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Abstract: The rapid growth of the Information and Communications Technology (ICT) sector requires
additional infrastructure, such as more micro-datacenters and telecom stations, to support the higher
internet speeds and low latency requirements of 5G networks. The increased power requirements of
the new ICT technologies necessitate the proposal of new power supplies, in an attempt to support the
increase in energy demand and running costs. This work provides an in-depth theoretical analysis on
the losses of the individual stages of commercially available PSU and proposes a new multicell PSU,
the buck PFC converter, which offers a higher overall efficiency at varying load levels. The theoretical
results are verified using simulation results, via a PSIM Thermal Module, and using experimental
data. The results indicate that multicell structures can improve the overall PSU efficiency by 1.2% at
50% rated power and more than 2.1% at full power. Finally, taking into consideration the economic
implications of this study, it is shown that the proposed multicell structure may increase the PSU
costs by 10.78%, but the payback period is in the order of just 3.3 years.

Keywords: micro-datacenters; Information and Communications Technology (ICT); efficiency;
multicell; power supply unit

1. Introduction

The 5G network requirements for the Information and Communication Technology
(ICT) sector has caused a continuous demand for growth in micro-datacenter and Telecom-
munication Stations (TS) [1,2]. Datacenters accommodate the ICT data storage and process-
ing equipment such as servers, hubs, hard discs, and ICT racks, etc. A micro-datacenter
(µDC) is a datacenter of size smaller or equal to one rack. The growth of datacenters and
micro-datacenters is huge nowadays and they have a great impact on global electricity
consumption. In 2016, more than 1.8% of the global electrical energy was consumed by
datacenters and this will keep increasing [3]. The higher speeds of radio frequency bands
(such as 4G and 5G) tend to have a shorter area coverage and as a result more TS are
needed. Furthermore, 5G networks have increased energy requirements compared to
previous generations, and therefore several researchers have concentrated on improving
the energy efficiency of communication links [4–6]. The increased number of TS and µDC
will unavoidably lead to an increased energy consumption.

The impact of the power supply system to the overall energy efficiency of datacenters
and TS has pushed several energy agencies to develop strict efficiency requirements, such
as Energy Star and EPRI [7,8]. In the last two decades, the telecommunications industry
has adopted equipment supplied by 48 V DC. In the Information Technology (IT) and
Datacenter industries though, the preferred voltage system over the last few decades was
230 V AC, using though integral secondary power supplies for converting the AC 230 V to
12 V DC. With the IT and Telecom industry convergence of the last few years, both AC 230 V
and DC 48 V systems were used, causing a debate as to which system would dominate

Energies 2021, 14, 7038. https://doi.org/10.3390/en14217038 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3080-4910
https://orcid.org/0000-0002-8162-8953
https://doi.org/10.3390/en14217038
https://doi.org/10.3390/en14217038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14217038
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14217038?type=check_update&version=2


Energies 2021, 14, 7038 2 of 18

the market. Over the last few years, Facebook initiated the “open compute project” (and
other organizations have joined, such as Google and Microsoft), for promoting the 48 V DC
distribution topology for the IT industry, because of its improved performance [9,10].

Multicell structures have been utilized in the last two decades for several applications,
but the main objectives were the improvement of the voltage gain in the input or the
output of a circuit and the component stress decrease. There are four different topologies
of multicell structures which are:

• Input in Series Output in Series (ISOS);
• Input in Series Output in Parallel (ISOP);
• Input in Parallel Output in Series (IPOS);
• Input in Parallel Output in Parallel (IPOP).

Aiming for higher efficiency, Kasper et al. [11] suggested a 6-cell converter system,
which showed the highest efficiency conversion above 1 kW, however, the suggested
converter [11] has great efficiency only in specific loading conditions. Furthermore, the
6-Cell ISOP converter creates additional complexity to the system and reduced reliability,
since failure of one of the cells could lead to overall system failure, especially as cells are
connected in series at the input. Multicell structures have been used in various studies
but not primarily for energy efficiency improvement. Arezki Fekik et al. [12] proposes
a three-cell DC to DC structure for Off-Grid PV systems for improved robustness using
an ISOS structure but the study does not include an experimental verification and although
simulation results are promising in terms of the maximum power point tracking (MPPT)
function, the efficiency is not validated. Furthermore, the reliability of the three-cell DC to
DC structure is reduced since failure of one of the three cells leads to overall system failure.
ISOS structures in both AC to DC and DC to DC conversion stages do not significantly
improve the efficiency and have much more complicated load sharing control [13,14].
The IPOS structure which is proposed in [15] in order to improve efficiency and output
voltage, reduces the overall system efficiency (maximum efficiency of 91%) and increases
the complexity of the system.

The paper analyzes and compares multicell topology structures (ISOS, IPOS IPOP or
ISOP) and the way that these can lead to energy efficiency improvements by investigating
each stage of conversion (rectification, power factor correction and DC to DC stage through
LLC and PSFB converters). The work verifies through simulations and experimental mea-
surements that IPOP structures can lead to an improved energy efficiency conversion
and proposes a new multicell buck PFC structure to increase the energy conversion effi-
ciency. Furthermore, the work presents a technoeconomic evaluation of multicell structures
compared to single structure power supply units.

The Introduction Section of the work is followed by Section 2, which presents the
structure of AC/DC 48 V power supplies. The section identifies and analyzes the three in-
dividual conversion stages and specifies single-stage and two-stage conversion alternative
topologies. In Section 3, the multicell structure topologies are introduced and analyzed.
This analysis is subsequently followed by Section 4, the experimental setup and verification.
The proposed multicell buck PFC converter is presented in Section 5 and a technoeconomic
analysis follows in Section 6. The last section of the paper, Section 7, is the conclusion.

2. Structure of AC to DC 48 V Power Supplies

Power supply (PS) systems tend to have low efficiency under low loading conditions.
It is for this reason that modular PS systems are commonly used within TS and datacenters
to overcome the problem of oversized PS systems. A DC PS system may be composed of
a number of power supply units (PSU), frequently called “modules”, that work in parallel
to feed a DC bus, creating in this way a scalable PS system. A PSU consists of three main
stages: (a) The AC to DC rectification, (b) the power factor correction (PFC) stage, and
(c) the DC to DC stage to step-down the voltage to the desired 48 V DC, Figure 1. A µDC
should have a capacity of up to 20 kW and thus a modular µDC should have PSU modules
of less than 10 kW (at least 2 modules) Pmodule ≤ (Prack-max/2). The rectifier stage of the
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PSU consists of a bridge rectifier with switches (MOSFETs, IGBT, Thyristors, etc.) or diodes.
The power factor correction system is used to ensure conformity with EN61000 and that
there are no excessive harmonics in the AC supply from the UPS system. The third stage
of a PSU is needed to step-down the voltage from the rectification stage to the desired
48 V DC. The rectification is common in all systems but there are two options used to
produce the desired 48 V DC and to satisfy the input power quality requirements. The first
option is to use a two-stage process with boost PFC and DC to DC step-down converter.
The second option is to use the buck PFC single-stage circuit solution (PFC and DC to DC
step-down circuits combined). In a single-stage conversion circuit it is very difficult to
control both the input current quality and the output voltage level at different loads, and at
the same time achieve high conversion efficiency. The two-stage conversion is therefore
preferred as a solution for loads above 1 kW [16–18].

Ptotal−loss = Prec + Pp f c−loss + Pdc−dc loss (1)

Prec = 2·V· f ·Iin (2)

Pp f c−loss = I2
sw·Rds−On p f c + I2

in−rms·Rind + Pc.p f c loss (3)

Pdc−dc loss = Psw−loss + Ptrans−loss + Pind−loss + Pcap (4)

Ptrans−loss = Ptr−con−loss + Pno load loss (5)

where:

Prec: power losses from the rectification stage;
Ppfc−loss: losses of the power factor correction stage;
Pdc−dc loss: losses of the DC-DC converter circuit;
Psw loss: MOSFET switch losses of the DC converter circuit (conduction and switching
losses);
Ptrans−loss: transformer losses;
Pind loss: inductor losses;
Pcap−loss: capacitor losses in DC-DC converter circuit;
Ptr−con−loss: transformer load and frequency dependent losses;
Pno load loss: transformer no load loss.

Figure 1. Block diagram of PSU.

2.1. Single-Stage PSU

The single-stage PSU is a buck PFC system with a bridge rectifier. Buck PFCs are used
in low power applications since their structure creates dead angles at the input current
waveform. Dead angles are generated from the switching of the input rectified waveform.
Boost PFC circuits have the switching device in the output of the circuit and thus have
higher THD, and are therefore preferred for high power applications [16,17]. On the
contrary, since buck PFCs are only single-stage conversion systems, they present higher
efficiency than boost converters at low power applications. Is not easy to remove dead
angles in buck PFCs. Several re-searchers aimed to minimize their impact such as Saeed
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Sharifi et al. [19], who introduced a new buck PFC circuit with a Z-source network that
smooths out the switching effect on the input power quality, Figure 2 The Z-Source circuit
was initially proposed by B. Axelrod et al. [20] with its main target to increase the voltage
gain in buck converters. Fortunately, the new circuit introduces a new input inductor that
not only increases the gain but also minimizes the stress on the switch and smooths out the
input current dead zones.

Figure 2. The Z source buck PFC.

2.2. Two-Stage PSU Solution

The two-stage solution includes the AC to DC boost PFC which converts the AC
input voltage to 380–400 V DC and maintains input power quality, and a DC to DC step-
down converter to step-down the voltage to the desired level. Due to imperfect switching
(especially for high power applications), high switching losses occur in the converters. To
step-down the voltage from 380–400 V to 48 V DC as previously described, a DC to DC step-
down converter is needed. Since high energy efficiency and power density is required for
such converter systems, the most commonly used low power (under 1 kW) converter circuit
is the LLC half- or full-bridge converter [21–23]. These converters are resonant converters
that adopt zero-voltage switching (ZVS) techniques in order to minimize switching losses,
something that improves the efficiency of conversion. LLC half- or full-bridge converters,
however, incorporate transformers in their structure, which creates no-load losses and
therefore has low efficiency on low loads.

3. Multicell Structures

A multicell structure is a structure made of multiple converter systems (cells) which
are put together and work in parallel or in series to form a new, larger converter system, as
shown in Figure 3.

This work aims to prove that combining multiple converters (multicells) in series or
in parallel can lead to overall energy efficiency improvements. Since conversion from AC
230 to DC 48 V includes more than one conversion step, multicell efficiency improvements
need to be analyzed per stage (AC to DC, PFC stage and DC to DC step-down stage).
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Figure 3. Block diagram of a multicell structure.

3.1. The Multicell AC to DC Rectification Stage

A multicell rectification can be constructed either with diodes or switches (MOSFETs or
IGBTs, etc.), as previously mentioned. A strategy to minimize the losses in the rectification
stage is to use parallel diode bridge rectifier systems [24]. Considering that each bridge
circuit is a cell using multiple bridges, a multicell structure is formed. According to [24],
parallel diode bridge rectifiers lead to lower losses because diodes with lower maximum
current carrying capacity have less forward voltage drop, although this stands only for
specific applications. The power losses are mainly generated as a result of the conduction
and the switching of the diodes or the switches. Due to the low switching frequency (50 Hz
or 60 Hz), the switching losses are almost negligible and the resultant losses of each of
the two bridge rectifier legs arise mainly due to conduction. The use of IGBT switches
would not benefit such systems since IGBT losses are similar and higher than diodes for
similar power applications. GaN MOSFETs tend to have lower switching losses than silicon
MOSFETs despite their higher conduction resistance (on-resistance RDS−On). For the diode
case, the conduction losses are given by:

PDloss = Irms.Vd (6)

where Vd is the diode voltage drop and Irms is the average current passing through the
bridge leg. For the MOSFET switch case, conduction losses are given by:

PLoss = I2
rms.RDS−On (7)

where RDS−On is the on-resistance of the MOSFET switch.
Connecting bridge rectifier cells in ISOS or IPOS would imply that the output voltage

is a multiple of 325 V (Vpeak of AC input). This would require a very high gain to reduce it
to 48 V and there would thus be higher power losses in the secondary circuits to step down
the voltage. Additionally, a high voltage at the output of the bridge rectification stage
would need switches that could withstand a higher voltage. Since RDS−On is proportional to
the voltage, this would result in higher power losses. Therefore, the multicell bridge would
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not have better efficiency if connected in ISOS or IPOS. The ISOP structure with MOSFET
switches would not improve the efficiency either, since the series switches would increase
the conduction losses. Considering however that the breaking voltage is proportional to
RDS−On, switches that can withstand a lower voltage would have lower conduction losses.
Replacing, therefore, one MOSFET switch with two switches of smaller RDS−On, could
in theory result in better efficiency. Examining however the characteristics of available
MOSFET switches, those with breaking voltage of 50 V have an RDS−On as low as 3.3 mΩ
(IFR3805), while switches with a breaking voltage of 200 V have an RDS−On as low as 4 mΩ
(IXFK300N20X 3). Therefore, energy efficiency improvement could not be achieved with
ISOP and MOSFETs for this type of power supply. Analyzing the circuit further, it can be
seen that the ISOP structure of the bridge rectification part would not provide any energy
efficiency improvement with diodes either, since in each cycle of the AC source only two
switches/diodes conduct, as seen in Figure 4, as in the single cell structure, namely D1a and
D2b in the positive cycle and D3b and D4a in the negative cycle. In the IPOP structure with
diodes, the voltage drop increases as the number of cells increases. Efficiency is therefore
slightly improved as a result of lower heat dissipation. For the case of the IPOP structure
with MOSFETs, the voltage stress on the switches remains the same and the current passing
through the system is divided in the parallel cell bridges, something that may lead to
significant energy efficiency improvements.

Figure 4. Multicell bridge ISOP circuit.

For instance, in a two-cell rectifier bridge system, the current in the two legs is
halved (assuming MOSFETs with the same RDS−On) and since 2 (I/2)2 < I2, it can be easily
proven that parallel bridge structures lead to overall energy savings. For N cells, it can be
shown that:

N
[

I
N

]2
.RDS−On < I2.RDS−On (8)

3.2. The Multicell PFC Stage

There are different PFC structures. For single-stage converters, buck PFC can be used.
For dual-stage converters, the boost PFC is widely used as well as some modified boost
PFC circuits. All PFC circuits always follow the AC to DC rectification, or are incorporated
into it.

3.2.1. Multicell Buck PFC

As discussed in the previous sections, to improve the power factor of the buck PFC
circuits, the Z-source buck PFC circuit is proposed in [14] by adding a Z-source network in
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front of the buck converter. As seen in Figure 2, the circuit has two switches, SW1 and SW2.
The losses arising in such a circuit are mainly as a result of conduction and switching, as
well as due to the inductor at the input. Conduction losses are given by Equation (8) and
the switching losses are given by Equation (9).

Psw = Vin·Iout· fsw

(
tr + t f

)
(9)

where fsw is the switching frequency, tr is the rising time the transistor needs to switch on
and tf is the falling time needed to switch off.

In a multicell parallel input configuration such as IPOP and IPOS, the input peak
voltage would be 325 V DC (with ripple). For parallel cell circuits, the current in each
of the parallel circuits would be split equally and the conduction losses would therefore
decrease. The switching losses on the other hand cannot decrease. Considering the use of
switches with a lower drain current, faster response, and thus lower tr and tf, they could
potentially lead to better efficiency. However, using switches with lower tr and tf and
at the same lower maximum drain current capability may negatively affect the RDS−On
(i.e., conduction losses).

Connecting the multiple cells in series would require higher gain at the output. As
a result, bigger inductor and capacitor at the output would be required, which would lead
to higher losses, especially on low loads. Therefore, the IPOP is the only parallel input
configuration that should be examined. In a parallel configuration, the inductor winding
losses are also less since the current passing through them is divided by the number of
cells and, despite the fact that core losses of inductors can increase, they are negligible
compared to winding losses. The inductor size in the split cells would not be affected, since
the output and input voltages as well as the switching frequency remain the same. The
equation for calculating the inductor size is given by:

L = Vout·
(Vin −Vout )

∆IL
fsw. Vin (10)

where ∆IL is the ripple current and is proportional to the output current of each cell.
Connecting multiple buck PFC cells in series at the input (ISOP or ISOS) causes higher

overall RDS−On resistance during the ON state. The switching losses, on the other hand,
are multiplied by the number of cells but the voltage input is divided by the number
of cells (assuming the case of exactly the same RDS−On). The rising and falling times of
the switches in the multicell ISOP and ISOS structures can be minimized since switches
with lower voltage breaking capacity tend to have lower falling and rising times. Silicon
MOSFETs can have RDS−On as low as 3.5 mΩ, with rising and falling times of about 170 nS
(IXFN300N20X3), while GaN MOSFETs can have 12.4 ns rising and 24 ns falling time with
RDS−On of 25mΩ (GS66516). On the other hand, inductor losses increase if the inductor
size is not reduced from the single cell design. Since voltage gain is reduced in the ISOP
and ISOS structures, the inductor size can also be significantly reduced. Therefore, ISOP
or ISOS structures lead to reduced inductor losses but with insignificant switching loss
improvement. The overall improvements are minor in relation to the complexity and
increase in cost.

3.2.2. Multicell Boost PFC

The losses in the boost PFC circuit (as in the buck PFC) are mainly due to switch-
ing and conduction loss of the MOSFETs, the input inductor and the output capacitor.
However, because of the higher voltage stress applied on the switches of the boost PFC
compared with that applied on the buck PFC, higher conduction losses occur. An ISOS and
ISOP structured boost PFC would lead to increased losses in MOSFET devices since they
would be connected in series, even if lower RDS−On MOSFET switches are used. Since the
inductors are in series in ISOP and ISOS structures, the overall DC resistance and hence
inductor losses will increase. Considering the inductor size needed to form a multicell ISOP
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or ISOS structure compared to a single cell, it can be concluded that the ISOP case would
lead to reduced losses compared to ISOS, but both cases would not lead to a significant
reduction in the inductor’s overall size and power losses (6), (7) and (8). The single cell
boost PFC inductor value is given by [24]:

L =
T

%Ripple
·
V2

ac−min
Po

·
[

1−
√

2 · Vac−min
Vo

]
(11)

In a multicell ISOP boost PFC, the inductor value per cell is calculated by:

L =
T

%Ripple
·
V2

ac−min
Po·N

·
[

1−
√

2 · Vac−min
Vo·N

]
(12)

In a multicell ISOS boost PFC, the inductor value per cell is:

L =
T

%Ripple
·
V2

ac−min
Po·N

·
[

1−
√

2 · Vac−min
Vo

]
(13)

For IPOS and IPOP structures as in the buck PFC case, the current is split between
cells and, as previously mentioned, reduces both inductor and MOSFET losses.

3.3. The Multicell DC to DC Voltage Step-Down in Two-Stage Conversions

The PSUs used in the ICT industry are converting AC 230 V to DC 48 V, and therefore
high gain DC to DC step-down conversion stage is needed. The most common type of
circuit for high efficiency DC to DC step-down conversion is the resonant converter such as
LLC [21,22] and phase shift full bridge converters (PSFB). The presence of the transformer
in these circuits provides magnetic isolation to the connected load. The losses for these
types of converter circuits are again down to the switches, the inductors, the capacitors and
the transformers. These circuits use zero-voltage switching (ZVS) techniques to minimize
the switching losses. However, these techniques do not influence the conduction losses.
The losses because of the inductors and the transformers are a result of the core and I2 R of
windings. The core losses are given by:

Pcore = Physterisis + Peddy (14)

Physterisis = Kh f BnVe (15)

Peddy = Ke f 2B2Vet2 (16)

where Ke and Kh are the eddy and hysteresis loss constants, Peddy is the eddy current power
loss (W), B is the flux density (Wb/m2), f is the frequency of magnetic reversals per second
(Hz), t is the core material thickness (m), V is the volume of core (m3) and n is the Steinmetz
exponent (ranging from 1.5 to 2.5 depending on the material).

Core losses are not proportional to the current passing through the coils. In inductors,
the core losses are proven to be negligible compared to winding losses. In transformers,
however, the larger the core size, the higher the core losses, even without any load. Paral-
leling transformers would reduce winding losses but would increase core losses and the
overall losses would therefore also increase.

4. Experimental Verification of Multicell Structures

This experimental verification work validates the use of parallel converter cells within
a PSU system for improved overall energy efficiency. To experimentally validate this
proposal, a small-scale experimental setup was implemented with 3 buck conversion cells
of a maximum power output of 18 W, input voltage of 24 V DC and output 5 V DC,
connected in an IPOP structure.
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Initially the setup was simulated in PSIM thermal module (version 12.0.3.) for com-
parison of theoretical and experimental results. The setup consists of 3 buck converter
cells, a 3-pole switch for switching of the 3 parallel cells, variable loads, and two power
meters measuring input and output voltage, and current and power. The buck cells used
are commercially available and they employ the LM2596 controller. A photo of the ex-
perimental setup is shown in Figures 5 and 6, showing the respective schematic diagram.
The input power meter used is a Lucas-Nuelle analog/digital multimeter, which is the
wattmeter and power-factor meter model SO5127-1Z, which has a measurement accuracy
of 2%, and a capability to work with voltages of up to 600 V and a current range of 0–20 A.
The meter used in the output of the multicell conversion system is a Fluke 345 PQ meter
with an accuracy in current measurements of ±0.2 A or ±1.5% and an accuracy of voltage
measurements of ±1%. It is worth mentioning here that since the measurements with
3 cells, 2 cells and 1 cell are comparative, the efficiency improvement could easily be veri-
fied. As it can be seen in Figure 5, for 17 W load output, the power input with 3 buck cells
is 22.8 W. For instance, at the same load (of 17 W) with 2 cells, the input power was 23.1 W.
The voltage input to the 3 cells was 23.56 V and current input 0.97 A.

The efficiency of the single buck cell at different load conditions was measured, graph-
ically analyzed and used as a baseline for energy efficiency. Following the experimental
measurements with one buck converter cell, two and then subsequently three similar buck
converter cells were used. Repeating the same methodology and measurement strategy,
the load-efficiency curve was constructed, as seen in Figure 7. It is worth mentioning
that the no-load consumption of one, two and three PFC circuits have an effect on the
load-efficiency curves. As it can be seen in Figure 7, for loads corresponding to 10–20% of
the full load (i.e., 1.8–3.6 W), the efficiency of one buck converter cell is higher than in the
case with two and three buck converter cells. For instance, on 2 W load, the efficiency of
1 cell was 72.76% and with 3 cells it was 70.63%. Additionally, on 3.6 W load, the efficiency
with 1 cell was 72.5%, with 2 cells 72.32% and with 3 cells 72.07%. This is due to the no-load
losses of the PSU modules arising mainly from the inductors and the control circuitry. The
no-load loss of a single buck converter cell is found to be 0.1904 W, that of two cells was
equal to 0.238 W and for three cells 0.3094 W.

Figure 5. Experimental setup with parallel buck converter cells.
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Figure 6. Circuit diagram of experimental setup.

Figure 7. Efficiency comparison of 1-cell and 3-cell multicell buck converters.

It can be theoretically and experimentally shown that when using parallel cells of
the same converter type, size and brand, the load is equally shared between the number
of parallel cells. Power converters or PSUs are voltage-controlled systems in which the
controller must maintain the output voltage level within certain values for different loading
conditions. Either in continuous conduction mode (CCM) or discontinuous conduction
mode (DCM), the small signal model of the buck converter in the secondary (output) side
of the converter consists of DC sources and a series impedance/resistance. The voltage
and resistance of CCM and DCM modes is of course different when analyzing the small
signal model. The equivalent simplified circuit for DC power supplies proposed from this
work is shown in Figure 8.
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Figure 8. Equivalent simplified circuit of parallel DC cells connected to a common variable load.

Using the circuit proposed, the equation of output power as a function of output
voltage, load and internal resistance can be derived for different cells and is given by:

Pout−m =
Voc−m −Vout

rm
(17)

For cells which are multiple and dissimilar in size and type, it can be shown that
connecting “w” number of cells of type A and “q” number of cells of type B in parallel
supplying a common load, the voltage at the output is given by:

Vout =

[
w Voc1

r1
+ q Voc2

r2
− Pout

]
w
r1
+ q

r2

(18)

where: Voc1 and Voc2 are the cell type A and cell type B, open circuit voltage, Vout is the
output voltage of the system, r1 is the internal resistance of type A buck-cell and w & q are
the number of buck-cells of type A and B connected to the system, respectively. The power
output of the system consisting of “w” cells of type A and “q” cells of type B is given by:

Pout = w.Pout1 + q.Pout2 (19)

It is obvious from (12), (13), and (14), that each cell shares a portion of the output
load based on the internal resistance, the open circuit voltage and the total load. For IPOP
structures with the same type of converter cells, (in ideal conditions) it can be realized
from equation (12) that the output power of each cell is equal. Measurements results for
load sharing between cells are shown in Table 1. The current was measured using three
clamp-on ammeters, which were the brand and type CEM, DT-362. The input power
is measured through a Lucas-Nuelle analog/digital multimeter called SO5127-1Z. The
experimental set-up is shown in Figure 9.

Table 1. Load sharing between three buck cells.

Power Input Cells
(W)

Input Current to
Cell 1 (A)

Input Current to
Cell 2 (A)

Input Current to
Cell 3 (A)

10.9 0.16 0.17 0.17
21 0.31 0.33 0.3

30.7 0.46 0.46 0.43
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Figure 9. Experimental set-up of load sharing between parallel buck cells.

The no-load losses could not be measured by PSIM and this is why, in Figure 7, the
simulation results show higher efficiency in all load levels compared with the respective
experimental ones. Under full load, an impressive 11.18% higher efficiency was measured
with three cells compared to one cell. In addition to no-load losses, PSIM is unable to mea-
sure the capacitor losses, control system consumption and other losses arising from cabling
or connections, etc. Most industrial power supply units require high frequency trans-
formers for isolation purposes that generate, however excessive, no-load losses. A single
centralized transformer should be used in PSUs adopting the multicell circuitry structure.
If each cell uses its own transformer, this would result in increased losses and lower overall
conversion efficiency. This can be proven experimentally by combining in parallel three
complete PSUs, including their individual transformer, and measuring the efficiency for
the different loads. Three Eltek Valere Micro pack 250 W, 230 V AC input/48 V DC output
PSUs are used to perform this experiment. The input to the three PSUs was measured using
a Lucas-Nuelle analog/digital multimeter measuring the input current, applied voltage
and consumed power of the system. Each of the three PSU outputs was connected to
“dummy loads” of different load values whilst measuring the output current and voltage.
For every different load case, input and output parameters were measured so that the
efficiency could be subsequently evaluated. The plot of efficiency versus load output is
shown in Figure 10, from which is it seen that the efficiency decreases as the number
of PSUs connected in parallel increases. The no-load consumption of the PSUs (mainly
as a result of the transformers) was measured and found to be 5 W per PSU (i.e., 2% of
efficiency at full load).
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Figure 10. Efficiency against power output of 1, 2 and 3 PSUs working in parallel (with transformer).

5. Proposed Multicell Buck PFC Converter
5.1. Justification of AC to DC Multicell Selection

In order to justify the selection and advantages of multicell structures, a high effi-
ciency Z-source buck PFC with a power output of 1000 W was initially simulated. The
proposed converter is an AC to DC step-down conversion circuit with improved efficiency.
Despite its single-stage conversion structure, due to the Z-source filtering, it satisfies power
supply regulation EN 61000-6-3. As a result, it is a transformer-less, single-stage conver-
sion system that can be used with IPOP structures and produces an improved energy
conversion efficiency.

The results with the losses at different power output levels are shown in Table 2. It
should be noted that the input inductor was 3 mH and the one at the output was 92.4 µH.
The output inductor design was optimized to minimize losses based on [25,26]. Table 1
shows that the total converter losses for the 200 W load output are 8.38 W and the efficiency
is therefore 95.81%. For the 1000 W load case, the total losses are 55.15 W and the efficiency
is 94.485%. It is interesting to note that the losses for switch 1 are lower than those of
switch 2 for small loads, however, as the load increases, the losses of switch 2 become
greater. Furthermore, the losses of the PFC stage are more than 40% of the total circuit loss
and the output inductor losses are negligible.

Table 2. Simulated single cell buck PFC results.

Power
Output (W)

Total Losses
(W)

Switch 1
Losses (W)

Switch 2
Losses (W)

Rectifier
Losses (W)

PFC Losses
(W) L1 Loss (W) L2 Loss (W)

200 8.38 1.46 0.51 1.28 4.91 0.19 0.03
300 12.51 1.89 1.08 2.04 6.98 0.44 0.08
400 16.85 2.39 1.88 2.88 8.79 0.78 0.13
500 21.89 3.02 2.93 3.8 10.7 1.23 0.21
1000 55.15 8.56 11.07 8.68 20.93 5.08 0.83

Initially, the AC to DC part of the multicell rectifier was simulated with the remaining
parts of the PSU in a single-cell structure. The results are shown in Table 3. The results are
very promising, since the load losses at 1000 W are considerably minimized. As expected,
since, for both inductors and MOSFET switches, the main losses are due to the internal
resistance (Rindutor and RDS−On, respectively), the three-cell buck PFC has significantly
lower losses (since N(I/N)2 × R < I2 × R).



Energies 2021, 14, 7038 14 of 18

Table 3. Comparison of 1-cell and 3-cell rectifier system.

Power Output (W) Single Cell Rectifier
Losses (W)

3 Cell Rectifier Losses
(W)

Rectifier Efficiency
Improvement

Overall PSU Efficiency
Improvement %

1000 8.68 0.00288 >99% 0.79%
500 3.8 0.0144 >99% 0.70%
400 2.88 0.01872 >99% 0.66%
300 2.04 0.0261 >98% 0.62%
200 1.28 0.03636 >97% 0.58%

The significant savings affect the overall PSU energy efficiency by up to 0.79%, as
demonstrated in Table 3. In the proposed multicell bridge simulation that consists of a three-
cell system, it is shown that, when increasing the number of cells, the efficiency improves.
The efficiency improvement is significant, especially under bigger load conditions, but as
the load decreases, the efficiency gains are relatively reduced.

5.2. Multicell Buck PFC

Simulating a two-cell buck PFC in PSIM’s thermal module, it is revealed that inductor
losses were minimized by about 50%, as shown in Table 4. The switching losses remained
about the same in the case of those of a single cell system; conduction losses, however,
were minimized by 52–57% for different loads, and inductor losses were improved by
50%.The overall results of the new system are shown in Figure 11. The results indicate
that when increasing the number of parallel cells, the conduction and inductor losses
decrease proportionally. Switching losses, on the other hand, are not affected. Therefore,
using GaN switches that have low switching losses compared to silicon MOSFETs, and
also minimizing conduction losses through multicells, leads to considerable efficiency
improvement. The simulated system diagram is shown in Figure 12.

Table 4. Comparison of cost per watt for different PSU systems.

PSU Brand PSU Model Power Output PSU Price Cost/Watt Reference

Mean well RCP-1000-48 1000 $241.90 $0.2419 Jameco.com
Mean well RCP-2000-48 2000 $436.69 $0.2183 Jameco.com
Mean well RST-5000-48 5000 $1193.00 $0.2386 Jameco.com
Mean well RST-10000-48 10,000 $2366.00 $0.2366 Jameco.com
Jetpower SPS60-48/CR4830 3000 $360.00 $0.1200 Alibaba.com
Jetpower SPS200-48/SR4850 10,000 $1250.00 $0.1250 Alibaba.com

The references “Jameco.com” and “Alibaba.com” shown in Table 4, are all accessed on 1 September 2021.

Figure 11. Efficiency comparison of single-cell and multicell PSU.
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Figure 12. Multicell PSU circuit proposed.

In order to simulate the thermal losses of the individual components of the circuit
using PSIM’s thermal module, each component was modeled with its equivalent circuit, as
shown in Figure 13. In the simulation, the ambient temperature and the thermal resistance
of each of the components is also taken into account. The flowchart in Figure 12 illustrates
the procedure used for selecting the number of cells in the multicell structure, ensuring no
excessive cells are used. The first step is to identify the MOSFET switches with the lowest
on-resistance (RDS−On).

Figure 13. Equivalent circuits in PSIM thermal module for (a) diode, (b). inductor, (c). MOSFET.

All switches should have a reverse voltage breaking capacity higher than the input
voltage of the source. Since the price of the switches tends to be proportional to the output
current, the flowchart in Figure 14 compares the system cost with the lowest cost switch
and the system cost of a multicell structure with the lowest RDS−On switches. The solution
with the lowest system cost is selected from the product of the number of cells and the cost
of the switches.
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Figure 14. Procedure for cell/switch selection.

6. Discussion

The results of the research have shown that parallel cells in multicell PSU structures
can lead to significant overall energy efficiency improvements in PSUs. According to [27],
currently, 1.8% of global energy is supplied to the ICT industry, such as datacenters and
micro-datacenters. More than 50% of this energy is supplied to the power supply units of
the ICT equipment. Therefore, the impact of PSUs with improved energy efficiency could
lead to significant energy savings in the ICT industry globally, and could contribute to
the efforts and targets set for global energy decrease, through more efficient systems. Of
course, the improvement in efficiency comes at an extra cost, as a result of the additional
components used. The total manufacturing cost of a PSU system consists of the electronic
components, the controller, the mounting, the enclosure, and labor costs. A PSU consisting
of multicell parts would have an increased cost on components (cells) and labor costs but
would not have an increased cost on the controller, the mounting and the enclosure systems.
Additionally, as mentioned earlier, the transformer systems which lead to a significant cost
in PSU systems should be single (centralized) and thus no additional cost should arise.

Analyzing the industry’s readymade PSU prices, it can be observed that when using
smaller units (as in those in multicell structures) for a 20 kW PSU (1 full rack), the cost is
slightly higher. Table 4 compares the cost per watt using smaller PSUs for the same type
and brand PSUs for different capacities.

The cost variation is in the order of 1–11%. For example, constructing a 20 kW power
supply system with 20 pieces of RCP-1000-48 would cost 10.78% more than using 10 pieces
of RCP-2000-48. Using 4 Mean Well RST-5000-48 instead of 2 RST-10000-48, would cost
0.8% more, but using Jetpower SP60-48/CR4830 instead of SPS200-48/SR4850 systems
would cost less per installed Watt.

Finally, the proposed multicell IPOP structures have limited applicability for circuits
that incorporate transformers. As stated in previous sections, transformers have no-
load losses that do not favor decentralization (multicell structure). Centralization via the
transformer part only of a multicell structure could overcome such limitations.

Further research will focus on multicell structures with planar transformers in matrix
forms. Studies have shown that such transformers offer reduced no-load losses.

7. Conclusions

The results presented in this study demonstrate that using low-power modules such as
the multicell structure for high-power PSU systems improves the energy efficiency. Using
three rectifier cells and two buck PFC cells, a more efficient power supply system can be
constructed for the same power output. Efficiency improvements of more than 1.2% can
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be achieved for 50% of the load and more than 2.1% efficiency improvement under full
load. The concept of multicell efficiency improvement is experimentally proven through
the testing of a three-cell, a two-cell and a single-cell buck converter system. It is shown
that an efficiency improvement of up to 10% can be achieved for particular loads in the DC
to DC conversion part. Energy efficiency improvements in PSUs leads directly to energy
consumption minimization for the ICT industry.

The initial cost of a power supply system in a datacenter is about 5% of the total
capital cost. A 10.78% increase in the power supply unit (i.e., the worst-case scenario) due
to a multicell structure compared to a single cell one, corresponds to an additional 0.5%
increase in relation to the total capital cost. The respective savings, however, are in the
order of 2.1%, as previously mentioned. Looking ahead in the long-term, the cost benefit
for this investment is viable, as with simple calculations the payback period is in the order
of just 3.3 years.
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