practitioners, who need an intuitive understanding of the how the
C3 process works, thus allowing for a transparent approach through which the values of
different methods may be assessed. This manuscript presents an intuitive exposition of the
C3 process and its relevance to criticality safety problems. The presentation is supported
by basic mathematical/statistical principles which are accessible to most engineering
practitioners, as well as graphical aids delineating the process by which confidence can
be established.

This presentation supports the development of a tolerance limit for bias calculations
performed by ORNL’s TSURFER code, which is used for criticality safety [10]. Currently,
TSURFER only calculates bias and bias uncertainty. The objective of this work is to
evaluate the tolerance limit for the calculated bias to support determination of upper
subcritical limits for regulatory purposes. In support of criticality safety analysis licensing,
the regulator requires development of a confidence characterization and consolidation
process (C3) when calculating quantities of interest, such as keff, for a given application
condition. The consolidation process is mandated to develop confidence collected from
two independent sources: physics-based calculations and experimental measurements.
In practice, it is not feasible to experiment with every application condition, so a method is
needed that can leverage similar experiments to complete the C3 process. The TSURFER
methodology attempts to achieve this goal by consolidating experimental measurements
and calculational results from a number of experiments that are judged to be sufficiently
similar to the application; this is accomplished by using a Bayesian-based generalized
least-squares methodology [10]. The measurements and calculations for the experimental
conditions are consolidated by identifying a common source of uncertainty across all of
the experiments and the target application. In the TSURFER methodology, this common
source is the nuclear cross sections, which are adjusted by TSURFER to improve the
agreement between calculations and measurements. The adjusted cross sections serve as a
basis for updating the value of keff for the application (while the generalized least-squares
methodology is based on the concept of cross section adjustments, TSURFER is able to
directly calculate the impact on the response of interest in the form of calculational biases
without having to store the adjusted cross sections.) The difference between the prior and
adjusted keff values is referred to as a bias.

To establish confidence in the calculated bias, TSURFER also calculates the standard
deviation of the bias assuming the bias uncertainty is described by a normal distribution.
In this effort, TSURFER was augmented with another measure of confidence, denoted by
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the tolerance limit [11,12], an upper threshold that is a function of the mean value of the bias
and its standard deviation in the form µt + Kσt. The K is a coverage parameter calculated to
ensure that there is a high probability that the true bias remains below the upper threshold
value. This supports the calculation of the upper subcritical limit (USL) [13]. The regulator
enforces the use of USL to ensure, with high confidence, that the true value of keff for the
given application remains upper-bounded. To support this goal, TSURFER must be able
to calculate an upper threshold limit for the bias, also with high confidence. Typically,
US NRC requires that there is 95% confidence that at least 95% of the population of bias
values are covered.

Demonstration of this specific requirement has been an obstacle to implementation of
the TSURFER methodology in the United States since its initial release. Since TSURFER
represents a specific rendition of the C3 process, it is important to first develop a gen-
eral understanding of the value, interpretation, and calculational methods for tolerance
intervals. This is important to establish before navigating through the various methods
appearing in the literature, so that tolerance calculations from both the frequentist and
Bayesian viewpoints can be managed. This manuscript is not intended to support or
criticize the TSURFER methodology; instead, it provides clear guidance to practitioners
on how to select a specific tolerance calculational method, as demonstrated herein, for the
TSURFER methodology.

The C3 process does not provide any details on the technical method used to math-
ematically characterize confidence nor does it provide instructions on how confidence
can be algorithmically consolidated from multiple sources. To make such decisions, one
must first determine the type of uncertainties present in the problem. The presence of
uncertainty implies that one cannot make a deterministic statement about the outcome of
an experiment: that is, one cannot say with 100% certainty that keff is equal to 1.0. This
results from two distinct types of uncertainty. The first type of uncertainty results from the
inability to control every aspect of an experiment. For example, one cannot exactly know,
with 100% confidence, the geometry, the composition, and other experimental conditions.
If employing a code, the same situation occurs wherein the lack of knowledge—regarding
the physics model itself and/or its associated input parameters—contributes to the overall
uncertainty. The second type of uncertainty results from the physical nature of the quantity
being measured, which may not assume a single value due to its inherent randomness. The
first type of uncertainty is referred to as epistemic or Bayesian uncertainty, and the second
type is associated with more conventional frequency-based interpretation of uncertainty,
referred to as aleatory uncertainty. Both these types of uncertainties are mathematically de-
scribed using probability density functions (PDFs), albeit with different interpretations and
different consolidation approaches. For example, as explained below, aleatory uncertainties
are consolidated via averaging of their PDFs, whereas epistemic uncertainties, interpreted
as degree-of-belief, are consolidated via PDFs multiplication.

Despite the striking differences in the interpretations of these two types of uncertain-
ties and their markedly different consolidation approaches, their final results, including
confidence intervals, credible intervals, or tolerance intervals, often look very similar, with
only subtle variations that are heavily debated by statisticians, while seeming mostly of
unclear value to practitioners [3]. Statements like the following are typically made about a
response such as keff for a given application, for example, a shipping cask containing nuclear
fuel: With 95% confidence, the probability that keff will not exceed the stated threshold
is 95%. Ideally, a straightforward interpretation of this statement would read as follows:
there is 95% chance that the true value of keff will not exceed the stated threshold. However,
this simple interpretation is not 100% accurate; it is only 95% accurate. In layman terms,
this is equivalent to stating: You certainly need to get a college education to succeed in life,
but not necessarily, or with no surprises, the surgery will be 99% safe. Intuitive interpretation of
these statements is troubling because they provide conflicting, ambiguous, probabilistic
information. On the one hand, they make a positive probabilistic assertion for the outcome,
but on the other hand, they hedge, thus reducing the confidence in that assurance. In other
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words, they hedge twice, once by employing a probabilistic rather than deterministic asser-
tion to describe the outcome, and then they hedge a second time against that very assertion.
It is natural to ask, why cannot one hedge only once, resulting in a much simpler/intuitive
interpretation? The goal of this work is to explain that this double-hedging strategy is
a result of the theoretical methods employed to describe confidence. While this strategy
affords mathematical convenience, it entangles the meanings of aleatory and epistemic
uncertainty. However, simple interpretation can still be achieved using basic arguments
and graphical aids, which is one of the key contributions of this work. Another goal is to ex-
plain how both epistemic and aleatory uncertainties are essential in establishing confidence.
In many textbooks, the two viewpoints are discussed separately, as independent tracks
in statistics [6]. However, all practical problems contain a mix of epistemic and aleatory
uncertainties, necessitating a flexible approach that can transition seamlessly between the
two viewpoints.

Methods used to determine the tolerance limits (tolerance intervals) are based on
order statistics as defined by Wilks [14,15], in which the distribution of the proportion
of the population between two-order statistics is independent of the sample population.
Wald [16] extends Wilks’ method and constructs the tolerance limits for normally dis-
tributed data. Somerville tabularized the tolerance limits for nonparametric tolerance
limits to minimize the interpolation, and Patel [17] discusses the tolerance limits for various
distributions in both parametric and nonparametric methods. In nuclear engineering,
tolerance limits attracted attention because the US NRC’s licensing process switched to
best-estimate methods plus uncertainty (BEPU) analyses in 1988 [18]. Tolerance limits
were introduced to nuclear systems by Pál [19] and Guba [20] for the application of safety
analyses. They have been incorporated within the framework of standard uncertainty
analysis methods like the GRS method [21], thus serving as measures of confidence. Many
papers in nuclear literature apply tolerance limits and propose suitable data treatment in
their specific studies. For example, nonparametric tolerance limits are applied on quantities
like fission gas release for spent fuel assembly [22]. One- and two-sided tolerance limits are
used to improve the precision of measurement uncertainty for engineering systems and
are applied on a contaminant transport model [23]. The distribution-free Wilks tolerance
limit is used to evaluate the nuclear data uncertainty impact on power and reactivity in
rod-withdrawal transients for pressurized water reactor (PWR) mini-cores when the output
is time dependent and its distribution varies across time [24]. Porter [25] provides a compre-
hensive discussion on the nonparametric tolerance limits, including derivations, statistical
properties, application to computational tools, requirements imposed on the applied code,
verification process, and higher-rank Wilks formula. The tolerance limits are tested with
various orders to obtain recommendations on safety audit analysis for energy systems [26].
The Wilks formula is used to evaluate uncertainty quantification (UQ) results on a TRACE
boiling water reactor (BWR) model to simulate a spray cooling experiment [27]. The up-
per tolerance limits of parametric and nonparametric methods under mixture of normal
distributions for nuclear power plant safety (e.g., peak cladding temperature in accident
scenario) are derived and calculated [28]. Wilks’ method was compared to the Monte Carlo
method for performing UQ on loss-of-coolant-accident (LOCA) application [29] and was
found to be conservative and flexible at the 95/95 tolerance. Shockling [30] evaluated
the number of thermal-hydraulics calculations required to meet the safety limits using
nonparametric order statistics on peak cladding temperature. Suggestions on the order
and number of random samples needed in the use of Wilks’ formula for more appropriate
nuclear safety applications are provided in the Nuclear Energy Agency Committee on the
Safety of Nuclear Installations workshop proceedings from 2013 [31] and based on the
authors’ in-depth understanding. The appropriate quantitative “high level of probability”,
from a regulatory point of view, are explained in Martin and Nutt’s article from 2011 [32],
in which different assumptions and limitations of acceptance criteria are reviewed, and
recommendations for LOCA applications regarding univariate and multivariate situations
for UQ with order statistics are provided.
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To set the stage for the C3 process, the reader is strongly recommended to visit
Appendix A before proceeding to the next section. Appendix A starts with a few prelimi-
nary definitions on two key concepts in probability theory—the frequency of occurrence
and the degree of belief—both of which are dubbed as probability and described by PDFs.
The goal is to show that despite the differences, which arguably appear to be purely
philosophical to practitioners, the combined use of Bayesian and frequentist statistics is
essential to establish/consolidate confidence in most practical problems. The presentation
in Appendix A is meant to be pedagogical, to allow for a transparent dialogue about the
effectiveness and value of various C3 methods. For experienced statisticians, Appendix A
may be skipped. For other readers, it is strongly recommended as it describes in detail the
basic principles of the C3 process which is essential before proceeding to the TSURFER
application in the next section.

2. TSURFER Tolerance Limit Development

This section demonstrates how the upper threshold for a 95%/95% tolerance interval
may be calculated for the TSURFER methodology. The goal is to ensure that the TSURFER
bias will not result in a keff value that exceeds the upper subcritical limit, as illustrated in
Figure 1.

Figure 1. Relationship of USL and TSURFER Bias Tolerance Limit.

The reference value for keff prior to the application of TSURFER is marked by the blue

horizontal line k(cal)
app . The bias k(app) calculated by TSURFER is marked by the double-

pointing arrow, bringing the best-estimate of keff to the green line. Since the TSURFER
methodology is statistical, the confidence in the bias estimate is described by an epistemic
PDF, as marked by the blue curve. This PDF is assumed to be normal in the TSURFER
methodology. The standard deviation σ

∆k(app) of this PDF is calculated by TSURFER,
as marked by the two double-pointing orange arrows around the best-estimate adjusted
value. The upper threshold of the tolerance interval is marked by the red line, so the area
underneath the PDF is at least 0.95, implying with 95% confidence that the true value for
the bias will ensure a keff value below the upper threshold limit. The interval upper-limited
by the red line (marked by a solid red bar) is the tolerance interval for TSURFER’s bias.
Finally, an additional administrative margin is added to reach the USL [13].

2.1. TSURFER’s Problem Definition

With the TSURFER theory well-documented [10], a simplified rendition is presented
below, consistent with the mathematical treatment provided in Appendix A. Effectively,
TSURFER applies a customized rendition of the C3 process to update knowledge about the
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target application for which no experimental data exist using two sources of knowledge—
the application’s model-predicted keff, given by a prior PDF of the form:

p(cal)
app

(
k(app)

t

∣∣∣k(cal)
app

)
∝ e
−

(k(cal)
app −k

(app)
t )

2

2σ
(app,cal)2
t , (1)

and the measurements from N experiments,

p(exp)
i

(
k(i)t

∣∣∣k(exp)
i

)
∝ e
−

(k
(exp)
i −k(i)t )

2

2σ
(expi)2
t , i = 1, 2, . . . , N, (2)

consolidated with their associated model-predicted values,

p(cal)
i

(
k(i)t

∣∣∣k(cal)
i

)
∝ e
−

(k(cal)
i −k(i)t )

2

2σ
(expi ,cal)2
t , i = 1, 2, . . . , N. (3)

The distributions in Equations (1) and (3) are centered around the reference prior
keff values of k(cal)

i |Ni=1 and k(cal)
app , which were calculated using the reference values for the

cross sections, leaving the true values, k(i)t |Ni=1 and k(app)
t , as unknown in the epistemic

sense. Notwithstanding the aleatory nature of the interaction between a neutron and a
target nucleus, the epistemic treatment is more adequate because the range of cross section
variations that result from the random nature of the neutron-nucleus interaction is much
smaller in magnitude than the uncertainties associated with the cross-section measurement
and subsequent evaluation procedures. This situation is depicted in Figure A1 in the
Appendix A, where the narrow PDF represents the true aleatory spread of the cross-section
values, whereas the wider PDF represents the degree-of-belief about the mean values of
the aleatory PDF.

All three sets of distributions in Equations (1)–(3) assume the normal shape because
only the mean and standard deviations are employed to construct the PDFs. This approach
was used based on a famous statistical result [33] stating that the least-informative PDF
about a parameter is the normal distribution when the mean value and standard deviations
are the only known features about the distribution. The true standard deviation of the cal-

culated keff value for the N experiments—σ
(expi , cal)
t |Ni=1 and the application, σ

(app, cal)
t —are

obtained by propagating the cross-sectional uncertainties from Evaluated Nuclear Data File
(ENDF) libraries, which are available in the form of covariance information [34]. Arguably,
the propagation process may result in non-normal distributions for the calculated keff
values. Assessing the adequacy of the normality assumption is outside the scope of this
work. If indeed the prior distributions given in Equations (1) and (3) considerably deviate
from the normal shape, then nonparametric methods are needed to determine the tolerance
limits. Nonparametric methods do not make assumptions about the shape of the true
PDF, so the shapes of the sampling distributions (e.g., normal distribution, χ2-distribution,
t-distribution) cannot be evaluated analytically. Instead, sampling techniques that emulate
the numerical results described in Appendix A.7 are performed to numerically integrate
the resulting joint sampling distributions of the mean and standard deviations. However,
this discussion is outside the scope of this study, which is limited to the assumptions
made by TSURFER, whose justification may be found in earlier publications by TSURFER
developers [10].

The measurement PDFs in Equation (2) are centered around the measured values,

which are assumed to be a single measurement per experiment—k(exp)
i |Ni=1 leaving the

true keff value as the unknown. The true standard deviations σ
(expi)
t |Ni=1 are assumed to be

known which greatly simplifies the calculation of the tolerance limit as will be shown later.
The standard deviations are often based on conservative estimates of the various sources of
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uncertainties that are believed to contaminate the experimental model, including composi-
tion, geometry, and experimental conditions, often referred collectively to as the benchmark
uncertainties, where a benchmark denotes an experiment. This uncertainty can also be
inflated to account for statistical uncertainties resulting from Monte Carlo simulation.

The mathematical procedure used to combine these uncertainties is selected by the
experimentalist (the quadrature approach is often considered adequate to combine these
uncertainties since they tend to be independent of each other; this discussion is, however,
considered outside the scope of this work) which is typically unchallenged and may not be
well documented. Essentially, it is left to the experimentalist to decide on the best approach
to capture and combine the different types of uncertainties, often employing conserva-
tivism. When performing downstream analysis (e.g., TSURFER), the analyst employing
these uncertainties must decide whether these uncertainties are aleatory or epistemic.
TSURFER assumes that the reported experimental standard deviations are the true values
and that the associated PDF is normal per Equation (2). Furthermore, it assumes that the
PDF is epistemic and thus employs the concept of PDF multiplication for consolidation
with the code-calculated PDFs shown in Equation (3). As shown below, the choice of
epistemic treatment is straightforward for TSURFER because the true standard deviations
for the consolidated PDFs are assumed to be known. With more explicit treatment of the
uncertainties from the experimental procedure, the choice between aleatory and epistemic
treatment would become more relevant.

2.2. TSURFER’s C3 Process

In the above formulation, the number of parameters for which knowledge is to be
updated is equal to N + 1, representing the keff values for the N experiments k(i)t |Ni=1 and

the one application k(app)
t . Each experiment has two sources of knowledge: one from

the experimental measurements k(exp)
i |Ni=1, and one from prior code calculations k(cal)

i |Ni=1,
and, finally, the target application has a single knowledge source from code calculations
k(cal)

app |Ni=1. A straightforward application of the C3 process, as outlined in Appendix A.4,

only allows for updating knowledge about the true value for each experiment k(i)t |Ni=1
independently of all other experiments, as obtained by consolidating the two respective
PDFs for the ith experiment in Equations (2) and (3), as follows:

p(con)
i

(
k(i)t

)
∝ e
−

(k
(exp)
i −k(i)t )

2

2σ
(expi)2
t

−
(k(cal)

i −k(i)t )
2

2σ
(expi ,cal)2
t ∝ e

−
(k(con)

i −k(i)t )
2

2σ
(coni)2
t ,

where the respective mean values and the standard deviations of the consolidated PDFs
are given by

k(con)
i =

k(cal)
i

σ
2(expi ,cal)
t

+
k(exp)

i

σ
2(expi)
t

1
σ

2(expi ,cal)
t

+ 1
σ

2(expi)
t

,

1

σ
(coni)
t

=
1

σ
2(expi ,cal)
t

+
1

σ
2(expi)
t

,

where the superscript con refers to the consolidated values. This brute-force application
of the C3 process is not interesting, because it does not exploit the similarity between the
experiments, and more importantly, it does not provide a way to update the application’s
PDF in Equation (1). If the PDFs in Equations (1)–(3) are multiplied directly, then 2N + 1
would be unknown, and all PDFs would be treated as independent of each other, hence,
providing no real value from consolidation. To overcome this, the unknown epistemic pa-
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rameters must be common to all PDFs to realize the value of PDF multiplication. TSURFER
achieves that by assuming the following:

k(app)
t = k(cal)

app +
⇀
θ

T

app
⇀
δ t + ε, (4)

k(i)t = k(cal)
i +

⇀
θ

T

i
⇀
δ t + ε, i = 1, 2, . . . , N. (5)

These N + 1 equations imply that the true keff values for the N experiments and the
one application all depend linearly on a common set of n epistemic parameters represented

by a vector
→
δ

T

t ∈ Rn = [ δt1 δt2 · · · δtn ], where t denotes the unknown true values.
These epistemic parameters are selected in TSURFER to be the multigroup nuclear cross
sections, and the coefficients of linearity, represented by the components of the vectors
→
θ i and

→
θ app, are precalculated using a sensitivity (parametric) analysis, which estimates

the first-order derivative of the calculated keff with respect to each cross section.
It is important to note here that while these equations allow for application of the C3

process, they are based on two key assumptions that require proper validation: (a) cross sec-
tions represent the key sources of the observed discrepancies between calculated and mea-
sured keff values, and (b) the unexplained errors ε have no structure and are purely aleatory,
so they can be reduced with repeated measurements or many experiments. In reality, these
unknown errors are likely a combination of epistemic and aleatory uncertainties, with the
epistemic uncertainties resulting from other parameters not captured by the physics model,
and with the aleatory uncertainties resulting from uncontrolled experimental conditions.
With epistemic uncertainties present but unaccounted for, the error compensation phe-
nomenon is likely to happen. Thus, analysis is required to ensure that these assumptions
are adequate. However, this is outside the scope of the current work.

With a source of epistemic uncertainties that is common to all experiments, the C3

process can consolidate all the PDFs in Equations (2) and (3) into a single updated PDF
for the cross-sectional adjustments. Since the cross sections are described by a vector,

the resulting consolidated PDF—p
(
⇀
δ t|k(exp)

i |Ni=1, k(cal)
i |Ni=1

)
—is in the form of a multi-

dimensional normal distribution,

p
(
⇀
δ t|k(exp)

i |Ni=1, k(cal)
i |Ni=1

)
∝ e−

1
2 (

⇀
δ t−

⇀
δ m)

T
C(δ)−1

m (
⇀
δ t−

⇀
δ m). (6)

Although it is more complicated in form than the simpler single-variable PDFs such
as Equation (A15), it can be shown that this PDF is centered around a vector of mean

values
→
δ m, and the spread (i.e., as measured by the variance or standard deviation) of

the PDF along the n dimensions is described by a squared n × n covariance matrix C(δ)
m ,

both of which can be analytically determined. Expressions for
→
δ m and C(δ)

m may be found
in the TSURFER literature [10]. To support the pursuit for the tolerance interval, simpler

expressions are presented here for
→
δ m which may be written as:

⇀
δ m = B


k(exp)

1 − k(cal)
1

k(exp)
2 − k(cal)

2

. . .

k(exp)
N − k(cal)

N

 = B

(
⇀
k
(exp)

−
⇀
k
(cal)

)
.

This equation emulates the TSURFER final expression for
→
δ m by lumping all the

mathematical operators into one matrix operator B, operating on a vector describing the
discrepancies between the measured and reference calculated keff values for the N experi-
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ments. Combing this equation with Equation (4), one can update the epistemic PDF for the

application keff value k(app)
t , which is also expected to be a normal distribution, with mean

value given by

k(app)
m = k(cal)

app +
⇀
θ

T

app
⇀
δ m + ε = k(cal)

app +
⇀
θ

T

appB

(
⇀
k
(exp)

−
⇀
k
(cal)

)
.

Rewriting this equation with the substitution
→
λ =

⇀
θ

T

appB results in

k(app)
m − k(cal)

app =
N

∑
i=1

λi

(
k(exp)

i − k(cal)
i

)
.

Since the cross-sections PDF in Equation (6) is normal, and k(app)
t is assumed to

depend linearly on
→
δ t per Equation (4), the resulting PDF for k(app)

t will also be normal,
with mean value and variance that are analytically determined. In doing so, the standard
deviation of the consolidated PDF is an analytic function of the true experimental standard
deviation and the prior standard deviation, implying that it represents the true (not an

estimate) standard deviation of the consolidated PDF for k(app)
t . This greatly simplifies

the calculation of the tolerance limit as compared to the general case when both the mean
and standard deviations are not known and have to be estimated from the consolidation
analysis (see Appendix A.7). Rewriting the equation above in the form of deviations
(i.e., biases) from the prior calculated values results in

∆k(app) =
N

∑
i=1

λi∆k(exp)
i =

⇀
λ

T
∆
⇀
k
(exp)

. (7)

This equation describes a linear relationship between the initial experimental biases
for the N experiments and the TSURFER calculated bias for the application, representing
the change in the location of the mean keff value for the application. The goal is to establish
a tolerance interval for the application bias. Since the standard deviations for both the
experimental measurements and reference calculated values are known, the true standard
deviation for the application bias can be calculated as

σ∆k(app) =

√√√√ N

∑
i=1

λ2
i

(
σ
(expi)2
t + σ

(expi ,cal)2
t

)
.

This equation strongly emulates the derivation of the sample standard deviation
using the sample mean, as discussed at the beginning of Appendix A.7, specifically in

Equation (A23). Unlike Equation (A23), the weights are not unity. By analogy, the ∆k(app)
t

may be thought of as a feature derived from the N PDFs representing the N experiments,

each contributing a single sample. The standard deviation of the estimated quantity ∆k(app)
t

may be calculated by first projecting the samples along the unit vector:

⇀
e N =

[
λ1 λ2 . . . λN

]T/

√√√√ N

∑
i=1

λ2
i ,
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and calculating the residual Pe∆
⇀
k
(exp)

and the estimated standard deviation as

s∆k(app) =

√√√√√√
∥∥∥∥∥Pe∆

⇀
k
(exp)

∥∥∥∥∥
2

2
N − 1

. (8)

Since the true standard deviation of the bias can be calculated analytically, the above
quantity may simply be used for verification purposes by checking its likelihood from the
χ2-distribution. Specifically, per the discussion in the Appendix A.7, the following quantity
(N− 1)s2

∆k(app)/σ2
∆k(app) should have a χ2-distribution with N − 1 degrees of freedom. If the

calculated value is significantly different from the analytically calculated value, then it
serves as a measure of the adequacy of the assumptions given in Equation (5). If the
standard deviation of the experiment is assumed to be unknown, then the above quantity
provides an approach for estimating a realistic estimate of the experimental procedure
standard deviation. However, this is outside the scope of the current work.

As noted in Appendix A, the determination of the tolerance interval for normally
distributed quantities is largely dependent on what the unknowns are, i.e., the mean
and/or the standard deviation. When both the mean and standard deviation are unknown,
then the treatment in Appendix A.7 must be used, which requires the use of the noncen-
tral t-distribution. When only the mean is unknown, then the tolerance interval can be
evaluated directly using the normal distribution (see Appendix A.5). Finally, when only
the standard deviation is unknown, the χ2-distribution must be used (see Appendix A.6).
Recall that TSURFER analysis assumes that the standard deviations of the experimental
measurement and the calculated keff value are both known. These assumptions, coupled
with the linearity assumption in Equations (4) and (5), imply that the standard deviation of
the bias is also known: that is, it can be analytically calculated. Furthermore, since only a
single measurement is available from each experiment, the implication is that the mean
value is unknown, so the analysis in Appendix A.5 is the most suitable for estimating the
tolerance interval for the application bias.

As shown in that discussion, equivalent results may be obtained with either the epis-
temic or aleatory treatment, simply because the true standard deviation of the parameter is
assumed to be known. However, if the measurement procedure results in non-normally
distributed uncertainties, or if it lacks a credible estimate of the standard deviation, then
the assumption of a known standard deviation is no longer applicable, so the methods in
Appendix A.7 must be used to determine the tolerance limits. Finally, when the reported
standard deviation for the measurement is based on a conservative analysis, then the
resulting tolerance intervals will be conservative, as well. Therefore, the explicit treatment
of measurement uncertainties would be warranted only when the tolerance intervals for
the associated applications biases are deemed unacceptably high.

Based on the TSURFER assumptions, a tolerance limit is given by (see Appendix A.5):

∆k(app)
K−Tolerance = (

N

∑
i=1

λi∆k(exp)
i ) + K95(1 +

1√
N
)

√√√√ N

∑
i=1

λi(σ
(expi)2
t + σ

(expi , cal)2
t ), (9)

where K95 is the coverage parameter calculated from a normal distribution, and
K95/95 = K95(1 + 1√

N
) is the corrected value to compensate for the uncertainty in the

estimate mean bias. If a 95%/95% tolerance limit is required, then a value of K95 = 1.65
should be used.

3. Numerical Verification Results

This section introduces a number of numerical tests to validate the calculated tolerance
interval. The objective is to employ a random sampling approach to calculate the distri-
bution of biases, considering the uncertainties in the experimental measurements and the



Energies 2021, 14, 7092 11 of 37

code’s prior calculations. The resulting distributions are numerically evaluated to calculate
the upper threshold limit for the tolerance interval per the discussion in Appendix A. The
distributions are compared to the values analytically calculated by Equation (9). These
results are generated using a TSURFER model containing 17 critical experiments and
1 application. The experiments are all from the LEU-COMP-THERM-008 benchmark exper-
iments set, denoted hereafter, LCT-008 [35]. The LCT-008 experiments are critical lattices
with low-enriched (2~4 wt.%) UO2 fuel rods and perturbing rods in a cylindrical, borated
water tank. Examples of the experiments are depicted in a cross-sectional view in Figure 2,
in which the fuel rods with aluminum alloy are presented in blue dots and the perturbing
rods are shown in yellow surrounded by borated water, which is shown in green. Different
critical experiments in the LCT-008 set include various perturbing rods materials and ar-
rangements, or the boron concentrations are varied. For instance, Figure 2a,d presents two
LCT-008 experiments without perturbing rods, whereas experiment LCT-008-016 contains
a borated water slab in the center, of 1158-ppm boron, whereas the boron concentration in
experiment LCT-008-001 was 1511 ppm.

Figure 2. Layout of Critical Experiments in LCT-008 Benchmark Set. (a) LCT-008-001; (b) LCT-008-005;
(c) LCT-008-012; (d) LCT-008-016.

Figure 2b,c show the layout of two experiments with different perturbing rod materials,
in which both experiments have 3 × 3 central arrays of water holes and perturbing rods
using Pyrex in LCT-008-005, whereas alumina is used in LCT-008-012. The application is
an accident-tolerant fuel (ATF) assembly which employs a 10 × 10 BWR-dominant lattice
of GE14 design, using UO2 fuel pins with FeCrAl cladding. The layout of the application
model is shown in Figure 3, with 92 fuel pins and two water rods in the center, surrounded
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by coolant water in a channel box. There should be 78 UO2 fuel pins with enrichments
ranging from 2~4%, and 14 rods with gadolinium.

Figure 3. Layout of Application ATF Assembly.

Table 1 lists the prior values for keff and the measured values, as well as the adjusted
values resulting from the TSURFER application for all experiments and the application.
Note that the application does not have a measured value. The adjusted values post-
TSURFER represent the mean values of the PDFs generated by TSURFER. Sample results
of the prior and post-TSURFER PDFs for a number of experiments and the application are
shown in Figure 2.

Table 1. TSURFER keff Values.

Benchmark Experiment Code-Prior Value Measured Value Adjusted by
TSURFER

LEU-COMP-THERM-008-001 0.999830 1.00000 0.999694

LEU-COMP-THERM-008-002 1.000356 1.00000 1.000293

LEU-COMP-THERM-008-003 1.001015 1.00000 1.000947

LEU-COMP-THERM-008-004 1.000146 1.00000 1.000116

LEU-COMP-THERM-008-005 0.999817 1.00000 0.999773

LEU-COMP-THERM-008-006 1.000374 1.00000 1.000380

LEU-COMP-THERM-008-007 0.999652 1.00000 0.999657

LEU-COMP-THERM-008-008 0.998910 1.00000 0.999157

LEU-COMP-THERM-008-009 0.999103 1.00000 0.999334

LEU-COMP-THERM-008-010 0.999998 1.00000 0.999937

LEU-COMP-THERM-008-011 1.000675 1.00000 1.000614

LEU-COMP-THERM-008-012 1.000216 1.00000 1.000148

LEU-COMP-THERM-008-013 1.000363 1.00000 1.000292

LEU-COMP-THERM-008-014 1.000220 1.00000 1.000115

LEU-COMP-THERM-008-015 1.000051 1.00000 0.999962

LEU-COMP-THERM-008-016 1.000088 1.00000 1.000087

LEU-COMP-THERM-008-017 0.999352 1.00000 0.999487

B-GE14DOM-hf.v40-FeCrAl-1 0.933281 - 0.932013
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In the discussion below, prior PDFs refer to the PDFs consolidated by TSURFER,
including the code-based PDF, centered around the calculated value, and the measured
PDF, centered around the measured value. For example, Figure 4 shows the code-based
prior PDF (in red), the measured PDF in black, and the consolidated PDF in blue for
LEU-COMP-THERM-008-008, as denoted by “Fused-Post”.

Figure 4. Prior and consolidated PDFs for the representative experimental model.

The x-axis is given in units of pcm, subtracting all keff values from the reference code-
calculated prior values for the respective experiments. Notice the measured-prior PDF
(in black) has a mean value slightly above zero, implying that the code underestimates
the measured value, which is assumed to be 1.0 for all experiments. The spread of the
measured-prior PDF is consistent with the measurement uncertainty, which is assumed
to be 150 pcm for all experiments. The TSURFER-consolidated PDF (also referred to
as post-PDF) has a narrower width than the code-prior PDF because the measurement
uncertainty is much smaller than the code-calculated prior uncertainty (on the order of
500 pcm).

Figure 5 shows a similar plot but for the application, which does not have a measured-
prior PDF. Although the mean value of the consolidated PDF did not change by much, the
standard deviation has experienced a drop from 670 pcm as calculated from code-prior
PDF (in red) down to 388 pcm (in blue). The drop is not as significant as in the case
with the experiments. This is because there is a low similarity between the application
and the experiments. The similarity index is a scalar quantity used by TSURFER to
determine the relevance of experiments to the given application; its use is not required by
the Bayesian methodology.

As mentioned in the discussion above, TSURFER can calculate all its quantities of
interest, including the experimental biases and the application bias and their standard
deviations, via an analytical procedure, based on two reasons: (a) the model relating the
variations in keff to the cross sections is assumed to be linear, and (b) the standard deviations
of the code-calculated keff and measurements are assumed to be known. The calculated
standard deviations represent the basis for tolerance-limit evaluation, so the next series of
numerical experiments is designed to estimate the mean value of the bias and the standard
deviation using a sampling-based (i.e., aleatory) approach to test the adequacy of the
estimated quantities for tolerance limits estimation.
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Figure 5. Application of prior- and post-TSURFER PDFs.

Equation (7) represents the key equation employed by TSURFER to calculate the
application bias as a function of the discrepancy between measured and code-calculated
keff values for all available experiments. This equation calculates an estimator for the mean
value of the TSURFER bias, so a sampling-based approach is employed, emulating the
discussion in the Appendix A.5. To achieve this, N random samples are generated for

the discrepancy term ∆
→
k
(exp)

j by generating a random sample from the measured-prior
PDF—Equation (2)—and a random sample from the code-prior PDF—Equation (3)—and
averaging the N biases calculated from Equation (7), as follows:

∆k(app) =
1
N

N

∑
i=1

⇀
λ

T
∆
⇀
k
(exp)

j .

This process is repeated 10,000 times, producing 10,000 estimates of the mean, each
based on N samples of the discrepancy vector. Figure 6 shows the sampling distribution
for the mean using different values of N. The blue PDF corresponds to N = 1, which is
equivalent to the PDF generated by TSURFER, shown in red in Figure 5. The standard
deviations for the various values of N are shown in the legend, thus confirming the
1/
√

N behavior for mean value estimation. Figure 7 shows the plots of the quantity
(N − 1)s2

∆k(app)/σ2
∆k(app) , which are found to follow a χ2 distribution, with 16 degrees of

freedom, as expected from Equation (8).
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Figure 6. Mean estimation of application bias.

Figure 7. DOFs of the variance of experiments' residuals.

To calculate the K-coverage parameter, the process described in the Appendix A.7
is used, (1) assuming that neither the mean value nor the standard deviation is known,
(2) using a fixed number of samples, and (3) estimating the sample mean and standard
deviation. This produces Figure 8, which is similar to Figure A7. The red line passes
approximately through the center of the cloud corresponding to the K95 = 1.64, which
is calculated from the normal distribution. A higher value K95/95 is selected to ensure
that 95% of the values are above the line, which ensures that the upper threshold of the
tolerance limit is covering 95% of the bias values. Similar plots can be generated for
different values of N, recording the corresponding K95/95 value. Figure 9 shows the result
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of this experiment, with a sharp initial decline in the ratio K95/95/K95 for a smaller value of
N. In reality, the K-coverage should approach 1.0 for an infinite number of samples, which
is taken to be 10,000 in this numerical experiment. Assuming the mean value is based on
17 samples, one per experiment, K95/95/K95 =1.54.

Figure 8. Tolerance limit upper threshold determination.

Figure 9. K-Coverage determination with unknown mean and standard deviation.

Finally, given that TSURFER bias PDF is analytically available as shown in Figure 10,
the true mean and standard deviation are known, which is expected to give a lower upper
threshold value than the one calculated above. The upper thresholds per Equation (9),
with and without the correction factor 1 + 1/

√
N, are shown in Figure 10. The area below

the non-corrected value K95 is found to be 94.4%, and the corrected value K95/95 covers
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98% of the area. It is not surprising that the two values are close, differing only by a factor
of 1.24 = 1 + 1/

√
17.

Figure 10. Application bias tolerance interval.

4. Conclusions

In support of using TSURFER for criticality safety applications, this work has fo-
cused on the development of a defendable methodology to calculate tolerance limit for
TSURFER-calculated bias. TSURFER currently calculates both the bias and its uncertainty,
but it lacks the ability to determine the probability that the bias may exceed a certain
upper threshold value, which is needed to support the calculations of upper subcritical
limits. In response to this need, the mathematical basis for tolerance limit calculation
has been developed in a manner consistent with TSURFER Bayesian-based methodol-
ogy. Deviating markedly from other mathematically heavy presentations, the current
work adopts a pedagogical presentation style intended to target practitioners to support
the end-users of TSURFER. In this spirit, the work focuses on providing an intuitive un-
derstanding of the meaning of tolerance limits and their calculational methods. Basic
mathematical equations supported by graphical aids are employed to illustrate the mean-
ings of the terms and methods developed. Finally, numerical experiments using realistic
critical benchmark experiments are used to exemplify application of the TSURFER code.
Beyond TSURFER, this paper is expected to benefit a wide range of model-validation and
uncertainty-quantification activities, for which the goal is to characterize and consolidate
confidence from multiple knowledge sources. The work presents general description
for the C3 process, which may be adapted to various end-user applications, such as the
assimilation of results from experiments and calculations, from codes with different levels
of fidelity, and so on.
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Appendix A. Basic Statistical Definitions and Operations

Brief introductions to the frequentist and Bayesian viewpoints are made, followed by
the concept of sampling and inference analyses, which represent the fundamental algorith-
mic building blocks for the frequentist and Bayesian methods. The following discussion
applies these analyses to estimate the tolerance interval, starting with idealized scenarios,
and gradually building up to the general case. The discussion in this section is meant to be
generic to motivate the value, interpretation, and calculation methods for tolerance limits.
The intended application is presented in Section 2 for the TSURFER methodology.

Appendix A.1. Frequency vs. Bayesian Probability

Statistical description of the outcome of an experiment seeking to determine the value
of an unknown parameter is essential under two scenarios: (a) when the analyst cannot
make a deterministic statement about the value of the parameter, or (b) when the parameter
itself is inherently random, so it does not assume a single value. An example of the first
scenario is when the parameter has a fixed single value like a physical constant, but the
experimental procedure introduces unavoidable sources of uncertainties, thus resulting in
seemingly random outcomes for the measured parameter value. Mathematically, this is
described as follows:

yi = z + εi, i = 1, 2, . . . , N, (A1)

where yi is the ith recorded or inferred measurement of the parameter’s unknown true value
z. The measurements are contaminated by a random error εi resulting from a number of
uncontrolled experimental conditions. The estimate of the true value z may be improved by
repeating the same experiment a number of times N or by conducting N other experiments.
This type of inference is referred to as Bayesian inference, and the parameter z is referred to
as an epistemic parameter.

In the second scenario, the parameter is inherently random, as dictated by the physics,
such as the number of counts in a Geiger counting experiment; hence, its measured value is
expected to exhibit random behavior, which may be described mathematically as follows:

yi = zi + εi, i = 1, 2, . . . , N. (A2)

Unlike the previous equation, the true parameter value zi is inherently random,
because it changes its value every time it is recorded. This value is referred to as an aleatory
parameter. The recorded values zi may be split into two terms emulating Equation (A1),
as follows:

zi = µt + δi, i = 1, 2, . . . , N. (A3)

whereas Equations (A1) and (A3) are mathematically similar, their interpretation is dis-
tinctly different. Equation (A1) asserts that z, the true value of the parameter, is single-
valued, but its inference is obfuscated by the uncontrolled random experimental errors.
If a high precision experiment is employed, then the random term in Equation (A1) will be
significantly diminished, ultimately approaching zero in the limit of perfect and/or many

http://energy.gov/downloads/doe-public-access-plan
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repeated measurements. In Equation (A3), the split into two terms µt and δi is artificial.
It represents a mathematically convenient way to describe an aleatory parameter in terms
of a constant term µt, representing the mean parameter value, and a random term with
zero mean δi, representing deviations from µt. Note that the random term δi will not vanish
if perfect measurements are possible. Therefore, µt may be thought of as a mathematical
feature that compactly describes the distribution of the random values assumed by the
aleatory parameter. Other mathematical features may also be derived, such as the standard
deviation σt of the random term δi, and the tolerance interval containing a certain portion
of the random values, which is defined in the next subsection.

Note that the extracted features, µt and σt, have fixed single values, despite the aleatory
nature of the parameter they describe. The implication is that one may resort to Bayesian or
epistemic methods to infer the features of an aleatory parameter. Conversely, frequentist or
aleatory methods may be used to describe an epistemic parameter. For example, the vari-
able y in Equation (A1) may be regarded as an aleatory parameter, since it is contaminated
by uncontrolled random errors. If the PDF of the aleatory parameter can be captured, then
its mean value may be used to infer the unknown epistemic parameter value z. Examples
of the interaction between aleatory and epistemic methods are shown below.

Figure A1 plots two PDFs that describe the true values assumed by typical epistemic
and aleatory parameters. The epistemic parameter is described by a delta function (in black)
centered around the true value—a mathematical abstraction of a PDF with zero spread.
The other distribution describes an aleatory parameter which assumes a range of values
resulting from its inherent randomness. The two types of uncertainties are relevant to the
TSURFER methodology. The variable y in Equation (A1) may represent the measured keff
value from a number of experiments in which the measurement process is contaminated
by numerous sources of aleatory and epistemic uncertainties. The experimentalist typically
lumps these uncertainties together in the form of a single source, and the standard deviation
of the source may be reported with each measurement. The variable z may represent the
cross sections for which the true mean values are unknown.

Cross sections are an example of aleatory parameters that are treated as epistemic in the
TSURFER methodology. In theory, cross sections characterize the probability of interaction
between a nucleus and a neutron, which is an inherently random event, implying aleatory
treatment. However, the cross sections evaluation procedures [36] (a combination of
differential and integral measurements and analytical methods) result in a mean value
estimate (dotted blue line) that is significantly different from the true mean value of their
aleatory spread (dotted black line), thereby justifying their treatment as epistemic.

Figure A1. PDF Examples for True Values of Epistemic and Aleatory Parameters.

Appendix A.2. Statistical Sampling and Inference Analyses

Like deterministic calculations, two analyses can be defined in statistics: the sampling
and the inference analyses, representing the equivalent of deterministic forward and
inverse analyses, respectively. In the sampling analysis, the true PDF is known, and
the goal is to generate samples that are consistent with that PDF, often to be employed
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in subsequent downstream calculations such as sampling the cross sections from their
prior PDFs to calculate the corresponding PDF of keff for a target application or critical
experiment. Consistency can be measured in a number of ways, such as by comparing
features (e.g., mean, standard deviation, tolerance intervals) that are extracted from the
true PDF and the available samples. In the inference analysis, N samples of the parameter,
or functions thereof (e.g., samples of experimental keff which are related to the target
application keff and/or the nuclear data) are presented with the goal of determining the
true PDF that generated the samples. In many practical applications, the objective is to
determine features like the PDF tolerance levels rather than defining the entire PDF. This
objective represents the key focus of this work.

An important byproduct of sampling analysis is the ability to determine the probability
that a sample is drawn from a certain range of values within the distribution. This is a
key requirement for the inference analysis when a single measurement is available, as
illustrated in the next subsection. Statements such as the following are typical: Prob
(z < zH) = 0.9, where z is an aleatory parameter, and zH is some fixed upper limit. This
statement asserts that there is p = 90% chance that a single sample has a value lower
than zH. This statement, while probabilistically posed, has the following deterministic
interpretation: if the entire population’s values are known (i.e., only achieved with infinite number
of samples), then exactly p fraction of these values will be below zH. Even though this statement
has no uncertainty, it is unrealizable in practice. With a finite number of samples, this
p fraction is no longer an exact deterministic number. This can be demonstrated by drawing
N samples and recording the fraction of values that are below zH, and then repeating the
experiment by drawing N new samples, and so forth. In each experiment, a different
fraction p is calculated, representing the fraction of the N values that are below zH. The
recorded values of p are expected to have a distribution of their own, as shown in the
three subplots on the left in Figure A2 for different values of N. Note that the distribution
of p values intuitively shrinks as N increases, ultimately converging to a delta function
centered around the exact value of p, which can be calculated from the z distribution for
the given threshold value zH; for example, in a normal distribution with a zero mean and a
unit standard deviation, p = 95% for zH = 1.65. These are the numerical values employed
in Figure A2. The plots show that when N is finite, there is always a non-zero probability
to calculate values for p that are less than the true value of 95%. For example, in the case
of N = 1000, the distribution of p values is approximately centered around the 95% value,
suggesting that there is 50% chance that the threshold value of zH = 1.65 will contain at
least 95% of the distribution. There is an equal 50% chance that coverage of less than
95% would be obtained. Clearly, if N continues to increase, then a 50% chance that the
calculated p value will be less than 95% will continue to exist. However, the range of values
is shrinking closer to the 95% value.

If zH is multiplied by a number greater than 1.0, then the probability of covering at
least 95% of the population will increase above 50%, as demonstrated on the right three
subplots of Figure A2, which employ a threshold value of zH = 2.0. These graphs suggest
that when N > 1000, there will be a near-zero (in reality a very small number) chance that
the calculated p value will be less than 95%, thus, providing much more confidence than
50%. Hence, the confidence in the estimated coverage can be increased by simply increasing
the size of the tolerance interval. This illustrates the basic concept behind tolerance interval
estimation techniques. Details on how this can be achieved for various distributions are
presented below.



Energies 2021, 14, 7092 21 of 37

Figure A2. Tolerance Interval α-Coverage with Finite Samples.

With the epistemic uncertainty, the sampling analysis is trivial, since all samples
will assume the same value. In reality, the true PDF is unknown, so the samples are
generated based on a prior PDF, representing the best knowledge about the parameter.
In the inference analysis, the goal is to improve the estimate of the true PDF in order to
approach the shape of the delta function. Thus, upon the introduction of new measure-
ments, a successful inference analysis for epistemic uncertainty will generate PDFs that
are successively shrinking their spread and ultimately converging to the true value in the
form of a delta function. With aleatory uncertainty, the sampling analysis is tasked with
generating samples with different values to emulate the aleatory nature of the parameter.
Although this is a straightforward process, the additional step of generating a cumulative
density function (CDF) with values between 0 and 1 is required. Details on this step are not
relevant to the current discussion. The goal of the inference analysis is to use the available
samples to recover the true PDF. In most practical problems, it is much more convenient to
infer features extracted from the PDF rather than the full PDF. For example, with a normal
distribution, it suffices to know the mean and standard deviation to fully describe the
distribution. Other features are also valuable, such as the K-coverage parameter, which
defines an interval, which is often centered around the mean and stretched by the standard
deviation for normal PDFs, according to the following:

Prob (z < zH) = αwhere zH = µt + Kσt, (A4)

where µt and σt are the true mean and standard deviation of the distribution. The K-coverage
parameter defines an interval which covers a portion α of the area under the PDF. Note
that α has units of probability or fraction, and K is dimensionless, such that Kσt has the
units of the original parameter z. Both are referred to as the coverage parameters, with
K determining the size of the interval, and α determining the associated portion covered by
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that interval. Tables may be found relating K and α for many key distributions, including
normal distribution, χ 2-distribution, t-distribution, and non-central t-distribution.

In aleatory analysis, the K-coverage provides information on the interval, which is
expected to contain the most variations of the parameter. This is valuable in manufacturing
processes that involve assurances on product quality. In epistemic analysis, the K-coverage
informs the interval that is most likely, with confidence α, to contain the real value of the
parameter. This information is key to quantifying risk as measured by the consequences of
the parameter being outside this interval. This interval is referred to as the tolerance interval,
and it represents the goal of this work, where the z parameter refers to the bias calculated
by TSURFER and the objective is to create an upper limit zH to cover α = 95% of the
distribution with 95% level of confidence. As mentioned earlier, if one employs infinite
number of samples N to calculate the tolerance limit, the confidence would be 100% that
zH covers 95% of the distribution. Therefore, the goal is to find a mathematical approach to
estimate a multiplier K that brings the confidence up to a user-defined value.

Appendix A.3. Interaction between Aleatory and Epistemic Methods

This section discusses the key enabling mathematical principle that allows the analyst
to seamlessly transition between the aleatory and epistemic analysis methods/interpretation.
The true PDF that generated the samples in Equations (A1) and (A2) can be described as
follows, assuming a normal PDF, which is one of the most commonly used PDFs in statistics,

p(z) ∝ e
− (z−µt)

2

2σ2
t , (A5)

where the proportionality implies that a constant is needed to normalize the area under the
PDF to 1, (the exact definition of which is omitted since it does not benefit the discussion).
In aleatory settings, this PDF describes the distribution of all the random values z assumed
by the aleatory parameter—the mean value of which is µt, and the standard deviation is
σt—typically referred to as the sampling distribution. A basic statistical result states that if
N measurements of z are recorded, then the following can be shown [2]:

µt = lim
N→∞

1
N

N

∑
i=1

zi, and σ2
t = lim

N→∞

1
N

N

∑
i=1

(zi − µt)
2, (A6)

and furthermore, the integral,
zH∫

zL

p(z)dz = p, (A7)

measures the frequency (or fraction of times) with which the parameter z assumes values
between the two limits zL and zH. This statement implies that the parameter is expected
to assume values outside this interval with a probability of 1 − p. This interpretation of
Equation (A5) represents the basis of the sampling analysis. As mentioned above, if N is
indeed infinity, then the above statements in Equations (A6) and (A7) produce exact values
for these quantities.

In the inference analysis, the objective is to build an estimate of the PDF in Equation (A5)
using a finite number of samples. More importantly, if additional samples become avail-
able, then the estimated PDF must be updated and converged to the true PDF given in
Equation (A5). If only a single measurement is available, then the integral in Equation
(A7) allows for the assertion that there is a probability p that the single sample belongs
to the interval (zL, zH). As discussed below, this provides an aleatory-based approach for
estimating confidence intervals for quantities such as the true mean and standard deviation
of an aleatory parameter.
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In the epistemic setting, this same PDF may be written as follows:

p(µt) ∝ e
− (z−µt)

2

2σ2
t . (A8)

This PDF has the same form as that in Equation (A5), but the z value is assumed to
be single-valued and known, and µt is the unknown. This describes a scenario in which a
single sample has been measured, and in the objective is to infer the value of the unknown
parameter µt. In statistical literature [5], this PDF is often denoted by: p(µt|z) and is
referred to as the distribution conditioned on the measurements, which is referred to herein as
the inference distribution to distinguish it from the sampling distribution. Unlike the aleatory
case, this PDF does not imply that µt assumes random values; instead, it measures the
analyst’s degree-of-belief about the true value given the single measurement z. For example,
if the first sample z1 is very far from the true mean µt, then the corresponding PDF will be
centered around z1, implying that µt is likely to be close to z1. Although this may seem to be
incorrect, it is the best guess possible, based on the single measurement z1. Mathematically,
the interval in Equation (A7) will be used to measure the analyst’s confidence that the
true value lies between zL and zH. This probability p hedges against the analyst’s lack
of complete knowledge about the true value of µt by stating that there is a 1 − p chance
that the true value might lie outside the given interval. With very few samples and high
measurement uncertainty, the probability 1 − p is expected to be high, but it will gradually
approach zero via the consolidation approach (explained in the following section) as more
measurements are accumulated.

Appendix A.4. Consolidation of PDFs

A key mathematical tool used in the inference analysis consolidates the PDFs obtained
from multiple independent sources/different experiments. This mathematical approach
allows for the unique differences between epistemic and aleatory uncertainties. For the
aleatory case, the following two PDFs can be consolidated, based on N1 and N2, respectively,
as independently recorded samples of an aleatory parameter z:

p1(z) ∝ e
− (z−µt,1)

2

2σ2
t,1 and p2(z) ∝ e

− (z−µt,2)
2

2σ2
t,2 .

The first (second) PDF implies that, based on the available N1 (N2) samples, the mean
value of the samples is µt,1(µt,2) and the standard deviation of the samples is given by
σt,1(σt,2). As these PDFs have the meaning of frequency, they can be consolidated according
to the following rule:

p(z) =
N1 p1(z) + N2 p2(z)

N1 + N2
. (A9)

This straightforward averaging approach is consistent with the frequency interpre-
tation of aleatory uncertainty. It is equivalent to combining all samples from the two
experiments into one experiment and recalculating the frequencies of the various assumed
parameter values. This consolidation approach ensures that if the two PDFs are exactly the
same, then the resulting PDF will assume the same shape, which is intuitively sound.

For the epistemic case, consider the following two PDFs:

p1(µt) ∝ e
− (z1−µt)

2

2σ2
t,1 and p2(µt) ∝ e

− (z2−µt)
2

2σ2
t,2 .

Each of these two PDFs provides a measure of the degree-of-belief about the true value
of the mean value µt based on a single measurement. In practical applications, z1 may
represent the best estimate from prior knowledge, which is the reference value for keff for a
given model of a critical benchmark experiment, and z2 is the corresponding real measure-
ment for keff. For a critical benchmark model describing a thermal flux spectrum, typical
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values for σt,1 are on the order of 500–700 pcm, and a typical value for σt,2, representing the
measurement uncertainty, is on the order of 150 pcm. Bayesian consolidation of these two
PDFs gives [37]

p(µt) ∝ p1(µt)p2(µt). (A10)

This consolidation approach recognizes that with additional knowledge, the consol-
idated PDF must converge to the true delta-function–looking PDF, since the parameter
has a single value rather than a range of values, as is the case with an aleatory parameter.
Multiplying the PDFs achieves this goal. (A simple social example is provided here for
illustration. Consider asking a random person about which road to take to reach a certain
destination, with the options being limited to Road A or Road B. The first individual rec-
ommends Road B and claims to be 80% confident. If another individual provides the same
information independently of the first individual, the overall consolidated confidence that
Road B is the correct way should increase. One can show that the confidence increases to
(0.8 × 0.8)/(0.8 × 0.8 + 0.2 × 0.2) = 0.94. However, if the individuals provide contradicting
information (e.g., if the second individual recommends Road A with 80% confidence), then
the consolidated knowledge should assign equal confidence to both ways, for 50% each,
thus representing the state of complete ignorance. This can be achieved via PDF multi-
plication. Averaging the PDF would not result in increased confidence when consistent
knowledge is gleaned from multiple sources). This consolidation approach ensures that if
similar PDFs are consolidated, then the resulting PDF will have a smaller spread, indicating
higher confidence in the true value of the parameter. This approach is depicted in Figure A3.

Figure A3. Bayesian Consolidation of Two Prior PDFs.

Appendix A.5. Aleatory and Epistemic Mean Value Estimation

One interesting observation is that while z may be an aleatory parameter, its derived
features, µt, σt, and K, are epistemic because their true values are single-valued. The impli-
cation is that one could transition between the two viewpoints as dictated by the problem,
as demonstrated in this and the next few subsections. This subsection starts with the sim-
plest inference problem, in which the true value µt is unknown; however, σt is known, and
the PDF is known to be normal, which defines the relationship between K and p, leaving µt
to be the only unknown. This problem may be used to describe both epistemic and aleatory
uncertainties per Equations (A1) and (A3), respectively. For illustration, assume that one is
interested in estimating the true value of an epistemic parameter per Equation (A3). The
Bayesian approach employs a sample zi to calculate an epistemic PDF for µt of the form:

pi(µt|zi) ∝ e
− (µt−zi)

2

2σ2
t , i = 1, . . . , N.
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According to Bayes, the best-estimate epistemic PDF that consolidates these N PDFs
(assuming no prior knowledge) is given by

p(µt) ∝
N

∏
i=1

pi(µt) ∝
N

∏
i=1

e
− (µt−zi)

2

2σ2
t ∝ e

− (µt−z)2

2σ2
µ , (A11)

where it can be shown that [6]

zm =

N
∑

i=1
zi

N
and σµ =

σt√
N

. (A12)

The resulting PDF is normal and is centered around the mean value of the samples zm,
and its standard deviation is 1/

√
N smaller than σt, the true standard deviation of z. As N

goes to infinity, the resulting PDF converges to a delta function centered around the true
mean value µt. The implication here is that while the parameter z is aleatory, the inference
analysis has adopted an epistemic setting to extract a feature of the aleatory parameter
PDF: that is, its mean value µt.

The same inference problem can be solved using an aleatory setting. This requires
defining an estimator, which is a function of the samples that can be used to estimate
the unknown quantity of interest, or the true mean µt. The idea of using an estimator is
inspired by the features definition in Equation (A12). This follows because it is desirable to
use an estimator that converges to the true value with an infinite number of samples. If the
number of samples is finite, then these very definitions are expected to produce random
values, thus allowing for an aleatory treatment. (The same approach for an estimator
is discussed in relation to Figure A2). The following estimator zm of the mean is thus
intuitively reasonable:

zm =
1
N

N

∑
i=1

zi, (A13)

Note that zm is a new aleatory parameter; it can be thought of as the mathematical
average of N aleatory parameters, all having the same PDF as the aleatory parameter z.
To generate a sample for zm, N samples must be generated for the parameter z, and their
average must be calculated (this basic approach is used by TSURFER whereby N experi-
ments are employed to estimate the bias, with each experiment producing a single sample
measurement. See the discussion in Section 2.2 regarding Equation [7]). Assuming the
true PDF of z is known, the true PDF of zm can be predicted as [1] (this can be verified
numerically by creating many samples for zm, each of which is generated using N random
samples of z, and finally, building a histogram for the samples for zm. This process can be
repeated using different values for N. As N increases, the histogram for zm will shrink at a
rate proportional to 1/

√
N):

p(zm) ∝ e
− (zm−µt)

2

2σ2
µ . (A14)

Interestingly, this PDF has the same mean value as the true mean value of z, which
is µt, and its standard deviation is related to that of z by σµ = σt/

√
N. The implication is

that if this experiment can be run many times, with each run producing a sample for zm,
then a distribution will be generated that is centered around the true mean value µt and a
standard deviation σµ. An example is shown in Figure A4 for a normal distribution, with
µt = 1 and σt = 2, for various values of N, with N = 1 representing the original distribution.

However, this approach is not a practical solution, since it requires many executions
of the experiment. If this approach were feasible, then a PDF could have been built for
the original parameter z directly rather than employing an estimator zm. To overcome
this challenge, recall the approach employed above to establish confidence with a single
measurement zm. Since the goal is to estimate the fixed value of µt, an epistemic treatment



Energies 2021, 14, 7092 26 of 37

per Equation (A8) is possible. Therefore, the following equation can be used to characterize
confidence about µt:

p(µt|zm) ∝ e
− (zm−µt)

2

2σ2
µ (A15)

This is the same PDF as the true PDF of the estimator zm in Equation (A14), but
now as a function of µt, with zm serving as a fixed single-valued measurement from the
experiment. Per Equation (A7), confidence p can be established that the true value lies
within the interval (zm − Kσµ, zm + Kσµ).

Figure A4. Distribution of the samples' mean with known standard deviation.

A discussion of an aleatory approach to characterize confidence using the concept
of confidence interval follows. The objective is to find an interval that contains the
true mean µt. As discussed above, such intervals are typically described using a single
K-coverage parameter. As depicted in Figure A4 (subplot with N = 30), there is a p chance
that the estimated value zm, which represents a single sample drawn from the distribution
in Equation (A11), will lie in the interval (µt − Kσµ, µt + Kσµ) (represented by the two blue
lines surrounding the mean value indicating by the green line), i.e.,

Prob
(
µt − Kσµ < zm < µt + Kσµ

)
= p. (A16)

This statement can also be interpreted as follows: there is p chance that the estimator’s
value will be within no more than Kσt units away from the true mean µt. Using numerical
values of p = 0.95, K = 2, N = 100, µt = 1, σt = 1.5, and zm = 1.2, there is 95% chance that
|µt − 1.2| < 0.3, i.e., the true mean is over- or under-estimated by at most 0.3 units from
the value 1.2. The interval [0.9, 1.5] is called a 95% confidence interval for µt and it allows
the above equation to be rewritten as follows:

Prob
(
zm − Kσµ < µt < zm + Kσµ

)
= p (A17)
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These two statements are equivalent simply because the true standard deviation of
the estimator σµ is known. The first statement shows that zm cannot be away from the true
mean by more than Kσµ with p confidence, and the second statement indicates that the
true mean cannot be away from the single sample zm by more than Kσµ with the same
confidence p. The second statement can be readily calculated using the Bayesian PDF by
integrating over µt between the two limits, zm −Kσµ and zm +Kσµ. If interpreted in an
aleatory sense, this statement hedges only once, emphasizing the fact that if the experiment
is repeated M times, then (1 − p) M of these intervals will fail to contain the true mean
µt. It is interesting to note, here, that the true mean µt is an epistemic parameter, whereas
the confidence interval concept is aleatory. If the confidence interval is interpreted in a
Bayesian sense (it is called a credible interval), then based on the single measurement, the
analyst thinks that the true value may be outside the interval with confidence 1 − p, thus
measuring a lack of confidence in the single measurement as 1 − p.

This discussion highlights the mechanics of an inference analysis that started with an
aleatory approach to form an aleatory estimator, per Equation (A13), and its associated
PDF per Equation (A14), which then switched to an epistemic approach per Equation (A15)
to characterize confidence using a single measurement. Note that the aleatory approach
required the selection of an estimator, a suitable functional form to estimate the quantity of
interest with the given samples. Clearly this decision can be difficult for general quantities
of interest, as shown below for quantities such as the K-coverage parameter, in which
both the true mean and the standard deviation are unknown. Thus, a clear advantage
for the Bayesian approach is that it did not require the use of estimators. It only required
interpretation of the original PDF as a measure of confidence for the unknown quantity
given a single measurement in the sense of Equation (A8). With additional measurements, a
straightforward approach employing multiplication of PDFs, as in Equation (A11), resulted
in a PDF that automatically improves the estimate of the mean. Interestingly, it could be
argued that the Bayesian approach provides insight on what estimator function should be
used for aleatory analysis, simply because its definition emerges naturally following the
successive multiplication of the N PDFs from the N samples.

As explained above, the mean value represents one possible feature that may be
extracted from the PDF. Other important features include an interval or a range of values
that covers a user-defined portion of the distribution. This was defined earlier as the
K-coverage parameter, which covers an α portion of the distribution. This interval is
referred to as the tolerance interval in both frequentist and Bayesian statistics. As an example,
using the sampling distribution in Equation (A5), it can be shown that the following
interval (−∞, µt + 1.96σt) contains 97.5% of the population of random values for an
aleatory parameter, or a 97.5% degree-of-belief for the true value of an epistemic parameter.
As discussed above, if infinite samples are available to estimate µt, then the upper limit of
this interval would be exact. Employing a simple estimator zH

m = zm + Kσµ (with K = 1.96)
for the true upper threshold zH

t of this tolerance interval, the sampling distribution for zH
m

is given by

p(zH
m) = Ce

− (zm+Kσt−zH
t )

2

2σ2
µ . (A18)

This distribution is simply a shifted version of the distribution in Equation (A14) since
the true standard deviation σt is known. When using a single estimate of zm, it is clear that
there is a 50% chance that the estimated zm will be higher than the true mean µt, causing
the estimated upper threshold zm + 1.96σt to be higher than the true upper threshold
µt + 1.96σt. The implication is that there is 50% chance that the estimated tolerance interval
(−∞, zH

m) = (−∞, zm + 1.96σµ)—which is based on a single estimate of zm—will contain
less than 97.5% of the population of random values. To increase the confidence above 50%,
the value of K can be increased above 1.96 to make up for the under-estimated zm value: a
higher value of K is needed to ensure the following:

zm + Kmσt > µt + 1.96σt,
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re-arranging as follows:

Km > 1.96 +
µt − zm

σt
→ Km > 1.96 +

1√
N

µt − zm

σµ
. (A19)

This equation shows that if it can be ensured with 100% confidence that K remains
above the noted value, then the estimated tolerance interval will contain at least 97.5% of
the population of z values. This is only possible if K is infinite, because a single sample
of zm can potentially have very small values. In practice, it suffices to ensure that zm is
only a few standard deviations away from the mean, which is expected to occur with a
very high probability. For example, per Equation (A14), there is only 2.5% chance that
zm < µt − 1.96σµ. Inserting that in Equation (A19), it is straightforward to see that with
(100−2.5)% = 97.5% confidence, the following K = 1.96(1 + 1/

√
N) value ensures that at

least 97.5% of the z values will be contained in the interval upper-limited by zm + Kσt. This
is referred to as an upper tolerance limit with 97.5% probability and 97.5% confidence. If N is
infinity, then K approaches the minimum value required to contain 97.5% of the population
with 100% confidence. As N decreases, K must increase to make up for the uncertainty
in zm, and this reduces the confidence below 100%, because it is unrealistic to select K to
be infinity.

In the previous example, both the aleatory and epistemic treatments have led to similar
results. It is thus instructive to determine when the two approaches would be different. The
key difference lies in the consolidation of prior knowledge. To understand this difference,
assume that the confidence interval has been established for the true mean based on N1
measurements of z. These results can be rendered using the estimator in Equation (A13)
in the form of a PDF in Equation (A14). When additional measurements are made using
N2 samples, a new PDF may be independently constructed. The Bayesian approach only
requires access to the prior PDF that was generated with N1 samples to consolidate it with
the new PDF. However, the aleatory consolidation requires not only the prior PDF, but also
the number of samples used to generate it, as well as the functional form of the estimator,
to ensure consistency among both sets of samples N1 and N2. Effectively, using the
aleatory approach is equivalent to conducting a third virtual experiment that combines all
available samples and employs a unified estimator. In practical settings, when knowledge
is obtained from multiple sources, the details on the inference process (e.g., the exact
functional form of the estimator and the number of samples) are often not well-documented.
Results are often communicated in a minimal manner as the confidence interval and/or
the associated PDF, for example. Therefore, it becomes difficult to justify consolidating
knowledge from multiple sources as shown in Equation (A9). To overcome this problem,
approximate methods [16,38,39] have been developed to consolidate knowledge for the
tolerance interval from multiple sources. This problem is nonexistent with the Bayesian
consolidation approach, as reflected in Equation (A10). Therefore, Bayesian methods have
the advantage of consolidating knowledge from multiple sources, precluding the need to
track the details of the inference analysis from each source.

Appendix A.6. Standard Deviation Inference

This subsection extends the inference analysis to characterize confidence in the esti-
mation of the true standard deviation σt using N samples of the aleatory parameter z. The
PDF shape is assumed to be normal, and only σt is assumed to be unknown. The following
section addresses the more general case in which both the mean and the standard deviation
are unknown. Employing an estimator of the standard deviation, emulating the true value
obtained with infinite number of samples per Equation (A6),

sm =

√√√√ 1
N

N

∑
i=1

(zi − µt)
2. (A20)
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As shown above, the estimator sm is expected to be an aleatory parameter since it
is based on a finite number of samples. An analytical expression can be derived for the
true PDF of sm, which is generated numerically for different values of N with σt= 2, in
Figure A5. It can be shown that the distribution of Ns2

mσ2
t is given by a χ 2-distribution

with N degrees of freedom [2]. With increasing N, the distribution approaches a normal
distribution, and the corresponding distributions for sm (i.e., dividing the χ 2-distribution
by N and taking the square root) ultimately converge to a delta function centered around
the true value of the standard deviation. (As mentioned above, while the χ 2-distribution
can be analytically derived, it can be numerically verified by running an experiment in
which N samples are generated, from which an estimate of the variance is calculated; the
process is repeated many times, building a histogram for the recorded variance samples.
If all the recorded variances are divided by the real standard deviation, then the normalized
form of the χ 2-distribution is obtained. The value of numerical verification of the estimator
distribution is stressed, because when the true PDF is not normal, then the analytical
results relating the confidence to the K-coverage parameter can no longer be developed, so
numerical methods must suffice. This provides a clear, intuitive method for developing the
relationship between p and K, as shown in the subsequent subsections).

Figure A5. Distribution of the samples' standard deviation.

It can be shown that the shape of this distribution is unaffected by the true value,
so it is possible to describe the PDF (it is also common to work directly with the variance
rather than the standard deviation, since the χ2-distribution is a function of the variance.
However, this subtlety is bypassed here for the sake of using simpler notations). pN(sm/σt)
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in terms of a normalized variable sm/σt. As in the previous analysis, this PDF allows for
calculation of the confidence p that a single sample, such as s′m, will lie within a given
interval. As the goal is often to estimate an upper bound on the true standard deviation σt,
the following integral can be used to describe the confidence in the estimated value s′m:

Prob (s′m > σt) = Prob (
s′m
σt

> 1) = p =

∞∫
1

pN

(
sm

σt

)
d

sm

σt
.

This integral can be readily calculated since the form of pN(sm/σt) is analytically
known. This integral is intuitive, because it asserts that all estimates s′m greater than σt
contribute to the probability p. The implication is there is 1-p chance that the true value σt
will exceed the estimated value s′m, which is given by:

1− p =

1∫
0

pN

(
sm

σt

)
d

sm

σt
(A21)

In practical applications, with N being relatively small, the value of 1 − p might be
too high to be satisfactory. Two useful mathematical approaches may be used to reduce the
probability while not requiring a significant increase in N. The first approach involves the
use of a multiplier, which serves as a conservative approach against the under-estimation
of the standard deviation. This is achieved by multiplying the estimated s′m by a fixed
multiplier K and converting the integral above to the following:

Prob (Ks′m > σt) = Prob (
s′m
σt

>
1
K
)→ 1− p =

1/K∫
0

pN

(
sm

σt

)
d

sm

σt
.

This shrinks the upper limit of the integration by a factor K, hence increasing the
confidence p that the new limit s′′m = Ks′m is above the true standard deviation σt. This
practice is very common among engineers, in which an additional multiplier is used to
obtain a more conservative upper-bound on uncertain quantities of interest.

The second approach is to generate two estimates of the standard deviation, s′m,1 and
s′m,2, and take the maximum s′′m = max(s′m,1, s′m,1) to represent the best estimate of the
standard deviation. It is easy to show that

1− p =

 1∫
0

pN

(
sm

σt

)
d

sm

σt

2

.

This equation implies that s′′m will be lower than the true standard deviation σt, only
if both estimates are below the limit, which results in squaring the probability since the
two estimates are independently drawn form pN(sm/σt). This approach is known as
order statistics [40,41], an example of which is Wilks statistics [14,15]. Combining the
two approaches shown above using a K multiplier and the maximum of n independent
estimates of standard deviation results in much higher confidence p:

p = 1−

 1/K∫
0

pN

(
sm

σt

)
d

sm

σt

n

. (A22)

If the integral in Equation (A21) is initially equal to 0.22 for N = 3, implying an initial
confidence of p = 0.78, then K = 1.25 and n = 2 increase the confidence to 0.98. These
numbers may be interpreted as follows. First, nN = 6 samples of the aleatory parameter
z must be drawn and divided into two batches, n = 2, with each batch containing N = 3
samples. From each batch, a single estimate of the standard deviation is calculated per
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Equation (A20), s′m,1 and s′m,2, and the maximum of the two is multiplied by K = 1.25 to form
the best estimate s′′m for the standard deviation σt. This estimate is expected to be higher
than the true value with p = 98% confidence. The implication is that if this experiment is
repeated M times, then the estimated values will be lower than the true value in 0.02M of
the repeated times, or 1 − p = 0.02.

The previous discussion provides a method to estimate the true standard deviation
of the PDF of an aleatory parameter. The confidence in the analysis is described using
a probability measure p. The language suggested a single hedging, as before. However,
these results can be used to introduce the concept of double hedging presented earlier.
Recall that σt is a fixed feature extracted from the true PDF of z. It may be interpreted as
the square root of the average squared distance from the mean. In this interpretation, it
is only necessary to hedge once, as in p (sm >σt) = 0.98. The double hedging arises if sm is
interpreted as a K-coverage interval with K = 1, or (µt − σt, µt + σt), thus representing the
interval that captures approximately 68% of the normally distributed random values:

with confidence p, Prob (µt −sm < z < µt + sm) = α

this interval is referred to as a tolerance interval with K = 1. By definition, a tolerance
interval is sought to capture a certain portion α of the population. If the distribution is
known, then there is a one-to-one relationship between the K-coverage parameter and its
corresponding α. For example, in a normal distribution, a K = 1 corresponds to α = 0.683,
K = 2.0 to α = 0.955, K = 3.0 to α = 0.997 (Values rounded to the third significant figure),
and so on. When the true standard deviation is known, these statements are exact, and
their confidence is 100%. The hedging here refers only to the aleatory nature of future
samples. However, when only a single estimate of the standard deviation is available, then
it is possible that with probability 1 − p, sm is less than σt, thus implying that the coverage
α will be less than its true value. Using the following two equations,

α(sm) =

µt+sm∫
µt−sm

p(z)dz =

µt+sm∫
µt−sm

Ce
− (z−µt)

2

2σ2
t dz, and p

(
sm

σt

)
= 1−

sm/σt∫
0

pN

(
s′m
σt

)
d

s′m
σt

,

one can calculate the exact coverage α corresponding to different estimates sm using the
true parameter PDF, as well as the associated confidence p using the χ2-distribution.
This information can be translated into economical or safety metrics that can be used to
determine the appropriate values for the required coverage and the confidence p.

If a Bayesian approach is used, then the same PDF, pN(sm/σt), can be used to charac-
terize confidence in the true value σt by treating sm as a fixed value and σt as the unknown,
as shown in the previous subsection. The PDFs corresponding to different estimates can be
consolidated together via multiplication [6]:

p(σt) ∝
n

∏
i=1

pN,i(sm,i/σt).

Appendix A.7. Simultaneous Inference of Mean and Standard Deviation

This subsection discusses the more general case in which both the mean and standard
deviations are to be inferred from the samples. As before, the first step is to select the
estimators for the mean and standard deviations:

zm =
1
N

N

∑
i=1

zi and sm =

√√√√ 1
N − 1

N

∑
i=1

(zi − zm)
2.

Note the two changes in the definition of sm: (1) it employs the mean value estimator
zm since the true mean µt is unknown, and (2) it divides by N-1 rather than N. This is
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explained in terms of the available number of degrees of freedom (DOFs), a key concept
in statistical inference. If there are N random samples of the parameter z, then they may
be regarded as a vector in an N dimensional space, as denoted by

⇀
z = [z1 z2 . . . zN]T.

A coordinate system is required to describe the components, with the samples representing
the components in the standard coordinate system. Clearly, different coordinate systems
will result in different components obtained via

ξi =
⇀
u

T
i
⇀
z ,

where ξi is the ith component in a different coordinate system, as described by N orthonor-
mal vectors,

⇀
u i|Ni=1. It is important to ensure that the statistical properties of the samples,

as calculated by the selected estimators, remain invariant to the choice of the coordinate
system. Invariance implies that, if an estimator of the standard deviation is calculated, then
it should have the same value, regardless of the coordinate system employed. As shown
below, when the estimated mean zm is subtracted from all the samples, it can be shown
that there is a coordinate system that will always have one of its N components zeroed
out. This implies that the true number of DOFs has been diminished by one. To show this,
recall that the sample mean is given by

zm =
1
N

N

∑
i=1

zi → zm =
1
N
[

1 1 . . . 1
]T


z1
z2
. . .
zN

 =
1√
N

⇀
e

T
N
⇀
z . (A23)

This equation shows that the sample mean is the projection (weighted by 1/
√

N) of
the random vector

⇀
z onto the unit vector

⇀
e N =

[
1 1 . . . 1

]T/
√

N. The residual
vector is thus given by

z1 − zm
z2 − zm

. . .
zN − zm

 =


z1
z2
. . .
zN

− zm


1
1

. . .
1

 =


z1
z2
. . .
zN

−
⇀

e
T
N


z1
z2
. . .
zN


⇀

e N =
⇀
z −

(
⇀
e

T
N
⇀
z
)
⇀
e N =

(
I−⇀

e N
⇀
e

T
N

)
⇀
z = Pe

⇀
z ,

where Pe is an orthogonal projector designed to remove the component along the vector
⇀
e N . This implies that, while the residual vector has N components, it only has N − 1
random DOFs, with the component along the direction

⇀
e N zeroed out.

As the estimated standard deviation should be invariant to linear transformation,
the estimator function should recognize that the transformed random vector, while still
random, has only N − 1 random components. Therefore, the mean may be thought of as
a mathematical feature extracted from the random vector component along the direction
⇀
e N , and the standard deviation may be considered as another feature extracted from the
remaining N − 1 components, which are independent of the component along the direction
⇀
e N . As expected, this ensures that the two estimators are independent, as shown in the
scatter plot provided in Figure A6, with the x-axis representing the sample mean values,
and the y-axis representing the sample standard deviations.

The distribution of the sm values is discussed first. As described in Appendix A.6,
the true PDF of (N − 1)s2

mσ2
t is the χ2-distribution can be shown analytically with N − 1

DOFs. This is not surprising, because the removal of the sample mean reduces the DOFs
by 1. It also ensures that the distribution of sm is independent of the distribution of zm.
This implies that the distribution of sm will be the same, regardless of the value of zm,
even if the true value µt is unknown. Hence, the discussion in Appendix A.6 still applies
when estimating the true standard deviation, even when the true mean value is not known.
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Therefore, one can calculate the confidence that the estimated standard deviation bounds
the true standard deviation as follows:

Prob (Ks′m > σt) = p

Figure A6. Joint distribution of samples' means and standard deviations.

If the mean is known, then this formula can be used to establish a tolerance interval
with K-coverage and confidence p, as shown in the previous section. As discussed above,
if the true standard deviation is known, the confidence becomes p = 1.0. However, if neither
the true mean nor the standard deviation is unknown, then different samples will result in
different sizes of the tolerance interval, thereby resulting in different coverage α. That is, for
every sample of the mean and standard deviation, a different K-coverage parameter would
be required to have the same α coverage. Unlike the case presented in Appendix A.5, in
which K must compensate for uncertainties in the mean value only, in this case, K must
compensate for uncertainties in both the estimated mean and the standard deviation.

Figure A7 illustrates this scenario, in which samples of the mean and standard devia-
tion are shown for the case of a normal distribution with µt= 1, σt= 2, as indicated by a red
point. All values are calculated based on a small number of samples: N = 10. The purple line
traces the values that satisfy zm + Ksm = zH

t with K = 1.65, namely, zm + 1.65sm = zH
t = 4.3,

which corresponds to a coverage of 95%. All samples above the line will result in tolerance
intervals with upper threshold values that are larger than the value zH

t , which is the mini-
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mum required to have 95% coverage. All values below the line will result in lower upper
thresholds and hence coverage that is lower than 95%. Consider for example the black
point (with zm = 0.25 and sm = 1.5), which requires a K value of 2.7 to reach a 95% coverage.
Thus, the goal of the tolerance interval estimation reduces to finding the minimum value
of K to ensure, with 95% probability, that the estimated mean and standard deviation will
produce an upper threshold value greater than zH

t .

Figure A7. Joint distribution of mean values and standard deviation.

First, consider the purple line that passes through the true mean µt and the true
standard deviation σt. The points above that line are numerically calculated to be 46% of
the total, which is not exactly equal to 50%, because the distribution of standard deviation
values is not symmetric with low values of N. Above N = 50, the distribution of the standard
deviation approaches the symmetric normal shape. Next, consider the green line that traces
the points satisfying the equation zm + 2.0sm = zH

t , increasing the value of K. The number
of points above this line is increased to approximately 88%, meaning that the confidence
associated with the upper threshold value of the tolerance interval increased from 46 to
88% by a moderate increase in the K value. This implies that, by increasing the value of K,
one can have higher confidence that a single estimate of the sample mean and standard
deviation can produce an upper threshold for the 95% tolerance interval. This exercise can
be repeated by gradually increasing the K value until 95% of the points are above the line,
which is found to be 2.9 for this example. Fortunately, the joint distribution of zm and sm
can be analytically derived, allowing one to find the distribution of K values, which can
be integrated numerically to obtain the minimum value required to reach a probability of
95%. This distribution is called the non-central t-distribution, which is discussed below [1,2].

Using the two estimators for mean and standard deviation, define the following estimator:

η =
zm − µt

sm/
√

N
. (A24)

This estimator is inspired by the quantity appearing in the exponent of Equation (A14),
by replacing σt by sm. This estimator recognizes that the true value for the standard
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deviation is unknown, so it is reasonable to try the sample standard deviation. This
quantity has a t-distribution [42], which looks very similar to the normal distribution,
with the distinction of only practical relevance for small values of N. For low values of
N, the t-distribution appears to be wider than the normal distribution, with heavier tails.
The K-coverage parameter for a given portion of the distribution is expected to be larger
than that calculated from the normal distribution. Repeating the previous analysis from
Appendix A.5,

zm + Kmsm > µt + Kσt → Km >
K + 1√

N

(
µt−zm

σt/
√

N

)
(

sm
σt

) ,

leading to the following minimum value of the estimator Km:

Km =
K + 1√

N

(
µt−zm

σt/
√

N

)
(

sm
σt

) ,

which ensures with 100% probability that the tolerance limit (−∞, zm + Kmsm) covers
at least α% of the population, where α represents the exact coverage obtained with the
true parameters µt, σt and K. The distribution of the Km values is called the non-central
t-distribution [43], as shown in

Figure 8 for the case of µt= 1.0, σt= 2.0, and K = 1.65, corresponding to 95% coverage,
shown as a red vertical line. As demonstrated above, if the objective is to ensure 95% coverage
with a given probability p%, then the K value must be increased until the area under the
curve is at least p%.

Figure A8. Noncentral t-distribution.
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