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Abstract: The highest economic costs of a geothermal plant are basically related to well drilling and
heat exchanger maintenance cost due to the chemical aggressiveness of geothermal fluid. The possi-
bility to reduce these costs represents an opportunity to push toward geothermal plants development.
Such challenges are even more important in the sites with a low-medium temperature geothermal
fluids (90–120 ◦C) availability, where the use of these fluids for direct thermal uses can be very
advantageous. For this reason, in this study, a direct geothermal heating system for a building will be
investigated by considering a plastic plate heat exchanger. The choice of a polymeric heat exchanger
for this application is upheld by its lower purchase cost and its higher fouling resistance than the
common metal heat exchangers, overcoming the economic issues related to conventional geothermal
plant. Thus, the plastic plate heat exchanger was, firstly, geometrical and thermodynamical modeled
and, after, exergoeconomic optimized. In particular, an exergoeconomic analysis was assessed on
the heat exchanger system by using a MATLAB and REFPROP environment, that allows for deter-
mination of the exergoeconomic costs of the geothermal fluid extraction, the heat exchanger, and
the heating production. A sensitivity analysis was performed to evaluate the effect of main design
variable (number of plates/channels) and thermodynamic variable (inlet temperature of geothermal
fluid) on yearly exergoeconomic product cost. Then, the proposed methodology was applied to a case
study in South of Italy, where a low-medium enthalpy geothermal potential exists. The plate-heat
exchanger was used to meet the space heating requests of a single building by the exploitation
of low-medium temperature geothermal fluids availability in the selected area. The results show
that the inlet temperature of geothermal fluid influences the exergoeconomic cost more than the
geometrical parameter. The variation of the exergoeconomic cost of heat exchanger with the inlet
geothermal fluid temperature is higher than the change of the exergoeconomic costs associated to
wells drilling and pumping with respect to the same variable. This is due the fact that, in the selected
zone of South of Italy, it is possible to find geothermal fluid in the temperature range of 90–120 ◦C,
at shallow depth. The product exergoeconomic cost is the lowest when the temperature is higher
than 105 ◦C; thus, the smallest heat exchange area is required. The exergoeconomic optimization
determines an optimum solution with a total product cost of 922 €/y for a temperature of geothermal
fluid equal to 117 ◦C and with a number of plates equal to 15.

Keywords: geothermal energy; direct heating system; plastic plate heat exchanger; exergoeco-
nomic analysis

1. Introduction

Today, the ambitious energy and environmental European Union (EU) target is to
limit global temperature increase below 2 ◦C. Among the different sectors involved in the
decarbonization by 2050, such as transport, industry, civil, and agriculture, the building
sector causes 36% of greenhouse gas (GHG) emissions, and it represents the pivotal sector
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to achieve the energy transition [1]. The highest share of energy demand in EU building
sector has been caused by space heating in 2018; in fact, it covers 64% of energy building
consumption in EU. Moreover, EU space heating requests are met 5% by electricity, 5%
by solid fuel, 10% by derived heat, 4% by oil and petrol product, 23% by renewable and
waste heat, and 43% by natural gas [2]. For these reasons, the EU promotes the replacement
of fossil-fuel-based heating systems with renewable-based one in order to mitigate the
building sector environmental impact. A massive use of renewable energy sources (RESs)
to activate space heating system is a good strategy to obtain the EU targets. The renewable
energy use for heating purposes in 2018 amounted to 2270 TJ of solar energy, 44,411 TJ of
geothermal energy, 477,666 TJ of waste heat recovery, and 641,308 TJ of biofuels [3].

The use of RESs to meet the space heating needs could be significantly improved
with the exploitation of RESs’ lowly weather influences, such as geothermal source. The
geothermal energy is low dependent from weather conditions for its nature, and it presents
a higher capacity factor than other RESs, such as solar or wind. The total installed geother-
mal capacity for direct use is increased by 52% from 2015 to 2019, reaching 107,727 MWth.
The increasing trend is caused by the Ground Source Heat Pumps use that do not draw
the geothermal fluid from the ground. Instead, the geothermal use for direct space heating
(single building and district heating system) increased by 68.0% in installed capacity, and
83.8% in annual energy use, from 2015 to 2019 [4]. However, a great potential for geother-
mal energy exploitation exists, but economic issues related to geothermal plant installation
curb the exploitation of these technologies. Indeed, the high cost for drilling wells, and the
great maintenance and purchase costs of metallic heat exchangers (HEXs) interacting with
geothermal fluids, are the major cost items for geothermal plants.

The high HEXs′ maintenance costs are caused by the interaction between the aggres-
sive geothermal fluid and the heat-transfer fluid leading fouling problems [5]. This fouling
issue causes the worsening of two factors in the hydronic system for heating and cooling:
the increase of friction pressure losses and the worsening of thermal heat transfer coefficient.
The decrease of crossing flow section also determines the reduction of plant efficiency. For
these reasons, the heat exchangers of the geothermal plants require the continuous cleaning
maintenance and, sometimes, the periodic replacement of traditional steel component or
the employment of high fouling resistant metals, such as titanium, causing the purchase
cost increase.

During the last few years, the alternative materials for HEXs are introduced to solve
the fouling problem in different aggressive environments for tube plate [6], tubular im-
mersion [6], plate [7], shell and tube [8] heat exchangers, and also economizers [9]. The
advantages of plastic materials are the lower costs and weights than metallic ones; high
anti-corrosion and antifouling resistances that allow the interaction with chemical aggres-
sive fluids and good mechanical properties [10]; sustainability of manufacturing process;
and the possibility of different fields of applications, such as heat recovery systems, desic-
cant cooling systems, electronic devices cooling, water desalination systems, and cooling
evaporators [11]. Nevertheless, the polymers are characterized by low atomic density and
low thermal conductivity (0.1 ÷ 0.3 W/m·K); for this reason, their employments need
geometric and thermodynamic optimization. Ceglia et al. [12] considered the employment
of plastic material in shell and tube heat exchangers as a replacement of traditional metals
one to overcome the fouling issue caused by aggressive geothermal fluid in a cogeneration
system. The results showed the reduction of HEX purchase cost up to 73% by replacing
titanium with high density polymers [13], and the maximum excess of heat exchange
surface area was equal to 47%. The plastic HEX models optimization, aimed to match the
economic advantages and the improving of heat transfer, represents a pivotal strategy to
push toward the increase of geothermal source exploitation.

In this context, the thermoeconomic optimization by using exergy analysis is con-
sidered a good approach to evaluate the economic and thermodynamic advantages of a
thermal system by combining the quality and the quantity of energy with its economic
value. This approach is so called exergoeconomic analysis. Thus, the exergoeconomic
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analysis of geothermal-based systems is spreading, demonstrating that it is useful for the
identification of the thermodynamic inefficiencies in such systems. Luo et al. [14] have
carried out an exergy analysis on an integrated cascade utilization system of geothermal
water to identify the optimal temperature scheme. Arslan et al. [15] have used the exer-
goeconomic analysis to investigate a heating network for an integrated geothermal system
in Turkey. To define the most performed solution for different pipelines dimension, the
variation of total cost based on diameter of the pipes has been analyzed. The outcomes
show that the change of the outlet temperature of geothermal fluid has a negligible effect on
the optimum point. Different researchers have paid attention on exergoeconomic analysis
of heat exchangers in geothermal applications to minimize the capital cost and investment
cost of components by using multiple algorithms and methodologies. Jamil et al. [16]
have defined an exergoeconomic optimization by considering design and operating pa-
rameters and also fiscal parameters for a shell and tube heat exchanger. The results show
that the increase of mass flow rate and the baffles increased the operating cost because of
an exponential growth in the pressure drops. Finally, the optimization reduced the heat
transfer area by 26.4%, capital cost by 20%, and operational cost by 50%. Hajabdollahi
et al. [17] have presented a study of optimization for gasket-plate and shell and tube heat
exchangers. The aim of study is the minimization of the capital and operating costs by
using decision variables. The results in the case of gasket-plate show an improvement of
13% in the total cost compared with shell and tube heat exchangers with the same operating
conditions. In addition, the total cost in plate configuration decreases by increase of plate
number. Instead, for shell and tube heat exchangers, the operating cost increases by the
growth of both cold and hot side mass flow rates due to the increase of Reynolds number
and consequently pressure drops. In Reference [18], an energetic and exergetic analysis
on plate heat exchanger, dedicated to the heating network, based on geothermal energy
has been defined. The results have showed a correlation between exergy loss rate (total
or internal) and capital cost for the system. Furthermore, a correlation exists between
thermodynamic (exergy-based) and economic characteristics of the overall system and its
devices. Hajabdollahi et al. [19] have also performed the optimization of other types of
heat exchangers including shell and tube heat exchanger, plate fin and fin tube [20], and
compact heat exchanger [21].

The previous literature review stated the usefulness of exergoeconomic approach in
the analysis of heat exchangers; however, the majority of these studies refer to:

• applications different from geothermal direct uses;
• metallic heat exchangers; and
• analysis in which the heat exchanger is considered as a “black box” by not considering

the thermodynamic model of the component.

In this work, all the previous issues are overcome by defining the geometrical and
thermodynamic model of a polymeric plate heat exchanger (PPHEX) for direct use of
low-medium temperature geothermal source, to meet the space heating demand of a
single building. Such an application is suitable for sites that show a geothermal interest
with geothermal fluids availability in the range of about 90–120 ◦C. These areas cover
different zones of the world; thus, in the following, Table 1, some of low-medium enthalpy
geothermal site are reported. The maximum limit of the temperature geothermal fluid
variation range and the corresponding references are listed, too.

Thus, the PPHEX model implemented in the MATLAB environment returns the heat
exchange area, plate width, and total pressure drops of the PPHEX for a fixed heat power
under various design/operating conditions (number of plates/channels and geothermal
fluid inlet temperature). The results of dynamic simulation have been used as input to
the exergoeconomic optimization that has the goal to minimize the exergoeconomic costs
related to the thermal energy supplied to the building.

Moreover, usually, in geothermal applications, the use of shell and tube HEXs is
preferred because of its faster cleaning processes by chemical or mechanical mechanisms.
Nevertheless, in this application, the use of a plate heat exchanger is proposed; indeed,
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the possibility to employee the polymeric material allows for investigation of various heat
exchanger configurations because the plastic heat exchanger does not require cleaning
during life cycle.

The study is structured as follows: In Section 2, the polymeric heat exchanger model,
the exergoeconomic analysis of the numerical algorithm, and the considered case study
are introduced. Finally, Section 3 reports the results and discussion, as well as the future
improvement, of this work.

Table 1. Maximum limit of geothermal fluid temperature variation range in areas with geothermal
interest.

Area Maximum Limit of Geothermal Fluid
Temperature Variation Range (◦C) References

Greece
(Aristino-Alexandroupolis) 99 [22]

Thailand 100 [23]
Mexico 100 [23]
Island 110 [23]

Bulgaria 100 [23]
Hungary 108 [23]
Romania 89 [23]

Germany (north-east) 120 [24]
Turkie 240 [25]

Italy (Ferrara) 100 [23]
Italy (Phlegrean Fields) 240 [26]

2. Methods and Materials

In this section, the description of PPHEX modeling process is proposed, and the
exergoeconomic optimization is introduced. First of all, the mathematical models are
defined (see Section 2.1), and then the method used to perform the exergoeconomic analysis
is presented (see Section 2.2). Then, the numerical algorithm implemented in the MATLAB
environment to obtain the inputs to exergoeconomic analysis, starting from mathematical
models’ analysis as described (see Section 2.3). Finally, the methods described in the
previous sections have been applied to a case study that is presented in Section 2.4, in
which the exergoeconomic analysis introduced in Section 2.2 is detailed for the considered
case study.

2.1. Mathematical Models

The mathematical modeling process is distinguished in the geometrical model (see
subsection Section 2.1.2), heat exchange model and calculation (see Section 2.1.2), and
pressure drops evaluation (see Section 2.1.3). The defined model will return the heat
exchange area, plate width, number of plates, and total pressure drops of the PPHEX for a
fixed heat power.

2.1.1. Geometrical Model

The plate heat exchanger consists of a series of plates with corrugated flat flow
passages. The hot and cold fluids flow counter-flow in alternate passages are shown
Figure 1b. The geometric parameters able to define the plate heat exchanger are shown in
Figure 1a,b: plate height (H), plate width (L), chevron angle (β), number of channels for
each flow (Nc), wavelength of a sinusoidal surface corrugation or corrugation pitch (λ),
plate thickness (δ), and plate spacing (b).
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In addition, hydraulic diameter (D), corrugation parameter (γ), number of plate (Np),
enlargement factor (ϕ), and mass flux are defined in Table 2, where

.
m is the mass flow rate.

Table 2. Plate heat exchanger parameters.

Parameters Formulation

hydraulic diameter D = 2 · b/ϕ
corrugation parameter D = π · b/λ

number of plates Np = 2 · Nc − 1
enlargement factor ϕ = (1 +

√
(1 + y2) + 4

√
1 + y2

2
mass flux G =

.
m/(L · Nc · b)

2.1.2. Heat Transfer Model and Calculation

The PPHEX model is developed by imposing the desired thermal power (
.

QPPHEX)
resulting from the heat transfer between the hot geothermal fluid and the cold water
circulated in the building hydronic system. Equation (1) allows the calculation of thermal
power

.
QPPHEX, and the PPHEX height is here discretized in elementary section (i), with

infinitesimal height (dZ) as graphed in Figure 2. At the inlet section, which corresponds
to i = 0, the geothermal hot fluid enters into heat exchanger, and the cold fluid exits. In
this section, the outlet temperature of cold fluid is Tout,c, and the hot temperature of inlet
fluid is Tin,c The elementary thermal power in the infinitesimal height dZ (δ

.
QPPHEX,dZ(i))

is calculated according to Equation (2), by considering an adiabatic in which there is no
exchange for heat between PPHEX and surroundings. In each elementary section (i), the
overall heat transfer coefficient U is evaluated by proper heat transfer correlations, as
reported in the following discussion. After the calculation of δ

.
QPPHEX,dZ(i) , the local

temperatures associated to the elementary dZ (i + 1) are evaluated by Equations (3) and (4)
for geothermal hot fluid and cold fluid, respectively. The temperatures are corrected by
also taking into account the pressure drops (see Section 2.1.3).

.
QPPHEX =

H∫
0

(U·∆T·L·ϕ(2·Nc− 1)) dZ (1)

δ
.

QPPHEX,dZ(i) = dA·U·
(

Th,dZ(i) − Tc,dZ(i)

)
(2)

Th(i + 1) = Th(i)−
δ

.
QPPHEX,dZ(i)

.
mh·ch

(3)
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Tc(i + 1) = Tc(i) +
δ

.
QPPHEX,dZ(i)

.
mc·cc

(4)
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The overall heat transfer coefficient U is calculated in Equation (5), by considering the
convective thermal resistance of hot fluid (αh) and cold fluid (αc), the conductive thermal
resistance of polymeric material (kw), and fouling resistance for both fluids (R f ,c, R f ,h) [27].

U =
1

1
αh

+ 1
αc

+ δ
kw

+ R f ,c + R f ,h
. (5)

The heat transfer coefficients are both calculated by Equation (6), where the Nusselt
number (Nu) is obtained by Martin equation for liquid fluids, as reported in Equation (7) [28],
where k is the fluid conductivity, f is the Fanning friction factor (Equation (8)), and f0 and
f1 are calculated from Reynolds number.

α = Nu· k
D

(6)

Nu = 0.205·Pr
1
3 ·
(

µ f

µw

)1/6
·
(

f ·Re2·sin (2β)
)0.314

(7)

1√
f
=

cos(β)(
0.045· tan(β) + 0.09· cos(β) +

f0
cos(β)

)0.5 +
1− cos(β)√

3.8· f1
(8)

2.1.3. Pressure Drops Calculation

The local pressure is evaluated by integration of the pressure drop relations. Then,
pressure drops are used to correct the thermodynamic properties in the energy balance
(Equations (3) and (4)) by using the REFPROP library. The overall pressure drops, for both
fluids, are evaluated by considering three contributions, as expressed in Equation (9) [29].
The first term (dp f ric) considers the loss caused by the friction contribution in the plates,
the second term (dpmon) is the momentum effect, and the last term (dpelev) considers the
elevation change.

dp
dZ

=
dp f ric

dZ
+

dpmon

dZ
+

dpelev
dZ

. (9)

The friction factor term can be determined by using Equation (10) [30], where G is the
mass flux, and ρm is the density average value.

dp f ric =
4· f ·dZ·G2

2·D·ρm
. (10)
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The momentum pressure drops can be evaluated by using Equation (11), where ρout
and ρin represent the density of fluid at outlet and inlet condition of each section area,
respectively.

dpmon = G2·
(

1
ρout
− 1

ρin

)
. (11)

In this study, this contribution can be neglected because both fluids are in liquid phase
during the process. The elevation term (Equation (12)) determines a positive effect on the
geothermal fluid that flows downward; on the contrary, it determines a negative effect
on the cold water that flows upward. In Equation (12), g is the gravitational acceleration
(m·s−2).

dpelev = ±ρm·g·dZ. (12)

In addition, the pressure drops due to the inlet manifold is evaluated by considering
Equation (13), where np is the number of passes in the plate heat exchanger, and Gman is
the mass flux in the manifold.

∆pman =
1.5·np·G2

man

2ρin
. (13)

2.2. Exergoeconomic Analysis

The current study proposes the exergoeconomic analysis of a geothermal heating
direct system for a single building by assessing the effect of two variables: the number of
plates/channels for PPHEX and the inlet temperature of the geothermal fluid. The first one
is an endogenous variable whose value is determined through the heat exchanger model.
The inlet geothermal fluid temperature is an exogenous variable determined outside the
model, and it depends on the specific application (low-medium temperature geothermal
fluid). These variables are selected because they substantially influence the results of
exergoeconomic analysis. This approach that analyzes the exergoeconomic optimization
results referred to an energy system by varying an exogenous and an endogenous variable
is widely used in scientific literature [31–33].

The exergoeconomic performance of the system has been evaluated for each com-
bination of these parameters. The optimal operating conditions have been selected by
means of an exergoeconomic optimization aimed to minimize the exergoeconomic costs
associated the thermal energy supplied to the building, which represents the product of
the exergoeconomic analysis. All the irreversibility of the process are calculated by using
the exergy destruction rate of system(

.
Itot). According to the Gouy–Stodola theorem, it is

be evaluated by multiplying the reference or “dead-state” temperature, T0, by the entropy
generation rate,

.
Sgen,tot, as reported in Equation (14) [34].

.
Itot = T0·

.
Sgen,tot (14)

The exergy destruction rate of system can be determined as the difference between the
external exergy resources “required” to sustain the total process itself (

.
Fj)and the exergy

“product” term that constitutes the purpose of the process (
.
P), as reported in Equation (15).

.
Itot =

n

∑
j=1

.
Fj −

.
P. (15)

Thus, the exergoeconomic cost (Ctot) to obtain the desired product (
.
P) analysis is

written for yearly exergetic cost (Equation (16)) by including the depreciated investment
costs, expressed as the product between the purchased costs (Zk) and the Capital Recovery
Factor (CRF) for each k-esimo component, and the operating costs, evaluated as a product
between the exergetic stream (

.
Fj), the related specific exergetic cost (cF,j),and the yearly
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operating hours (θ). In Equation (16), nc is the total number of components, and the
maintenance cost is neglected [31].

Ctot =
n

∑
j=1

.
Fj·cF,j·θ+ CRF

nc

∑
k=1

Zk (16)

CRF is defined as:

CRF =
a(1 + a)m

(1 + a)m − 1
(17)

where a is the interest rate, and m is the service life of the system.

2.3. The Heat Exchanger Modeling and Exergoeconomic Analysis Algorithm

In this section, the numerical algorithm is defined, and the flow chart is represented in
Figure 3. It is implemented in MATLAB [35] by means of a main code for exergoeconomic
analysis and different functions to evaluate thermodynamic and geometrical properties
by using the REFPROP software library [29]. The model returns the heat exchanger
surface area (APPHEX) needed to obtain the desired thermal power, (δ

.
QPPHEX,dZ(i)) and

the calculation is carried out for each couple of endogenous and exogenous variables (the
number of plates/channels for PPHEX and the hot geothermal fluid inlet temperature) in
the corresponding range of variation of each variable.

The geometrical input data are width, thickness, plate spacing, chevron angle, wave-
length, and others of PPHEX, while the thermodynamic input parameters are the inlet
(Tc,in) and outlet temperature of cold fluid (Tc,out) and the hot fluid temperature variation
(∆Th,in−out). Moreover, the conductivity of the polymer is imposed as input data.

At that first step of integration that corresponds to i = 1, the fixed parameters are
assigned. The pressure drops, and the overall heat transfer coefficient U for both fluids
in each dZ are calculated by using Equations (5)–(13). In this way, the elementary heat
power δ

.
QPPHEX,dZ(i) is achieved from Equation (2). By considering the hypothesis of an

adiabatic heat exchanger through its surroundings, and by means of the Equations (3) and
(4), the temperatures of both fluids in subsequent integration steps (i + 1) are calculated.
The integration stops when the desired heat power (

.
QPPHEX,obj ) is obtained. The output

parameters are geometrical results about heat exchanger surface area (APPHEX) and also
the plate height (H), the U, and global pressure drops. As said before, this calculation is
conducted by varying Th,in and Nc; for this reason, for each output parameter, a matrix

(
·

X(Th,in × Nc)) is obtained. The first control is made on a limit for pressure drops in the
plate, and, according to the PPHEX datasheet, this limit is fixed to 0.5 bar for each fluid
flow. The heat exchanger height and area have been directly used in the exergoeconomic
cost function, while the pressure drops and the temperature trend have been used as a
filter to discard the impossible technical solutions. Once the unacceptable solutions are
discarded, the exergoeconomic function is minimized to find the condition with minimum
thermoeconomic impact for single building.
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2.4. The Case Study

The methods described in the previous sections have been applied to a case study in
Italy. More precisely, the Phlegrean Fields area (south of Italy) has been chosen for this
application. It is an active volcano district of the Campania region characterized by high
geothermal fluid temperature at shallow depth [26,36,37]. In particular, as it is possible to
derive from previous analyses conducted in this area, a temperature of geothermal fluid
in the range 90–120 ◦C has already been recorded at the depth of 86–101 m. Thus, the
results of the exergoeconomic optimization are referred to this specific area, and they will
be different if the same methodology is applied to a different zone with a potential interest
from geothermal point of view (low-medium temperature geothermal fluid availability).

Thus, this case study takes into account the possibility to use a geothermal PPHEX of
24 kWth connected to the hydronic building heating system by means of a thermal grid.
As reported in the Figure 4, the geothermal fluid is drawn from the ground by using the
production well (1) and the first pump (P1), and, after, it enters in the control volume C.V.1.
In C.V.1., the geothermal fluid heats the cold water, and, after, it is reinjected by using P2
and injection well (2). The hot water exiting the PPHEX is sent to building circuit by means
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of a circulating pump P3. The fixed PPHEX parameters are reported in Table 3, according
with datasheets [6,7,38]. The variable parameters are the inlet geothermal temperature and
the number of channels for each flow (or plates).
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Table 3. Input Data.

Parameters Symbol Value

Inlet Temperature of geothermal hot fluid (◦C) Th,in 90–120
Temperature difference of geothermal fluid (◦C) ∆Th,in−out 20

Inlet Temperature of cold water (◦C) Tc,in 45
Outlet Temperature of cold water (◦C) Tc,out 60

Thermal polymer conductivity (Wm−1 K−1) kw 0.22
Plate spacing (mm) b 2.2

Wavelength of a sinusoidal surface corrugation (mm) λ 2
Plate thickness (mm) δ 0.4

Channels number for each flow (-) Nc 4–14
Chevron angle β 60◦

Plate width (m) L 0.077

The geothermal fluid is extracted from a shallow production well, indeed, according to
data about geothermal fields of Phlegrean Fields area (South of Italy) [12,36,37], geothermal
fluids in the temperature range of 90–120 ◦C at a depth varying from 86 m to 101 m. To
perform the exergoeconomic analysis in the considered case study, Equations (16) and (17)
have been detailed with reference to Figure 4. Referring to C.V.1, the exergy balance can be
written as reported in Equation (18), where the term (

.
mc·(exc,out − exc,in)) represents the

exergy product (
.
P) according to Equation (16). The exergy input (

.
F) is the sum of exergy

rate of geothermal fluid (
.

mh·(exh,in − exh,out)) and exergy electric input (
.

WP3). The first
term can be evaluated by exergy balance on C.V.2 reported in Equation (19), where the
exergy input is equal to exergy electric input (

.
WP1 +

.
WP2). Thus, the total exergy balance

can be expressed according to Equation (20).

.
mh·exh,in +

.
mc·exc,in +

.
WP3 =

.
mh·exh,out +

.
mc·exc,out +

.
IV.C.1 (18)

.
mh·exh,out +

.
WP1 +

.
WP2 =

.
mh·exh,in +

.
IV.C.1 (19)

.
mc·(exc,out − exc,in) =

.
WP3 +

.
WP1 +

.
WP2 −

.
Itot (20)
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Once the exergy balance is defined, the exergoeconomic balance can be defined by us-
ing the exergoeconomic cost and the additional purchase costs (according to Equation (16)),
as reported in the Equation (21).

Ctot = cF,el ·θ·
( .

WP3 +
.

WP1 +
.

WP2

)
+ CRF·(ZP1 + ZP2 + ZP3 + Zwell,1 + Zwell,2 + ZPHEX) (21)

where Ctot is the exergoeconomic cost associated to the product
.
P, cF,el is the specific

exergoeconomic cost of electric exergy input, ZP1, ZP2, ZP3 are the investment costs of
pumps, Zwell,1, Zwell,2 are the wells costs, and ZPPHEX is the PPHEX cost. In Table 4, the
investment cost functions are listed, where Hwell is the deep length of well ranging from
86 to 101 m in Phlegrean Fields area, dwell is the well diameter, and cPPHEX and APPHEX are
the specific cost and heat exchange surface area of PPHEX, respectively.

Table 4. Cost function.

Component Investment Cost (€) Reference

Pump ZP = 107.26·
.

W
0.7176
P

[39]
Well Zwell = 23.578·e0.0063·dwell ·Hwell [40]

PPHEX ZPPHEX = cPPHEX·APPHEX [6]

The ZPPHEX is obtained by market investigation, and it results in approximatively
equal to 1230 €·m−2. However, θ is equal to 1088 h/y, by taking into account the typical
Mediterranean hot climate referred to in the South of Italy. The cel is fixed equal to
0.25 c€·kWhel

−1 VAT included [41].

3. Results and Discussion

In this section, the results of analysis are presented. In Section 3.1, the main outcomes
of the mathematical modeling of heat exchanger are discussed. In Section 3.2, the results
of exergoeconomic analysis are presented by including the sensitivity analysis about
thermodynamic and geometrical parameters.

3.1. Geometrical and Thermodynamic Results

The geometrical characteristics of PPHEX highly affect the pressure drops results. The
cold fluid presents higher pressure drops due to greater mass flow rate (0.382 kg·s−1) than
hot one (0.287 kg·s−1). The mass flow rate is calculated by energy balance on PPHEX,
according to Equations (3) and (4). The best configuration in terms of pressure drops is
verified when the geothermal fluid inlet temperature is equal to 90 ◦C, and the number
of channels for each fluid flow is equal to 4. The results obtained by mathematical model
are filtered by assuming a maximum acceptable value for ∆p equal to 0.5 bar. In Figure 5,
the pressure drops of hot and cold fluid are reported by varying Th,in and Nc. If the inlet
temperature of geothermal fluid is equal to its maximum (120 ◦C), the lowest acceptable
Nc is 5 for hot fluid, and 7 for cold fluid. Even if Th,in is equal to its lowest value (90 ◦C),
the acceptable Nc increases up to 6 for hot fluid, and 9 for cold fluid. Thus, pressure drops
of the cold fluid (∆pc) represent the discriminating factor to filter the results since ∆pc is
the highest one. Thus, the lowest acceptable Nc is equal to 7.
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Following the methodology defined in Equations (3) and (4), the trends of temper-
atures in the PPHEX are represented for hot and cold fluid in 3D, in Figures 6 and 7,
respectively, in the case in which the number of channels are equal to 12, and the Th,in is
equal to 115 ◦C. As a matter of fact, the heat transfer process determines the heating of cold
water supplied to the building by the cooling of geothermal fluid. However, the legislation
concerning the geothermal uses recommends a reinjection temperature of geothermal fluid
not lower than 70 ◦C [42]. Thus, in order to ensure the recommended reinjection tempera-
ture, the minimum considered geothermal fluid inlet temperature is 95 ◦C. Figures 6 and 7
also show the flows direction. More precisely, in Figure 6, the geothermal hot fluid enters
from the PPHEX in the upper side, and its temperature decreases to 20 ◦C, as far as the exit
section (H = 0 mm). In Figure 7, the cold fluid enters from the PPHEX down side, and its
temperature increases from 45 to 60 ◦C (15 ◦C) as far as the exit section that corresponds
to geothermal fluid entry. The temperature difference of both fluids along the height of
the heat exchanger is the same because they are assimilated to liquid water in the model
by using the REFPROP library. This fact is justified by the same color trend of both 3D
Figures 6 and 7, even if the temperature variation range represented by the colors bars is
significantly different (115–95 ◦C for hot fluid (Figure 6) and 60–45 ◦C for cooling fluid
(Figure 7)).
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Figure 7. Temperature trend of cold water for Nc = 12 and Th,in = 115 ◦C.

According to the methodology defined in the Equations (5)–(7), the calculation of
overall heat transfer coefficient (U) has been obtained for each combination of the two
variables (Th,in and Nc) filtered by considering the restrictions on pressure drops (0.5 bar).
In Figure 8, the surface plot of U is showed. The blue bar represents the condition with
the lowest U value (225–230 W·m−2·K−1) that is verified when Nc is higher than 9. U
presents the greatest value (248 W·m−2·K−1) when Nc is equal to 7, and Th,in is equal to
118–120 ◦C. The Th,in slightly influences the overall heat transfer coefficient: for a fixed
value of Nc, and by varying Th,in from 120 to 90 ◦C, the U value shows an increase lower
than 1%. Differently, by fixing the temperature, and by considering a number of channels
variation from 4 to 14, the U value increases up to 10%. This can be explained by taking into
account the fact that the heat transfer convective coefficient (α) is strongly influenced by
mass flux (G), which assumes higher values when Nc decreases due to the reduction of the
crossing flow section. However, the variation range of U is very low (225–248 W·m−2·K−1)
because both fluids are in liquid phase, and the plate heat exchanger presents low room for
improvement.
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For filtered solutions, the heat exchange surface area of PPEHX is reported in Table 5.
It presents a highest value equal to 3.91 m2 when Nc = 14, and Th,in = 90 ◦C, while the
lowest value is equal to 1.68 m2 when Nc = 7, and Th,in = 120 ◦C. The maximum percentage
variation of APPHEX is equal to 57%. So, the optimum solution, in terms of lower footprint,
corresponds with best heat transfer performance.

Table 5. Heat exchange surface area for matching Nc-Th,in solution.

Polymer Plate Heat Exchange Surface Area APPHEX (m2)

T (◦C) Nc 7 8 9 10 11 12 13 14

90 - - - 3.73 3.78 3.83 3.87 3.91
91 - - - 3.60 3.66 3.69 3.74 3.78
92 - - - 3.47 3.53 3.58 3.62 3.65
93 - - 3.31 3.36 3.41 3.45 3.50 3.52
94 - - 3.21 3.25 3.31 3.33 3.38 3.41
95 - - 3.11 3.16 3.21 3.24 3.28 3.31
96 - - 3.01 3.07 3.10 3.15 3.19 3.20
97 - - 2.93 2.98 3.02 3.04 3.09 3.13
98 - - 2.84 2.88 2.92 2.98 2.99 3.05
99 - - 2.76 2.81 2.84 2.89 2.92 2.94

100 - - 2.70 2.74 2.78 2.80 2.85 2.86
101 - - 2.63 2.66 2.70 2.73 2.77 2.78
102 - 2.51 2.55 2.59 2.63 2.66 2.70 2.73
103 - 2.45 2.50 2.53 2.57 2.60 2.63 2.65
104 - 2.39 2.43 2.48 2.51 2.53 2.58 2.60
105 - 2.33 2.38 2.40 2.45 2.48 2.50 2.52
106 - 2.28 2.31 2.35 2.39 2.42 2.46 2.47
107 - 2.23 2.27 2.31 2.33 2.37 2.38 2.42
108 - 2.17 2.22 2.25 2.29 2.30 2.33 2.36
109 - 2.13 2.17 2.20 2.23 2.26 2.29 2.31
110 - 2.09 2.12 2.16 2.19 2.21 2.24 2.26
111 - 2.04 2.08 2.11 2.14 2.17 2.19 2.23
112 - 2.00 2.03 2.07 2.10 2.13 2.14 2.18
113 - 1.96 2.00 2.03 2.06 2.08 2.12 2.13
114 - 1.93 1.95 2.00 2.02 2.04 2.07 2.10
115 - 1.88 1.92 1.96 1.98 2.01 2.02 2.05
116 - 1.85 1.89 1.92 1.94 1.97 1.99 2.02
117 - 1.81 1.85 1.89 1.90 1.92 1.95 1.97
118 1.74 1.78 1.82 1.85 1.88 1.90 1.92 1.94
119 1.72 1.75 1.79 1.81 1.84 1.86 1.87 1.92
120 1.68 1.72 1.75 1.77 1.80 1.83 1.85 1.86

3.2. Exergoeconomic Results

As mentioned above, the optimization of the two investigated parameters, the temper-
ature of the geothermal source and number of channels, is carried out in order to find the
configuration that guarantees the lower exergoeconomic cost of product, Ctot. First of all,
the investment cost of PPHEX is represented in Figure 9. The configuration that leads to
the lowest investment cost corresponds to the condition with the smallest heat exchange
surface area (Nc = 7 and Th,in = 120 ◦C), in which ZPPHEX amounts to 2069 €. The invest-
ment cost increase occurs when the temperature availability of geothermal fluid decreases,
while it is not very influenced by Nc variation. In fact, the increasing temperature of 1 K of
geothermal fluid corresponds to an investment cost average rise of 2.5% when Nc is fixed
to 14. However, by considering temperatures lower than 100 ◦C, the investment cost is
higher than 3000 €. Moreover, if the Nc is decreases up to 10, the investment cost drops
below 2000 €, when the geothermal fluid temperatures are to 120 ◦C.
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Figure 9. Heat exchanger investment cost.

The variation of the main exergoeconomic costs as function of Nc and Th,in is illus-
trated in Figure 10. The exergoeconomic cost of electricity, Cel , calculated in first term of
Equation (21), is caused by electricity consumption of pumps during heating period. It
dramatically increases as the geothermal fluid temperature grows because the pressure
drops, and the deep well rises, while it presents a low variation with Nc, as depicted in
Figure 10a. For Nc fixed to its maximum value (14), the yearly exergetic cost of electricity
is equal to 213 €·y−1 if Th,in is 90 ◦C, and 245 €/y if Th,in amounts to 120 ◦C, presenting a
percentage variation of 13%. By fixing Th,in to 120 ◦C, the electricity exergoeconomic cost
is equal to 255 €·y−1 if Nc decreases to 7, showing a percentage variation of 4%. Figure 10b
illustrates the yearly amortized cost of PPHEX. It reaches the highest values when the
geothermal fluid temperature is lower than 96 ◦C; thus, in this condition, the exergoeco-
nomic PPHEX cost is greater than 350 €·y−1. Nc determines a not very relevant influence
on the cost of PPHEX, too. Indeed, in each temperature condition, the exergoeconomic cost
increases of 10% for Nc ranging from 7 to 14. The lowest values (≤250 €/y) can be obtained
when Th,in varies from 110 to 120 ◦C. Figure 10c shows the amortized cost of three pumps
of system. According to electricity cost, the pumps investment costs need higher power
capacity if the temperature increases determining higher purchase costs. Despite this, a
higher influence in pumps investment cost is determined by Nc variation. Overall, this
cost slightly influences the system because its maximum is 12.6 €·y−1, and its minimum is
10.8 €·y−1. Figure 10d shows the most expensive exergoeconomic parameter of geothermal
plant: the well cost. As expected, this cost increases with depth and temperature increase,
and it is not influenced by heat exchanger geometry. The highest value corresponds to
455 €·y−1, and the lowest one is 390 €·y−1.
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Figure 10. Effect of Nc and Th,in on the exergoeconomic costs of electricity (a), on PPHEX purchase
cost (b), on pumps purchase cost (c), and on well investment cost (d).

In Figure 11, the optimization of global exergoeconomic analysis is represented. The
convenience of investment is presented by blue and light-blue solution that correspond to
temperature of geothermal fluid higher than 105 ◦C. In these conditions, for each number
of channels, Ctot is lower than 950 €·y−1. Both Th,in and Nc affect the total exergoeconomic
costs of the product, but, for a fixed temperature, and for a changing of Nc from 7 to 14, the
variation of Ctot is equal to 1.6%. However, by varying Th,in from 90 to 120 ◦C for a fixed Nc,
the variation of Ctot corresponds to 13%. Despite the well cost and electricity cost increase
with temperature rise, the product exergoeconomic cost presents an opposite behavior
with temperature. The product yearly cost is highly influenced by the exergoeconomic
investment cost of PPHEX. This result is due the fact that, even if the drilling costs are
usually the large portion of costs in a geothermal plant, in Phlegrean Fields, the increase
of well depth to go from a geothermal fluid temperature of 90 ◦C to 120 ◦C is equal to
only 15 m (from 86 m to 101 m in depth). Thus, these outcomes are strongly related
to the area in which the exergoeconomic analysis is conducted. When the number of
channels for each flow is equal to 10, and the temperature increases from 90 to 120 ◦C,
the percentage variations of exergoeconomic yearly cost are equal to 13.8%, 16.8%, and
−52.5% for electricity pumping, well, and PPHEX investment, respectively. Finally, the
product exergoeconomic cost shows a decrease of 12.8%, varying Th,in from 90 to 120 ◦C.
The optimum solution equal to 922 €·y−1 is found for Nc equal to 8 that corresponds to
15 plates, and 117 ◦C of geothermal hot inlet temperature.
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4. Conclusions

This research paper presented a model and analysis of a heating system for single
building operating in geothermal field from the thermodynamic and thermoeconomic
viewpoints. An advanced mathematical model was used to design a plastic heat exchanger
to overcome the fouling problems that affect the heat exchangers of a geothermal plant.
The results of model were used as input for an exergoeconomic optimization to evaluate
the thermoeconomic performance of system by varying thermodynamic and geometric
parameters. Then, the general methodology was applied to a case study in which the
modeled polymeric plate heat exchanger interacting with the geothermal fluid was used,
to meet the space heating need of a single building located in the active volcano district of
the Campania region. The results are summarized in the following:

• the overall heat exchanger coefficient presents the greatest values for high temperature
of geothermal fluid (105–120 ◦C) and for a number of channels for each flow variable
from 7 to 12;

• the required heat exchanger surface areas are low (and, consequently, the HEX pur-
chase cost) for overall heat exchanger coefficient equal about to 240–250 W/K·m2;

• the investment cost of heat exchanger decreases when the inlet geothermal tempera-
ture increases; on the contrary, the well investment and the electricity cost increases
with temperature;

• the variation of well and electricity exergoeconomic costs is lower than heat exchanger
one; thus, the product exergoeconomic cost shows a trend similar to heat exchanger
cost; and

• the minimum value for product is equal to 922 €·y−1, and it occurs when the geother-
mal hot inlet temperature is equal to 117 ◦C, and Nc is equal to 8, that corresponds to
15 plates.

As a general conclusion, the development of this research allows the thermodynamic
improvements and potential cost reductions in a geothermal plant for direct air condition-
ing applications. In future works, the investigation of multi-users system will be defined
by using higher variable parameters in the exergoeconomic analysis, and the validation of
these results could be conducted in the framework of GEOGRID project.
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Abbreviation

Nomenclature Greek Letters

a interest rate (y−1) α
convective heat transfer coefficient
(W·K−1·m−2)

A heat exchanger surface area (m2) β chevron angle
b plate spacing (mm) ϕ enlargement factor (-)

Ctot
exergoeconomic yearly product
cost (€·y−1) γ plate corrugation aspect ratio (-)

c specific heat (kJ·kg−1K−1) δ plate thickness (mm)

cF
Exergoeconomic cost of exergy
input (€·kWh−1) µ viscosity (Pa·s)

CRF capital recovery factor (y−1) λ
wavelength of a sinusoidal surface
corrugation or pitch (mm)

D hydraulic diameter (m) ρ density (kg·m−3)
ex Specific exergy (kJ·kg−1) θ Yearly operating hours (h·y−1)
f Fanning friction factor (-)
.
F required exergy (kW) Subscripts
g gravitational acceleration (m·s−2) c cold fluid
G mass velocity (kg·s−1·m−2) el electric
H plate heigh (m) elev elevation contribution
I destroyed exergy or irreversibility (kW) f fluid
k thermal conductivity (W·m−1·K−1) fric friction contribution
L plate width (m) h hot geothermal fluid
.

m mass flow rate (kg·s−1) in inlet
m service life of system (y) m average value
np number of passes (-) man manifold section
Np number of plates (-) mon momentum effect
Nc number of channels for each flow (-) OBJ objective
Nu Nusselt number (-) out outlet
p pressure (bar) P pump
.
P desired exergy or product (kW) th thermal
Pr Prandtl number (-) tot total
.

Q thermal power (kW) w wall material
Rf fouling thermal resistance (m2·K·W−1) 0 dead state
Re Reynolds number (-) Acronyms
.
Sgen generated entropy (W·K−1) EU European Union
T temperature (◦C) HEX Heat exchanger

U overall heat transfer coefficient
(W·m−2K−1) PPHEX Plastic Plate heat exchanger

Z investment cost (€) RES Renewable Energy Source
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