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Abstract: The demand for energy has rapidly grown around the world. Solar floating photovoltaic
(FPV) systems are an efficient solution to solve the issues from nonrenewable energy sources, such as
reduction of CO2 emission, limitation of global warming, environmentally friendly, a great innovation
in sustainable aquaculture, and a new ecofriendly technique, along with reducing production costs,
especially regarding the scarcity of habitable land. A large number of installation projects using
FPV technology have been operated in water bodies such as lakes and dams/reservoirs. However,
deployment of FPV offshore is still limited because of the existing characteristics of marine/sea
environments that are different from onshore, such as wind loads and wave loads. Despite these
difficulties, there are several projects that have been installed in some countries and gained many
significant achievements. It opened possibilities to apply FPV systems offshore worldwide. In this
review, we present a brief overview of FPV systems both onshore and offshore, analyze advantages
and disadvantages of offshore FPV systems, and provide an overview of their future.

Keywords: solar energy; renewable energy; aquaculture; future; potential

1. Introduction

The growth of energy consumption, lack of habitable land, and environmental issues
have increased the increased deployment of renewable energy sources in offshore areas [1].
To date, the main forms of marine renewable energy have been researched intensively,
which helped to develop offshore energy technologies. They are energy sources from wind,
waves, and tides [2]. Moreover, it is estimated that about 70% of the global primary energy
supply for oceans comes from radiation from the sun [3].

Considering wind energy, the first offshore farms were conducted, supplied, and
connected to the grid in the 1990s. It has been developed with notable growth in the last
decade in many countries worldwide, but particularly in Europe [4]. For wave and tidal
energy, tides and ocean waves are generated by gravity from the sun, earth, and moon.
Waves are a source of low free frequency energy; however, the energy related to tidal
oscillation masses is useful for generating electricity [5].

In addition, solar energy is an alternative energy source that has been infrequently
explored in the marine environment [5]. To explore this energy source, solar floating
photovoltaic (FPV) systems in seas and oceans have been considered as a novel solution for
renewable energy production without the necessity for water and land resources [6]. There
are many advantages to installing FPV system over water bodies, including the saving of
land, natural cooling of water bodies due to enhanced PV performance, a lower number
of fewer obstacles that cause shadow loss, and a lower quantity of dust. Moreover, an
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estimated 50% of the total world population live within 100 km of the coast, which provides
a good chance to providing electricity to these regions [7,8]. Furthermore, these energy
sources can also supply energy for offshore platforms, such as ships and tourism [8,9]. The
United States and Japan are the first two countries to install FPV. The first commercialized
FPV plant was deployed by SPG Solar in July 2007 in a reservoir in the Far Niente Farm,
Napa Valley, California, USA. The goal of this system is to prevent evaporation from the
reservoir [10,11]. The National Institute of Advanced Industrial Science and Technology,
Aichi, Japan, installed FPV systems in 2007, making it the first test of a scheme for a 20 kW
FPV [12], followed by other countries, including France, Italy, South Korea, Spain, and the
United States [13].

Generally, many FPV systems that have been deployed gave an overview concerning
several FPV projects worldwide from 2007 to 2013, such as Trapani and Santa Fé [14].
For instance, in 2009, the largest project was conducted in Italy with 500 kW, based on
the collaboration of four local companies. Other projects included a 24 kW project in
Spain, a 20 kW project in Italy [15], and a 30 kW and 100 kW FPV array in France and
Vendeé, respectively, along with a 500 kWp installation at Hapcheon Dam, South Korea, in
2012. Most countries have deployed FPV systems onshore, with a small number deployed
offshore [13].

Currently, the largest FPV market is in China, followed by Australia, Brazil, Canada,
France, India, Indonesia, Israel, Italy, Malaysia, Maldives, the Netherlands, Norway,
Panama, Portugal, Singapore, Spain, Sweden, Sri Lanka, Switzerland, Thailand, Tunisia,
Turkey, the United Kingdom, and Vietnam, and others. Projects are under consideration or
development in Afghanistan, Azerbaijan, Colombia, Ghana, the Kyrgyz Republic, Myan-
mar, and Pakistan, and others. For example, FPV with tens or even hundreds of megawatts
of capacity have been deployed in China, while more will be deployed in India and in
Southeast Asia. In 2016 and 2018, the first FPV with more than 10 MWp of capacity was
operated. Moreover, worldwide, the first of larger FPV plants reached more than 100 MWp
with the largest at 150 MWp [13].

In addition, the latest review concerning floating photovoltaic technology (FPVT) was
investigated by Yousuf et al. [16]. FPVT is increasing with several setup project designs,
including conventional land-based and ground-mounted solar, roof-top solar, canal-top
solar systems, offshore solar PV systems, and reservoir/lake-based floating solar systems.
Power with floating technology was installed worldwide by 2020 [15]. The renewable
energy sources such as hydropower, wind power and solar PV cover 46.5%, 23.9%, and
23.8% of the total installed power sources, respectively, in 2020. The most perceptible
observation is the significant and rapid increase in FPVT installations, which have reached
the accumulation of wind power in less than 10 years. PV technology with the FPVT
systems is predicted to increase 7.38% to 485.4 GW, more than today’s installed power and
installation of hydropower, which is predicted to decrease by 9.28% of currently installed
power worldwide [16]. That is the reason FPV systems have become a recent investment
interest [8].

There are a few implementations of FPV technology in marine environments. However,
almost all of its applications are in freshwater, such as lakes, ponds, and dams and reservoirs
worldwide [6]. In marine environments, FPV systems may be more economical than wind
farms [17]. FPV systems have not yet been completed, therefore there is much work that
remains to be completed in marine environments [18]. China and the Netherlands are the
first countries that set up FPV systems in offshore areas [19]. There extensive research and
many reports and reviews concerning FPV in offshore areas, which is one of the renewable
energy sources to become a prevalent and potential target for a green and clean energy
solution, such as environmental impacts of marine floating solar [20,21], applications of
FPV in marine areas [9], and FPVT used offshore [15,16,22,23].

In this review, we evaluate the possibilities of FPV systems in offshore areas through
previous research and reviews. This review is presented briefly as FPV systems are installed
both onshore and offshore to generate electricity supply for houses, factory industries,
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agriculture, and aquaculture (Figure 1). The strategy of this review follows: the first part
examines the status of implementing FPV onshore; the second part gives an overview of the
status of using FPV offshore; the third part evaluates the advantages and disadvantages of
FPV systems deployed offshore; and the last part covers conclusions and trends of offshore
FPV systems.
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2. Survey of Literature
2.1. The Status of FPV Implementation Onshore

Basically, FPV systems are similar to land-based PV systems. This installation opens a
new opportunity to increase power generation capacity; moreover, it is a system suitable
for application in countries with large populations and have not enough land resources
for PV installation [13], for instance in sub-Sahara and parts of developing Asia. A generic
FPV plant can be summarized by the following elements [24,25]: the float; the PV modules
and their supporting systems, which support modules weight and transmit forces for the
float; and the electrical equipment. The major compositions of an FPV system include a
floating structure, a mooring line, anchoring, PV module, inverter, and electrical [26], all of
which are shown in Figure 2.
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Worldwide, there are many studies that have investigated ways to build and in-
stall FPV systems on water bodies. Clear information is presented in several recent
reviews [16,26,27]. As the report belongs to the World Bank, the latest FPV global market
shows that the demand of this energy has increased dramatically since 2007. A brief
description of different energy projects and situations in various countries follows [13]:

For Asian countries, two planned projects were installed on a lake in Bangladesh
in 2019, one with 50 MW, which were supported by the Asian Development Bank [28].
In Cambodia at the end of 2018 and early 2019, 2.8 MWp and 400 MW of FPV systems
were deployed on a pond and a hydropower dam, respectively [29]. In Vietnam, Vasari
Energy, a California-based green technology company, deployed 2 FPV projects, each with a
40–50 MWp capacity [30]. A 47.5 MWp FPV project was completed in 2018 on the reservoir
of a hydropower plant in Binh Thuan province, with financial support from the Asian
Development Bank [31].

In Indonesia, Masdar Clean Energy signed a 200 MWp project covering 225 hectares of
reservoir in West Java province [32]. An evaluation indicates that Indonesia has significant
FPV potential with 60 reservoirs that could host FPV systems.

Japan has the longest deployed MW-scale FPV installations. The first 20 kWp FPV
project was achieved in 2007. The world’s second largest project, generating 13.7 MWp,
was deployed in a retention dam in 2017 [33]. With its many lakes, dams, and reservoirs,
Japan also has the potential of becoming a prime FPV system country in Asia [34].

Lao People’s Democratic Republic had plans by a Japanese company to build a
14 MWp FPV system project on ponds in 2018 [35]. Meanwhile, in Malaysia, a 270 kWp of
the largest FPV project was installed on a reservoir of drinking water by Cypark Renewable
Energy in 2016 [36,37]. It is also a suitable country for FPV installation with 78 lakes [38].

In Singapore, a 1 MWp of FPV was deployed on a reservoir in 2016 by a collaboration
of PUB, Singapore National Water Agency, and Singapore Economic Development Board
(EDB). In 2017, 50 MWp and 6.7 MWp of FPV systems were surveyed to be installed
on Tengeh and Upper Peirce reservoirs, respectively. Singapore is considered to have
one of the greatest potential FPV systems in the world, with hundreds of megawatt-peak
generated over the coming years [39].

In Republic of Korea, a 0.465 MWp is a notable FPV project, which was developed by
Solkiss in 2014 [40]. Another project of 18.7 MWp, the world’s largest FPV project outside
China, was installed in Gunsan, Republic of Korea, in 2018 [41]; 1 GWp is the planned
capacity of FPV systems on reservoirs by K-Water Corporation by 2022. The Korean Rural
Community Corporation had plans to set up 280 MWp of FPV system capacity over three
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sites by 2019 [42]. In 2018, a decision was made to install a 102.5 MW FPV system on Sihwa
Lake in Ansan by 2020 by Korea Western Power Company [43].

In Taiwan and China, the water surface of eight lakes was installed with FPV systems
by Taiwan Power Co. and Taiwan Water Company [34]. A 20 MWp FPV project was also
deployed on an irrigation pond by New Green Power and J and V Holding [44]. In Thailand,
SPCG, a Thai solar company, plans to collaborate with InterAct, a Japanese company, to
apply an FPV system to power shrimp farms [45]. The Electricity Generating Authority of
Thailand (EGAT) collaborated with SPCG to study and develop a mooring system for an
FPV plant, which is deployed on reservoirs/dams [46]. A 979 kWp capacity FPV system
was installed by SCG Chemicals in Thailand [47] and is situated on an industrial pond. In
China, Anhui province is the site for the country’s largest FPV project on a lake. A further
400 MW was tendered in Shangdong province. The total installed capacity was more
than 950 MWp in 2018 [34]. In India, 2 MWp and 3 MWp FPV systems were installed on
Mudasarlova and Meghadrigedda reservoirs in 2016 and 2017, respectively [48]. Another
15 MWp FPV system was set up on Meghadrigedda reservoir in 2018 [49].

In European countries, an FPV project was deployed by the largest Albanian producer,
Korporata Elektroenergjitike Shqiptare (KESH), which is planning to further develop a
12.9 MW FPV system [50]. The first 998 kWp FPV system was installed in early 2018 in
Belgium [51]. In France, a 17 MWp project was installed by Akuo Energy in 2019. It is
situated on a lake [52]. Currently, other large scale FPV projects are being developed in
the Hautes Alpes and Bouches-du-Rhône regions. In Italy, the 343 kWp FPV project is the
largest system to date, which was located on an irrigation pond by Ciel and Terre Inter-
national [53]. In the Netherlands, a 2 GWp FPV system will be deployed by a consortium
of 40 companies by 2023. There was a 1.85 MWp FPV system built on a local reservoir in
2018 [54]. In the United Kingdom, several 100–200 kW FPV power plants were also built
on farm irrigation reservoirs. The first project with 6.36 MWp of capacity was installed on
the reservoir in 2016. [55]. The second largest FPV project is located on Godley Reservoir in
Hyde with 2.99 MWp capacity [56]. In Portugal, the first 220 kWp FPV project was built on
a hydropower dam reservoir in 2016.

Seychelles is one of the first countries that installed an FPV system. In 2018, a 4 MW
FPV utility-scale system was the first in Africa [57]. It is supported by the African Legal
Support Facility of the African Development Bank and the Clinton Foundation.

For Colombia, Empresas Públicas de Medellín (EPM), the local energy and telecom-
munications utility of Medellín, in 2018 successfully installed a 99 kWp FPV system on the
water reservoir of Peñol-Guatapé [55,58]. In the United States, the world’s first FPV system,
175 kWp, was set up on an irrigation pond in Napa Valley, California, and operating since
2008 [59]. Another FPV system project with 31.5 kW was built on a storm water storage
reservoir in 2017. A 252 kWp project was installed on a waste water treatment pond in
Kelseyville, California, in 2018 [60]. Images of some installed FPV systems are shown in
Figure 3, representing several countries around the world—Brazil, Japan, Singapore, China,
Korea, the United States, the United Kingdom, the Netherlands, and Panama [13].

Generally, it is still a relatively immature field to apply in many countries. Acharya
and Devraj [61] reported that the global installations of FPV remain low, and are mainly
in developed countries with high energy production such as the UK, Japan, Korea, and
particularly China. In addition, due to the development of FPV technology, energy pro-
duction has increased within the three years from 2016 to 2018. The total installed capacity
in 2018 was estimated at 1314 MWp, which was expected to reach 4600 MWp by 2020
(Figure 4) [61].
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2.2. Overview of the Status of Using FPV Offshore

The ocean receives much solar energy. Due to the scarcity of land, offshore is a suitable
environment that receives more sunlight during the day and is a great opportunity for FPV
systems. Cadmium chloride is the main component of photovoltaic solar cells that is very
poisonous and costly; therefore, it will affect the production progression and the cost of
solar cells. Seawater contains magnesium chloride, which can replace cadmium chloride,
which is an extremely poisonous and expensive material used in PV modules [16].

Simulation tests show that the efficiency of marine photovoltaic systems can reach 13%
compared to land-based systems, because the temperature at sea is lower than on land, or
natural cooling [62]. There are many studies to complete and apply FPV systems offshore
in countries around the world. Trapani et al. [17] deployed PV systems in an offshore
environment. They conducted six experiments in lakes and reservoirs. The results showed
that the offshore FPV system is more economically and technically efficient when using thin
film PV at different latitudes from 45◦ N and 45◦ S than conventional marine renewable
energy technologies (Figure 5) [17]. In addition, the system can reduce collisions, which is
one of the important factors to be known for development of offshore infrastructure.
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The dynamic model is a basic model used to generate the aeration collector platform,
consisting of a parabolic trough collector and a pneumatic prestressed solar concentrator
(Figure 6) [63]. The results of the experiment suggest that offshore floating solar power
plants can generate and provide electricity for European regions. The floating stability of the
platform presented is confirmed both on the dial and the periphery, and the performance
impact offshore is small.
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Trapani and Millar [64] installed a PV system on the sea surface surrounding the
Maltese islands. This report showed that PV integration by using PV α Si technology
can help reduce the total cost of electricity generation throughout the system. Three
hundred twenty megawatts of energy capacity with thin film PV can be obtained with the
maximum cost-benefit. Figure 7 shows the solar radiation for all months with yield (α-Si
and poly crystalline), which assumes miscellaneous losses of 10% from total electricity
generation and depicts an efficiency of 7% and 14% for thin film arrays and crystalline
arrays, respectively [65].
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Lee et al. [66] proposes an improved model of the photovoltaic system, which is
the optimal model for offshore plant installations. The angles between the photovoltaic
panels are studied and how they produce a difference in the intensity of the radiation.
They evaluated how the output characteristics of the photovoltaic system changed with
differences in radiation intensity, which varies depending on the altitude of the sun. For
the SPM system, four directions of the installed solar panels receive sunlight by rotation
(Figure 8).

Liu et al. [67] compared traditional terrestrial photovoltaic (PV) systems with each
other and with an FPV system. The result showed that floating PV systems provide several
advantages, such as saving land and water resources, and, in particular, generate more
electricity. In the 3D model of a polysilicon PV module, there are five layers, including
glass, EVA, polysilicon solar cells, EVA, and TPT back sheet. Moreover, the PV cell contains
a 156 × 156 mm dimension and heat transfer direction, which is shown in Figure 9 [67].
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According to, Rosa-Clot et al. [68] suggested the possibility of integrating PV plants
with existing basins installed for wastewater treatment. The compact FPVS is installed
with optimal row spacing for economic efficiency and technical ease. Figure 9 shows
two different solutions for Bolivar wastewater. In Figure 9, on the left, there are 53 floating
platforms, one track shaft 800 kWp each, and the diameter of one pedestal is 100 m. An
alternative to directional fixed platforms is shown on the right in Figure 10. The capacity of
this FPV plant is 42.4 MWp.
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Wu et al. [19] conducted a risk evaluation on offshore FPV projects in China based
on the fuzzy framework. They identified 16 risk factors that affect these projects, which
are divided into four groups, including microeconomic, technical, environmental, and
management risks (Figure 11).
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Figure 11. Index system of risk assessment on offshore PV projects in China.

Research was conducted by Golroodbari and van Sark [62] to model, stimulate, and
compare between the displays of PV/FPV systems for inland and offshore, respectively.
There are three main factors used as hints for comparison: attenuation of sea waves,
irradiation, and temperature. They used a wave spectrum to model sea waves in the
frequency domain to calculate irradiation on a tilted surface for floating systems, based on
the angle which is affected by the sea waves, due to heat transfer theory and the natural
cooling system for both land-based PV and FPV systems to determine temperature. The
results showed that 12.96% of electricity energy annual for offshore is higher than for
inland. Both system models are shown as a flowchart in Figure 12. The 14 numbered boxes
represent a process, function, or documented data.
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Lin and Liu [69] presented a new concept for converting decommissioned FPSOs as a
platform for FPV plants. The study designed a PV system to power offshore platforms. To
evaluate the effect of the tilt angle on energy output, the authors used a frequency-domain
hydrodynamic analysis of the FPSO. To investigate the total radiation on a divided collector,
two case studies are shown in Figure 13a,b. Figure 13b shows the solar radiation striking a
collector and tilt angle modeled to receive solar radiation efficiently. Compared with pitch
motion, the result showed that roll motion has a strong effect on the total radiation on a
collector [69].
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Kim et al. [70] examined an FPV power generation system, which is a structure
composed of high-durability steel. It was designed with excellent corrosion resistance and
durability for building and installing 500 kW of FPV power generation capacity. A solar
module, structure, and buoy comprise the photovoltaic power generation unit structure
(Figure 14a,b). The installation of the study is set up as a model, as shown in Figure 14c,d,
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including the frame and photovoltaic module, respectively. Figure 14e–j shows the process
to install the FPV system. The result showed that the energy production of the system
studied was much more than the PV systems on land [70].

Energies 2021, 14, x FOR PEER REVIEW 13 of 31 
 

 

 
Figure 14. Floating photovoltaic system: (a) unit module, (b) side view, (c) frame, (d) photovoltaic, (e) basic frame 
assembly, (f) photovoltaic module installation, (g) lifting, (h) launching, (i) assembly on water surface, and (j) completion. 

Currently, there are many governmental and private companies and consortiums 
that have invested in FPV systems or have strongly considered investing. The Norwegian 
consultancy DNV GL experts recognize offshore PV can combine an installation with 
wind turbines to improve the power generation production. The DNV GL on behalf of the 
Netherlands Ministry of Economic Affairs and Climate studied and found that the North 
Sea may host approximately 100 and 500 MW of floating solar capacity by 2030 and 2035, 
respectively [71]. Norway is one country that has successfully tested two offshore floating 
PV systems, due to their hydroelastic membrane concept [72]. 

In Taiwan, a 181 MWp FPV offshore project is the largest facility to be conducted by 
Chenya Energy, and they have a plan to further expand this system on the west coast of 
Taiwan. Their project will help provide up to 20% of electricity capacity from renewable 
sources by 2025 [72]. In Singapore, a 5 MW FPV system was deployed offshore 
successfully. This achievement creates an optimistic future for more FPV system 
installations in these regions that have scarce land area [73]. To maximize the solar PV 
potential for cleaner and sustainable energy, reduce the dependence on fossil-fuel-based 
sources of energy, and reduce energy costs in Seychelles, a 3.5–4 MW FPV project in a 
saltwater lagoon on the main island of Mahe was developed by the Seychelles Energy 
Commission instead of Seychelles government. It is the first FPV project installed in 
seawater in Africa [74]. 

Karpouzoglou et al. [75] is the first study to examine potential effects of FPV systems 
on the ecosystem, including hydrodynamics and fishery exploitation in a coastal area, and 
to identify its actual field application of FPV in an offshore environment. Based on a water 
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Currently, there are many governmental and private companies and consortiums
that have invested in FPV systems or have strongly considered investing. The Norwegian
consultancy DNV GL experts recognize offshore PV can combine an installation with wind
turbines to improve the power generation production. The DNV GL on behalf of the
Netherlands Ministry of Economic Affairs and Climate studied and found that the North
Sea may host approximately 100 and 500 MW of floating solar capacity by 2030 and 2035,
respectively [71]. Norway is one country that has successfully tested two offshore floating
PV systems, due to their hydroelastic membrane concept [72].

In Taiwan, a 181 MWp FPV offshore project is the largest facility to be conducted by
Chenya Energy, and they have a plan to further expand this system on the west coast of
Taiwan. Their project will help provide up to 20% of electricity capacity from renewable
sources by 2025 [72]. In Singapore, a 5 MW FPV system was deployed offshore successfully.
This achievement creates an optimistic future for more FPV system installations in these
regions that have scarce land area [73]. To maximize the solar PV potential for cleaner
and sustainable energy, reduce the dependence on fossil-fuel-based sources of energy, and
reduce energy costs in Seychelles, a 3.5–4 MW FPV project in a saltwater lagoon on the
main island of Mahe was developed by the Seychelles Energy Commission instead of
Seychelles government. It is the first FPV project installed in seawater in Africa [74].

Karpouzoglou et al. [75] is the first study to examine potential effects of FPV systems
on the ecosystem, including hydrodynamics and fishery exploitation in a coastal area,
and to identify its actual field application of FPV in an offshore environment. Based on
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a water column physical-biogeochemical model, including a general ocean turbulence
model, the European regional seas ecosystem model-biogeochemical flux model is used to
analyze related ecological parameters. The result showed primary production depends
strongly on the coverage density by floating platforms because of the light deficit at three
sampled positions: Oyster Grounds (OG), West Gabbard (WG), and Noordwijk-10 (NW)
(Figure 15a). The primary production changed less than 10% when the coverage of PV/FPV
panels model was up to 20% (Figure 15b) [75].
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Su et al. [76] proposed a study to examine the wind loads on a standalone solar panel
in a marine environment throughout a wave cycle. A change in deviation of the angle tilt,
20◦ and 40◦, corresponds to variation of wave angle (0–180◦). Figure 16 shows a schematic
drawing for a tilting panel on a pontoon. The initial angle between the tilting panel and
the pontoon, 20◦ and 40◦, is α. A numerical simulation determines the effect of β (= 0–180◦

in increments of 45◦) and γ (= 0–180◦ in increments of 45◦) on wind loads on a standalone
tilting panel, which is critical for a system in a harsh marine environment. The results show
how the wave angle influences the motion of the pontoon. As the deviation in tilt angle
increases, the value of surface pressure on the lower surface increases and the variation in
roll angle has an opposite trend.
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Ikhennicheu et al. [77] showed several recent ways applied by the industry to design
moorings and to identify outstanding areas where further research is necessary before
continuing development of industrial projects. Three locations were identified: a small
lake (2.5 MWp island) at a solar farm in Murcia, Chile; a large lake (7.5 MWp island) at a
floating solar farm in Huancheng Jinning, China; and offshore (2.5 MWp island) at an FPV
plant in the Dutch Northern Sea (Figure 17). Wind, waves, and flow currents are colinear
with FPV at the offshore site. Figure 16 shows the different angles of FPV in the offshore.
There are several load factors considered, such as wind, current, and wave drift. The results
showed that wind loads dominated all cases; however, wave drift loads contributed to the
total power generation (approximately 50%).

There is an excellent way to explore the green energy in offshore that is a combination
of sun (PV/FPV system) and wind turbines. This combination can generate much energy,
with five times more compared to the same part of the sea, and it also generates more
stable and continuous power generation due to stronger winds in winter and more sun
in summer. Moreover, the system also has many advantages for the sea environment, for
example, providing the floating installations that serve as protected habitats for fish and a
sea platform for attachment of mussels and seaweed.

López et al. [78] explored the potential for a combined offshore wind and FPV sys-
tem in the coast of Asturias, North Spain. The study shows the way to arrange the PV
panels in offshore between the wind turbines to obtain the maximum power generation
and to prevent the effect of PV panels and wind turbines on generation of electricity
(Figure 18). The results show that energy production per unit of surface area of offshore
and solar farm increased by ten and seven times, respectively. This is an excellent model to
expand worldwide.
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2.3. Advantages and Disadvantages of the FPV Offshore
2.3.1. Advantages

Rosa-Clot et al. [68] showed that FPV systems that are deployed on the water surface,
such as ponds, lakes, dam impoundments, or reservoirs, have been given increasing atten-
tion about using this system offshore because of its benefits realized by many countries
worldwide. It has already been deployed in several countries during the last decade,
including Japan, South Korea, and the USA. According to Esteves Galdino and Almeida
Olivieri [79], advantages gathered from many studies include: reducing evaporation of
surface water, which helps to conserve the amount of water, especially in dam impound-
ments, ponds, reservoirs; reducing the formation of waves, which could reduce the erosion
of reservoir banks; minimizing the use of land; decreasing the reflectivity of the water
increases the incidence of radiation on the PV array, which enhances its energy generation;
and increasing the efficiency of FPV system with the evaporative cooling of PV modules
and cables.

Furthermore, as the cost of PV panels decreases, the cost of PV installation also
declines. The total cost of installation for solar panels will be strongly lower in the next
three decades, estimated to be USD 340 to USD 834/kW and USD 165 to 481/kW on
average by 2030 and 2050, respectively, compared to the average of USD 1210/kW in 2018.
This results in a trend to develop FPV systems throughout the world (Figure 19) [80].
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To obtain these results, feed-in tariffs (FITs) are one of the effective solutions to increase
energy production in many countries. In reality, half of the PV installations worldwide
are a result of FITs [81]. FITs are from governments with many policies to support the
development of FPV installations. Each country has suitable FITs to increase their energy
production to satisfy the society’s energy demand and to protect the environment, including
financial incentives and supportive government policies [13].
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Some representative FITs for FPV installation financial incentives announced by coun-
tries include, for example: FITs for FPV are higher than those for ground-mounted PV
in Taiwan and China; extra bonuses for renewable energy certificates in Korea; and high
FITs for solar PV generally in Japan; and extra added value for FPV generation under
the compensation rates of state incentive programs in Massachusetts, United States. In
addition, several governments have policies to encourage the development of renewable
energy, for example, ambitious renewable energy targets in South Korea, Taiwan, and
China; realization of solar power plants in India; dedicated tendering processes for FPV
in Taiwan, China, and India; and openness on the part of the entities managing the water
bodies, such as bids for water-lease contracts in Korea.

2.3.2. Disadvantages

Oliveira-Pinto and Stokkermans [26] reported that FPV systems in offshore/marine
environments face many problems, including not yet having a commercially available
technology for the RL of marine FPV and mooring and anchoring configurations. It is
estimated that mooring systems cost 10% of total capital expenditure on average for a wave
energy converter [82].

Furthermore, it is complicated to install the FPV system in challenging offshore/open
sea environments, including lifting, towing, maneuvering, and positioning heavy struc-
tures [83]. Investing in materials that can match requirements for the lifetime of the system
throughout the entire project is needed because marine environments are exposed to water,
salinity, humidity, and environmental stress cracking [84]. The cost of installing a marine
FPV system is one of the disadvantages because it is higher compared to other marine
renewable energy and currently an immature sector [26]. Sea water is also a disadvantage
for FPV systems. It is related to corrosion and potential induced degradation [85]. Because
of submerged installation in the sea water environment, algae, marine invertebrates, and
other small aquatic species attach and accumulate on the outer surface of submerged
offshore structures, causing an increase in their size and changes in other physical proper-
ties [86]. Marine FPV systems may be an artificial shelter; therefore, it attracts many birds
that can harm the system.

In addition, Acharya and Devraj [61] demonstrate that FPV technologies remain a
novel sector that face many challenges, including: technology challenges (unavailability of
FPV-specific standards/technical guidelines, unavailability of waterbody data, FPV plant
component safety and its long-term reliability, absence of local manufacturing, and unavail-
ability of bathymetry and other water-related studies); environmental and social aspects;
installation challenges (clearances for FPV projects, waterbody ownership, and transporta-
tion of floating platforms); operation and maintenance challenges; and quality [61]. They
explained clearly the disadvantages/challenges of FPV systems.

2.4. Overview of Floating Photovoltaics Technologies

Ranjbaran et al. [87] showed that it is possible to deploy an FPV system in the marine
environment using methods similar to installing an FPV system in inland water bodies.
Basically, the FPV system consists of solar PV modules, cables, pontoon, an independent
float structure, and mooring system [16].

However, the differences between onshore and offshore environments are significant,
including wind loads, wave loads, salt, and the ecosystems. Therefore, the development
of new concepts for offshore FPV systems is necessary. As with any new technology,
it is essential to overcome technical challenges, particularly FPV systems installed in
offshore/opened sea environments. Mooring/anchoring systems must be designed to
withstand strong wave and wind effects (Table 1). The table shows several kinds of floaters,
mooring, and anchoring, together with their characteristics, which have been used for
installing FPV systems in many countries worldwide. As a result, floating PV installations
always move to some extent in accordance with the changing force of waves and winds in
the sea. Moreover, PV panels are also considered to be suitable in marine environments [88].
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Table 1. Variations of mooring/anchoring types in FPV systems.

Type of Floaters

Name Authors Characteristics System

Zon op Zee (Solar-at-Sea) [89]

Dutch companies and research
organizations including TNO,

MARIN, ONE-Dyas, and Oceans of
Energy

-Easy to expand modules capable of
withstanding rough seas up to 13 m. Figure 20.

HeliFloat [90] HeliFloat, Vienna University of
Technology

-This platform can withstand rough seas while
remaining stable. The platform can be lifted
from 10 to 15 m above sea level.

Figure 21.

Floating Solar Park [91] Moss Maritime

-Suitable for both onshore and offshore
locations. The designed modules are based on
the location and weather.
-Each module contains a platform on top, which
is supported by vertical columns.
-A flexible connection connects to the modules.
-Float can withstand wave heights of up to
3–4 m.

Figure 22.

SolarSea [92] SwimSol, Vienna University of
Technology

Model is designed for nearshore, can be faced
with waves of tropical shallow-water lagoon
with 1.5 m of wave height, the currents, tides,
extreme UV, humidity and is corrosion-proof.

Figure 23.

Ocean Sun [93] Ocean Sun

-The design can be used for aquaculture farms
near the shore and semisheltered waters. The
modules are installed on the double keder that
are welded on the thin and flexible reinforced
membrane, which allow the structure and PV
modules to move smoothly with waves

Figure 24.

Mooring

Mooring Layout

Catenary Mooring [94]

Rosa-Clot and Tina, 2020

The system is designed based on self-weight
and friction of the line with sea bed to stimulate
the required restoring force. This system
requires a larger mooring footprint.

Figure 25.

Taut Mooring System [94]

The system made for restoring forces from the
line deformation more than its weight.
Moreover, it is generated by axial elastic
stretching. It requires a smaller mooring
footprint.

Figure 26.

Hybrid Mooring System [94]
This system can have catenary mooring or taut
mooring characteristics. It reduces the mooring
footprint significantly.

Figure 27.

Mooring Makeup

Chains [95] Chakrabarti, 2005
Stud-link chains are stronger compared to
studless chain. It provides more stability to the
link and makes it easier to handle.

Figure 28.

Wire Ropes [96]

-Wire ropes are manufactured from multiple
wires of metal (steel) that are twisted together
into a helical pattern to form strands, which
improves the strength and reduces the crushing
effect. A coating on the rope strands decreases
its corrosion.

Figure 29.

Synthetic Fiber Ropes [97]

-Synthetic fiber ropes are light, elastic, and
low-cost compared to other materials. They can
be used in deep water, as they reduce a large
amount of the vertical loads, and also reduce
the complexity in the installation.

Figure 30.

Anchoring

Deadweight [98]

-Deadweight is a heavy object made by
concrete or steel, placed over the soil.
-The common designs of deadweights are
sinker, squat clump, mushroom, and wedge.

Figure 31.

Drag Anchors [99]

-Fluke area and penetration into the soil are two
parameters for estimating holding capacity.
-High-holding capacity and can load up to
30–40 times its weight.

Figure 32.

Plate Anchors [100] Wang and O’Loughlin, 2014 -Shape of a plate that is embedded deeply in
the soil and is installed in different ways. Figure 33.

Pile Anchors [101–109]
-Cylindrical with an open end and made of steel.
-Can penetrate into the soil by using a different
installation procedure.

Figure 34.
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For PV modules, according to IRENA [88], further growth of the solar PV industry
will be largely due to reducing the balance of systems (BoS), which is the main reason
for almost the entire total installed system cost, and has the most potential to reduce the
cost. To achieve this, lower cost cell materials, decreasing the cost for making cells, and
increasing cell efficiency levels, must all be included. In this field, the technology has
improved. According to Vázquez and Rey-Stolle, the longevity of a PV module is estimated
at about 25 years. The same result was found by Won et al. with module nominal power
decreasing by about 13.9% after 25 years [102,103]. Figure 35 gives an overview of the PV
technologies and concepts developed through time.
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Crystalline silicon (c-Si) panels are materials in the first generation of solar PV panels
and share 95% of worldwide PV production [104]. A PERC cell is made using advanced
silicon cell architecture. In construction, PERC cells are nearly similar to a typical monocrys-
talline PV cell, but the main composition is the integration of a back-surface passivation
layer, which is able to improve the cell’s efficiency based on the layer of material on the
back of the cells [105].

Thin film technologies are the second generation of PV. The semiconducting materials
are few micrometers thick [106]. These technologies have components such as silicon-
based thin film (amorphous (a-Si), micromorph silicon (a-Si/c-Si), and nonsilicon-based
(perovskites, cadmium telluride (CdTe), and copper-indium-gallium diselenide (CIGS)).
They are less expensive, so can be produced at a commercial scale. Furthermore, Lee and
Ebong provide a full review concerning thin-film cells. Three types of thin-film cells were
analyzed concerning conversion efficiency, evolution, commercial technologies, market,
and the future of this material for PV modules [107].

2.5. Future of FPV System in Offshore

The future of FPV systems is extremely dependent on its commercial viability and
its competition with other nonrenewable and renewable sources of energy in the current
market. Based on the reduction of the cost of materials for producing PV panels and
the cost of PV installation, the total cost has gradually been reduced. The combination
of marine FPV systems with offshore wind farms could be an efficient and sustainable
solution to improve energy production [26].

As it is not necessary on the land, FPV systems could increase by double the existing
installed capacity of solar PV [13]. Moreover, FPV technology is becoming mature, which
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is evidence for opening up a new frontier for global expansion of renewable energy and
giving large opportunities for many countries and markets around the world. In addition,
many experts strongly believe that offshore floating solar “may be the next frontier” [108].
Solar photovoltaic (PV) panels in offshore waters are one of the essential future green
energy sources. By combining FPV systems offshore with aquaculture and wind power in
the same location, this innovative technology allows for a more efficient use of available
space [108,109].

To date, although FPV technology has been installed onshore, it is still novel for
offshore areas. There are few studies related to the FPV systems in offshore/marine
environments. Yousuf et al. [16] also suggested some future studies to limit the risk and
improve the efficiency of FPV systems offshore, including: verifying the effects of sea water
on the structure and function of PV modules; analyzing the impacts of electrical devices
(converters) on the surface of water and on their efficiency and performance; investigating
the effects of FPV systems on water quality, ecosystems, ecology footprint, and other
environmental factors; expanding studies concerning the capacity and performance of
FPV power plants; designing optimum FPV systems to decrease the effects of the marine
environmental factors; expanding the life cycle of FPV systems; and decreasing the material
costs of FPV modules.

3. Conclusions

FPV systems offshore have developed and matured because of gains in energy produc-
tion, based on the results obtained for the FPV sector onshore, in which FPV systems are set
up in water bodies such as lakes, reservoirs, and dam impoundments. However, to date,
FPV in offshore areas is still a novel sector around the world. Therefore, there are several
studies in-progress that will adapt FPV systems in offshore/marine environments in a
mature way, including PV modules and the effect of environmental factors on FPV systems.
Some installations of FPV systems offshore around the world are presented, particularly in
developed countries, such as Japan, South Korea, the United Kingdom, and China.

Based on the previous results, which were studies on FPV systems in onshore and
offshore locations, there are many advantages, particularly the possibility for matching
worldwide energy demand, reducing environmental pressure, and solving the scarcity of
habitable land issue. Furthermore, FPV systems offshore also present several disadvantages,
such as the exposure of FPV systems to waves, wind loads, salinity, and aquatic species, all
of which affect the life cycle and efficiency of energy production. Specifically, it is necessary
to design standard and suitable practice guidelines for nearshore and offshore FPV systems
environments.

There are several successful FPV projects that have been operating in several countries
around the world, together with FITs, which are given by governments to open an oppor-
tunity to develop FPV systems offshore. Furthermore, it offers an excellent opportunity to
provide energy for islands that severely lack energy. This review gives an overview of the
possibilities to apply FPV systems offshore worldwide.
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