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Abstract: Efficiency in the operation of distribution networks is one of the commonly recognised
goals of the Smart Grid aspect. Novel approaches are needed to assess the level of energy loss and
reliability in electricity distribution. Transmission of electricity in the power system is invariably
accompanied by certain physical phenomena and random events causing losses. Identifying areas
where excessive energy losses or excessive grid failure occur is a key element for energy companies in
resource management. The study presented in the article is based on data obtained from distribution
system operators concerning 41 distribution regions in Poland for a period of 5 years. The first part
of the article presents an analysis of the distribution of values for the introduced energy density
and energy losses in the lines of medium- and low-voltage networks and in transformers supplying
the low-voltage network. The second part of the article presents the assessment of the network
reliability of the same distribution regions based on analysis of the distributions of System Average
Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI)
values for planned and unplanned outages. Data analysis is performed by non-parametric methods
by means of kernel estimators.

Keywords: distribution network; operating condition network; energy losses; reliability; kernel
density estimation

1. Introduction

Implementation of European Union provisions in the field of energy efficiency are
focused on increasing energy security, counteracting climate change, and should also
have a positive impact on the economy through the development of the market for new
services and innovative energy technologies [1]. The improvement in energy efficiency
can be achieved in many ways, one of which is to reduce electricity losses in distribution
grids [2,3], to construct smart micro-grids [4,5], to carry out a stochastic loss analysis
approach for distribution systems [6], to assess reliability of renewable energy interfaced
distribution system taking into account loss minimisation [7] or to integrate of wind power
and energy storage with the bulk power system [8].

Distribution grids are the final element of a complex power system. Their work is
influenced by a huge number of factors, many of which, including the most important ones,
are random. It is therefore advisable to analyse the operation of distribution networks
using appropriate statistical methods, taking all these factors as random variables. Such
analyses are necessary, for example, in order to define a strategy for the development
and modernisation of distribution networks. Due to the complexity of the problem, its
degree of difficulty and labour intensity, the works on this issue are usually academic
in nature. These studies often discuss theoretical foundations and present mathematical
models without reference to specific networks [9].

In addition, it should be noted that distribution networks are dynamic, both in terms of
their structure and installed devices, as well as in terms of their load or the environmental
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conditions in which they operate. Therefore, modelling the entire distribution system
does not make much sense because the obtained results will always be burdened with
many simplifying assumptions, and accordingly, also with significant errors. It is advisable
for distribution companies to carry out practical analyses of real networks based on the
available data so that actions can be taken to improve their functioning.

Many tasks of designing the development of the distribution network or the assess-
ment of working conditions are generally based on the results of estimation determined
for the most difficult working conditions. State estimation in relation to power systems
consists in estimating the complete set of information about the system operation regarding
generation, voltage and load values in all nodes of the distribution network. Apart from the
state estimation task [10–14], there is also a narrower problem concerning the estimation
of loads [15,16]. The estimation methods are based on computational methods in which
statistical models [17,18], the theory of fuzzy sets [19], artificial neural networks [20] or
hybrid algorithms combining various computational techniques, such as neural networks
and fuzzy logic [21], as well as methods of optimising particle swarms with elements of
genetic algorithms, are most often used [12,22]. In the area between the analytical and
statistical approaches, there are methods that combine elements of both computational
techniques. They constitute a practical compromise, often adequate to the current national
realities of distribution systems, between the amount of input data needed for calculations
and the accuracy of the results of power and energy losses [23–25]. These methods, which
could be described as hybrid, use the information available in the energy reporting on
energy flows through individual groups of distribution network elements and substitute
network models. Based on such methods, it is possible to build a methodology supporting
the analysis of the operation of distribution networks [20,26,27].

The issues related to the reliability of power system operations are currently generating
great interest all over the world. Many works have been devoted to this subject—both
experimental and theoretical. In the subject literature, the reliability of the power system is
significantly related to the name of Roy Billinton, who together with a group of co-workers
published many articles and books, e.g., [28–32]. Usually, the reliability of the generation,
transmission or distribution subsystem is analyzed independently [33–36]. Reliability
calculation methods can be generally divided into analytical, consisting in the analysis of
random events or processes; simulation (Monte Carlo, statistical modelling), consisting in
simulating random events and processes; mixed (combined), which is a combination of
analytical and simulation methods [37].

It is often necessary to select the appropriate method for a given task. It may turn out
that for some problems the use of one method turns out to be insufficient and there is a need
to use other methods, more effective for a given class of problems. In [38] a number of prob-
lems and challenges which researchers in reliability engineering are facing when analysing
complex systems were shared. In [39] problems in the reliability planning of electric dis-
tribution networks were treated as multiobjective issues, consisting of the minimisation
of three objective functions. In the literature on reliability, we can find many different
methods of analysis, for example using a discrete particle swarm optimisation [40,41],
using a fuzzy-based analytical and a fuzzy-based Monte Carlo simulation technique [42]
or using a nonparametric estimator [43]. Whereas in [44] in an interesting way the history
of reliability engineering was presented. For one of the ways to effectively formulate and
solve tasks related to the analysis of the power grid operation is non-parametric statistics
methods, in particular the Kernel Density Estimation (KDE) application.

1.1. Energy Losses in Distribution Networks and Transformers

The flow of electric current through the distribution network is inherently associated
with the loss of power and energy in it; active on element resistances, reactive on reactances,
both of which are harmful. The energy to overcome losses must be generated in power
plants, which requires the expansion of equipment and the use of correspondingly more
fuel for its production. These losses have to be passed on by all the system elements
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involved in the distribution of energy, which requires increasing its nominal transmission
capacity. By converting to heat, in accordance with Joule’s law, losses cause heating of the
leading current parts of the system components, forcing their respective dimensioning.

Balance grid losses (also referred to as the balance difference or balance losses) are
the difference between the energy fed into the grid and energy received from that grid.
Balance losses range from a few to several per cent of the volume of transmitted energy,
and their size proves the technical and organisational level of the distribution company.
The percentage distribution of energy losses in the distribution network in relation to
the technical losses in the low-voltage (LV), medium-voltage (MV) and 110 kV networks,
respectively, and to the balance losses in the distribution network for one of the Distribution
System Operators (DSO) in Poland are given in Table 1.

Table 1. Percentage distribution of electricity losses in the distribution network.

Network The Place Where the Losses Arise Technical Losses (%) Balance Losses (%)

LV

in the electricity meters 26.32 2.22
in the connections 13.83 1.05
load on LV lines 58.49 7.27
total technical in LV 100.00 10.66

MV

load losses in MV 62.43 30.16
voltage losses in transformer MV/LV 25.29 13.41
load losses in MV/LV transformer 7.73 4.21
voltage losses in transformer MV/MV 0.20 0.09
load losses in MV/MV transformer 0.06 0.03
other voltage losses 4.29 1.88
total technical in MV 100.00 49.78

load losses in 110 kV lines 61.62 12.29
voltage losses in 110/MV transformers 26.44 5.48

110 kV load losses in 110/MV transformers 8.17 1.65
other voltage losses 3.77 0.62
total technical in 110 kV 100.00 20.04

LV + MV + 110 kV
total technical losses 80.48
total commercial losses 19.52 19.52
total in distribution network 100.00 100.00

Balance losses are the sum of technical (current + voltage) and commercial losses,
which arise mainly in the LV grid. For domestic distribution networks, energy losses in
the 110 kV grid account for approx. 20%, in the MV grid approx. 50%, and in the LV grid
approx. 30% of all balance losses [2]. Technical losses account for about 80% of energy
losses, commercial losses for 20%. Losses in MV are 30%, in MV/LV transformers it is
17% and in LV lines 7% which have the largest share in technical losses. Losses in 110 kV
grid lines are 12% and in 110/MV transformers are 7%, which also have a large share. No
analysis has been carried out for high-voltage networks as they are 100% reserved and
work with the system network; thus, distributors are not always fully responsible for the
optimal operation of these networks.

Losses in MV/LV transformers for a given distribution area will depend primarily on
the power of the installed transformers. Transformers should be selected so that losses in
them (load and no-load ones) are as low as possible. If the minimum energy losses in the
transformers are taken as a function of the aim, then the optimal transformer load factor
(peak) is 0.7 ÷ 0.8 [2]. For most distribution areas, the transformer load factors (peak) are
0.4 ÷ 0.5. Due to the lack of metering of the network, the exact value of the energy fed into
the low-voltage network is not known; hence, the energy losses in these networks cannot
be precisely determined. The load energy losses depend on many factors: the energy
density, the length of the network lines, their cross-sections, cut-outs in the networks, or the
aforementioned transformer loads. About 55% of energy losses in the distribution network
occur in the lines of the LV and MV networks and in MV/LV transformers; therefore,
analysis methods should be developed to improve the operation of these areas [2].
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1.2. Reliability of Distribution Networks

An important aspect of the operation of the distribution network in terms of its effec-
tive operation is its reliability. The importance of the continuity and quality of electricity
supply is constantly growing. The continuity of electricity supply is seen by most people
as a necessary part of our daily lives. An unpredictable, temporary lack of energy sup-
plies often implies problems at the level of everyday human functioning. In general, we
only see the importance of the continuity of electricity supply in the absence of electricity.
Much greater problems arise in the event of a power failure in production companies,
e.g., glassworks or mines. There, the economic losses caused in the event of a power
failure are incomparably greater and are associated with a threat to the lives of employ-
ees. The model for assessing the performance of energy enterprises in force in Poland
requires a continuous analysis of key reliability indicators used in quality regulation [45].
The calculated qualitative indicators enable comparative analysis of domestic distribution
network operators. It should be emphasised that the reliability of distribution networks
is subject to changes. New trends and directions for the development of electromobility,
the construction of energy storage, microgrids and energy clusters are visible. The methods
of network operation are also changing. All this undoubtedly affects the values of the
reliability indicators of distribution networks [46]. The above reasons make it necessary to
conduct research in this field [7,47].

1.3. Statistical Methods of Analysing Operation of Distribution Networks

There are two basic statistical approaches for estimating the density function of the
analysed random variables: parametric and non-parametric ones [48]. In the parametric
approach to estimation, the model is adjusted to the adapted basic parametric model.
The main advantage of the parametric approach is that it is easy to infer, and there is no
problem of bias when using parametric methods. The main disadvantage of parametric
models is that the actual distribution of the random variable under study must be fully
known. For a wrongly chosen distribution model, the parametric approach leads to
inconsistent estimators and thus to incorrect inference. In parametric approaches, data
analysis most often comes down to checking the fit to a specific model distribution.

The non-parametric approach is definitely more flexible. Nothing more is needed than
a basic assumption regarding the smoothness of the random variable distribution function
we are looking for. The approach, without imposing the initial assumptions of the model
that are difficult to verify, allows the data to speak for themselves. The non-parametric
method is especially useful for exploratory data analysis in situations where the density
function cannot be unequivocally determined. The main disadvantage of non-parametric
methods is the necessity to determine the smoothing parameter [48].

2. Non-Parametric Method of Analysing Data on Operation of Distribution Network

The concept of kernel estimators has become one of the basic methods of non-
parametric estimation. They were first introduced to the research literature for univariate
data in the 1950s and 1960s independently by M. Rosenblatt and E. Parzen, and their basic
concept was derived from the problem of estimating the density function of the probability
distribution. It was soon concluded that analogous estimators for multivariate data would
be an important addition to multivariate statistics. On the basis of subsequent studies,
the multivariate estimation of the kernel density reached a level of maturity comparable to
its one-dimensional counterparts. A typical issue for the use of kernel density estimation
(KDE) is to determine the density function of the probabilistic distribution of a random
variable on the basis of the obtained sample [48,49].

The definition of KDE:
Let there be a given n dimensional random variable X, the distribution of which has

density f . Its kernel estimator f̂ : Rn → [0, ∞) is determined on the basis of the value of m
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element random sample x1, x2, . . . , xm, obtained from variable X, which in its basic form is
defined by the equation:

f̂ (x) =
1

mHn

m

∑
i=1

K
(

x− xi
H

)
, (1)

where function K : Rn → [0, ∞), measurable, symmetric about zero and having a weak
global maximum at this point, satisfies the condition

∫
Rn K(x)dx = 1 and is called the

kernel; H is known as the bandwidth. Bandwidth H is a matrix of smoothing parameters
and its choice is crucial for the performance of kernel estimators [50]. From a statistical
point of view, the shape of the kernel does not matter that much. There is the possibility of
an arbitrary choice—the normal kernel is most often chosen. When selecting the K kernel
function, the properties of the obtained estimator, the simplicity of calculations and the
properties of the kernel function should be taken into account.

In the case of the multivariate x ∈ R two natural specializations of the above concept
are used: the radial kernel [48]

K(x) = CK
(√

xTx
)

, (2)

and the product kernel:

K(x) = K(x1) · K(x2) · . . . · K(xn), (3)

where C is a positive constant, determined so that
∫
Rn K(x)dx = 1 is satisfied, while K(xi)

is a one-dimensional kernel for each coordinate. The radial kernel is more effective than
the product one, but from the standpoint of application uses, the difference is negligi-
ble. These issues are discussed in detail in [48]. The practical application of analysis
with kernel random variable estimators requires the use of a computer with appropriate
statistical software, e.g., in the R environment. The ks library provides both single and
multivariate data analysis, including functionality for kernel density estimation and kernel
discriminant analysis.

For KDE there are several varieties of bandwidth selectors: plug-in (PI), least squares
(or unbiased) cross validation (LSCV or UCV), biased cross validation (BCV), smoothed
cross validation (SCV) and normal scale (NS) [50]. Non-parametric data analysis methods
have been used, for example, in [51–56]. Although the methods for determining the
smoothing parameter are well researched and described, their use often requires their
proper application. During the work on the article, calculations were performed for all
the H determination methods available in the ks library. As a result of comparing the
results obtained for the studied data for each H determination method, the PI method was
selected (it took into account the variability of the analysed data most fully).

3. Analysis of Operation of Distribution Network, a Case Study
3.1. Network Loss Analysis

In order to analyse the operation of electricity distribution networks, data from 41 na-
tional distribution areas (accounting for over 40% of the territory of Poland) were collected
and processed. The data concerned energy introduced and sold from the LV and MV grids,
balance losses occurring in these grids and technical parameters such as area, length of
lines making up the LV and MV grids, in addition to the number and power of MV/LV
transformers. Measurement of distribution areas provides information on balance losses in
the 110 kV network and together in the LV as well as the MV. In order to determine the
energy losses in individual network elements, it is necessary to calculate them.The STRATY
(LOSSES) program [3] was used for this purpose. Among others, load losses in the LV
and MV grid lines and losses in the MV/LV transformers were calculated. Using kernel
estimators, studies were carried out to determine which distribution areas have high energy
losses, and then to assess what is causing it.
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Figure 1 presents the analysis of energy losses for low voltage networks using two-
dimensional estimation of the probability density function of the analysed variables with
the normal kernel. The variables in Figure 1a relate to the average energy consumption
by the recipient supplied from the low voltage network and the percentage of load losses
occurring in the lines of this network. Figure 1b shows the average length of the low
voltage line in relation to the percentage of load losses in the lines. All drawings in the
article obtained using the ks library in the R environment [57].

Figure 1. Two-dimensionaldensity function obtained by means of KDE function for: (a) average
consumption and energy load losses in LV (b) average length of LV lines and energy load losses in LV.

Smoothing coefficients H have the values
[

0.028898 0
0 0.092538

]
for the average energy

consumption vs. the percentage of load losses occurring in the LV lines and[
0.026907 0

0 1802.17

]
for the average line length, respectively (Figure 1b). The graphs

show a relatively high heterogeneity of the low voltage grid, much greater in the case of
the average line length analysis than in the case of the average energy consumption by the
consumer. The load energy losses in the LV lines are from 0.63% to 2.37%, the median is
1.05%; the average energy consumption of a single consumer supplied from the low voltage
grid is from 2.28 to 5.05 MWh/consumer/year and the median is 3.07 MWh/consumer;
the average length of the low-voltage line is from 305 m to 651 m; the median is 547 m.
Some distribution areas have significantly different (higher or lower) energy losses from
other areas. The conducted study showed that the lower energy losses resulted from much
shorter network circuits, characteristic of cable networks. The higher load energy losses
were the result of long low voltage grid circuits. Long line circuits, even at low loads, can
be a problem for distribution companies and investment efforts should be stepped up in
these areas.

Figure 2 presents the two-dimensional PDF function of load energy losses in the
medium-voltage network. Figure 2a shows the energy density and percentage load losses
occurring in the lines of the medium voltage network, Figure 2b shows the length of the
medium-voltage lines and the percentage load losses occurring in these lines.

Smoothing coefficients H have the values
[

0.133551 0
0 45535.7

]
for the energy density

and percentage load losses and
[

0.125045 0
0 213742

]
for average line length and percentage

load losses occurring in the MV lines, respectively. The diagrams show the high hetero-
geneity of the medium-voltage network. The load energy losses in the MV lines range
from 0.25% to 4.12%, the median is 1.90%; the energy density in the medium voltage
network ranges from approx. 80 to approx. 7000 MWh/km2, the median is 232 MWh/
km2; the length of the medium-voltage lines ranges from 786 km to 4697 km, the median is
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2732 km. Significantly lower values of the load energy losses are due to the high energy
density. The high-load energy losses are associated with long strings of medium-voltage
lines. The low energy losses occur with high energy density, which is characteristic of cable
networks. Further analysis should be carried out in these areas in order to more accurately
determine the cause of the high energy losses. If the scope of the collected data allows,
the analysis should be carried out separately for cable lines and overhead lines.

Figure 2. Two-dimensional density function obtained by means of KDE function for: (a) average
energy density in MV and energy load losses in MV lines, (b) length of MV lines and energy load
losses in MV.

Figure 3 shows the results of the analysis of losses occurring in MV/LV transformers.
Figure 3a shows the KDE for the energy fed into the grid by the substation and the
percentage losses of MV/LV transformers, while Figure 3b shows the average power of the
substation in relation to the percentage losses of MV/LV transformers.

Figure 3. Two-dimensional density function obtained by means of KDE function for: (a) average
energy per station and power losses in transformer MV/LV, (b) average station power and power
losses in transformer MV/LV.

Smoothing coefficients H have the values
[

0.023652 0
0 811.289

]
for the energy output

from MV/LV substations and percentage losses in MV/LV transformers. For Figure 3b,

this coefficient was
[

0.022917 0
0 617.823

]
. The energy losses in the transformers range from

1.37% to 3.0%, median 1.96%; the average power of the transformers ranges from 95 kVA
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to 424 kVA; median 147 kVA, the energy transferred annually by the transformer ranges
from 90 MWh to 500 MWh, the median is 167 MWh.

The graphs show a large heterogeneity of losses in the MV/LV transformers. It may
result from several reasons: (1) load losses depend on the transformer load factor; the lower
the load, the lower the losses, but the technical losses in transformers (voltage and load)
are higher, (2) transformers of different classes operate in networks; thus, the transformer
class determines the size of losses. Further analysis of the outliers should be carried out to
ascertain the cause of the too high energy losses.

3.2. Reliability Analysis

In the second part of the study, the operation of 41 distribution areas was analysed,
the same for which the network loss analysis was carried out, in terms of its operational
reliability. The SAIDI (System Average Outage Duration Index) and SAIFI (System Average
Outage Frequency Index) indicators are commonly used in the global reliability analysis.
SAIDI is an indicator of the average system duration of a long and very long outage
in electricity supply, expressed in minutes per customer per year, being the sum of the
products of its duration and the number of customers exposed to the effects of this outage
during the year, divided by the total number of customers served. Similarly, SAIFI refers
to the average system frequency of long and very long outages in electricity supply,
which is the number of all these outages during the year, divided by the total number of
customers served.

The SAIDI and SAIFI indicators are determined separately for scheduled and un-
planned outages. In Poland, during calculations, catastrophic outages, i.e., outages lasting
longer than 24 h, should be analysed separately. SAIDI and SAIFI do not include short
outages lasting less than 3 min.

Figure 4a presents the two-dimensional PDF of the distribution of the SAIFI for
scheduled outages (SAIFIp) and SAIDI for scheduled outages (SAIDIp) indicators, while
Figure 4b presents the SAIFI for unplanned outages (SAIFIn) as well as SAIDI for un-
planned outages (SAIDIn) indicators.

Figure 4. Two-dimensional density function obtained by means of KDE function for: (a) scheduled
outages (SAIFIp, SAIDIp), (b) unplanned outages (SAIFIn, SAIDIn).

Smoothing coefficients H have the values
[

149.239 0
0 0.002879

]
for scheduled outages

(SAIFIp, SAIDIp) and
[

610.924 0
0 0.075972

]
for unplanned outages (SAIFIn, SAIDIn), re-

spectively. There is a large scatter in the values of both planned and unplanned outages.
The SAIFIp values are from 0.153 to 1.026, the median is 0.4223; SAIDIp is from 26.45 to
229.80, the medianis 78.96. These dispersions are related to different policies for carrying
out planned works, implemented by individual regions. For unplanned outages, SAIFIn
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is from 1.998 to 7.962 and SAIDIn from 106.6 to 755.0. The medians are 3.653 and 214.2,
respectively. It should be noted that in one of the analysed areas there were above-average,
unfavourable weather conditions, which were reflected in the SAIFIn and SAIDIn values.

Figure 5a presents the analysis of the distribution of the average system index for
unplanned long and very long outages with catastrophic outages, respectively for the
duration (SAIDInk) and their frequency (SAIFInk) of the analysed 41 regions. Similarly,
Figure 5b presents the distributions for the sum of the times of all planned and unplanned
outages together with catastrophic (SAIFI_sum, SAIDI_sum).

Figure 5. Two-dimensional density function obtained by means of KDE function for: (a) sum of
unplanned outages and catastrophic outages (SAIFInk, SAIDInk), (b) sum of planned outages and
unplanned outages and catastrophic events (SAIFI_sum, SAIDI_sum).

H for unplanned and catastrophic outages (SAIFInk, SAIDInk) and for the sum of

all outages (SAIFI_sum, SAIDI_sum) have the same values
[

992.771 0
0 0.082053

]
. This

proves the fact that the value of planned outages has a slight impact on the total value
of planned and unplanned outages. The SAIFInk values are 1.99 to 8.08, the median is
3.66; while SAIDInk is from 107.2 to 1056.8, the median is 219.2. For the sum of planned
and unplanned outages together with catastrophic events, SAIFI_sum ranges from 2.31 to
8.49, and SAID_sum from 142.5 to 1138.7. The medians are 3.98 and 300.4, respectively.
The outliers refer to the area with unfavourable weather conditions.

4. Conclusions

The analyses carried out in this study allow for the following conclusions:

• The non-parametric approach is much more flexible than the parametric approach.
The estimation of the density function of the analysed random variables using KDE
provides a productive tool for assessing the operation of the distribution system.

• The presented analysis of the data on the operation of distribution networks allows
areas to be found for which energy losses or reliability levels are outliers in relation
to other regions, and enables distribution companies to optimally invest their funds
in the distribution network. This method was used in the energy audit for one of the
Distribution System Operators.

• The analysis of the operation of national distribution networks shows the need for
large investments in selected parts of the network. On the basis of the conducted
study, it is possible to precisely indicate which areas should be modernised in the first
place.

• Indicating outliers allows you to narrow down the area for which, having more
detailed data, such as e.g., grid diagrams, energy fed into a given line or transformer, it
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is possible to conduct an in-depth analysis and determine which lines or transformers
require modernisation.

• The main reasons for the differences in the levels of network reliability in individual
areas include: various share of cable lines in the network, the renovation policy
implemented or the strategy of managing failure and post-emergency works.

• It should be noted that distribution companies are currently facing new challenges
related to adapting the distribution network to integration with dynamically installed
distributed energy sources.
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Abbreviations

BCV Biased Cross Validation Bandwidth Selectors
DSO Distribution System Operator
KDE Kernel Density Estimation
LSCV Least Squares Cross Validation Bandwidth Selectors
LV Low Voltage
MV Medium Voltage
NS Normal Scale Bandwidth Selectors
PDF Probability Density Function
PI Plug-In Bandwidth Selectors
SCV Smoothed Cross Validation Bandwidth Selectors
SAIDI System Average Outage Duration Index
SAIDIp SAIDI for scheduled outages
SAIDIn SAIDI for unplanned outages
SAIDInk SAIDI for unplanned outages and “catastrophic” events
SAIDI_sum SAIDI for sum of all outages
SAIFI System Average Outage Frequency Index
SAIFIp SAIFI for scheduled outages
SAIFIn SAIFI for unplanned outages
SAIFInk SAIFI for unplanned outages and “catastrophic” events
SAIFI_sum SAIFI for sum of all outages
USV Unbiased Cross Validation Bandwidth Selectors
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