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Abstract: Real-time monitoring of energetic-environmental parameters in wastewater treatment
plants enables big-data analysis for a true representation of the operating condition of a system, being
still frequently mismanaged through policies based on the analysis of static data (energy billing, peri-
odic chemical–physical analysis of wastewater). Here we discuss the results of monitoring activities
based on both offline (“static”) data on the main process variables, and on-line (“dynamic”) data
collected through a monitoring system for energetic-environmental parameters (dissolved oxygen,
wastewater pH and temperature, TSS intake and output). Static-data analysis relied on a description
model that employed statistical normalization techniques (KPIs, operational indicators). Dynamic
data were statistically processed to explore possible correlations between energetic-environmental
parameters, establishing comparisons with static data. Overall, the system efficiently fulfilled its
functions, although it was undersized compared to the organic and hydraulic load it received. From
the dynamic-data analysis, no correlation emerged between energy usage of the facility and dissolved
oxygen content of the wastewater, whereas the TSS removal efficiency determined through static
measurements was found to be underestimated. Finally, using probes allowed to characterize the
pattern of pH and temperature values of the wastewater, which represent valuable physiological
data for innovative and sustainable resource recovery technologies involving microorganisms.

Keywords: dynamic monitoring; load factors; KPI; pH; sensors; temperature; total suspended solids;
urban wastewater

1. Introduction

Ensuring satisfactory energetic-environmental performance in wastewater treatment
plants (also referred to as WWTP) is a challenge of great interest and relevance for the
world of research, because of the many implications not only for sanitary purposes, but
also related to the concept of sustainability [1].

The academic and experimental experience gained in recent years through direct
contact with companies involved in the integrated water service has revealed many weak-
nesses in the management of these industrial realities [2], which are so valuable for the
protection of our habitats and our health. For example, local authorities usually do not
impose continuous controls of process variables [3]; as a result, a common practice is to
perform random checks 2–3 times a month to determine and monitor the average chemical
composition of the wastewater entering and leaving the plants, assuming that these values
are sufficiently representative of the operating status of a system [4]. When the industrial
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facilities are on a very small scale, an additional common difficulty is the lack of complete
and homogeneous database of historical values of the main process variables monitored
by the managing agencies (volumetric flow rates of treated wastewater, pollutant load
entering the plant and removed by wastewater treatment, total amount of sludge generated
by the process, and so forth) [5]. From the point of view of energy consumption, the
wastewater sector alone is responsible for 1% of total energy consumption worldwide,
considering all production activities and, in general, all industrial processes at varying
scales [6]. The only energy carrier in these systems remains almost entirely electricity,
still largely produced from non-renewable sources [7]. Alongside this, the vast majority
of purification systems currently in operation (e.g., in Italy, but not limited to) continue
to rely on the conventional activated sludge treatment layout, which is still one of the
simplest and most reliable systems from a constructional point of view [8], although it
involves a waste of valuable resources of commercial interest, including macro- and mi-
cronutrients [9,10]. In the National Recovery and Resilience Plan launched by the Italian
Government as part of the broader Next Generation EU program (available at the URL:
https://www.governo.it/sites/governo.it/files/PNRR.pdf; accessed on 29 September
2021) 600 M€ are to be allocated to transform, where possible, sewage treatment plants into
“green factories”, allowing the recovery of energy and sludge, and the reuse of purified
wastewater for irrigation and industrial purposes [11]. For the recovery of resources from
the wastewater sector, several strategies and technologies are being studied in recent years,
an example of which is the use of microalgae to trap these elements in a biomass matrix,
commercially expendable for the extraction of many valuable by-products or energy [12].
The use of these practices, however, is still at a testing stage in most of the realities that
have chosen to adopt these solutions for the increase of their performance indices [13].
Therefore, since it is not always possible to adopt this type of sustainable solutions, in order
to improve the energy-environmental performance of these systems, it is still essential to
optimize the use of energy within the facilities, through system auditing and the accurate
monitoring of process variables [14]. The first tool is the one that allows to gather all the
qualitative and quantitative information on the observed system in order to firstly frame
its operating conditions and overall performance, based on data collected offline (static
data) [15]. The second tool, on the other hand, is necessary to learn in a satisfactory way
the operating status of a system; in fact, it is well-known that only the use of real-time
monitoring and management systems mediated by proper sensing devices can enable a
big data analysis statistically representative of the system, as well as the development of
predictive models that can support the managing bodies in the decision-making processes
related to the proper management of the plants [16].

Remaining in the context of monitoring systems to be used in the wastewater industry,
a further challenge is posed by the sensors to be included within a plant, their reliability,
the effectiveness of measurements, and the information that can be obtained from such data
measured in real time [17]. The present work focuses on a medium-scale sewage treatment
plant operating in the geographical area of Cilento (Campania region, Southern Italy),
where a pilot system for dynamic monitoring of energy consumption and other variables
of the process has been implemented. In this work not only the energetic-environmental
performances deriving from offline data (static data) are evaluated, but also the results
of the real-time monitoring using suitable sensors are proposed. In showing the results
it will be not only compared the online data with those obtained in static mode (e.g.,
through billing and reports on the physico-chemical composition of wastewater) but will
also be highlighted the critical aspects linked to the use of sensors in such systems, their
strength points, possible hints for improvement. As a further element of novelty, the
real-time monitoring system implemented in this facility also allows to better understand
how important parameters, such as pH and temperature of the wastewater, fluctuate over
the entire monitoring period and with a significantly finer temporal resolution. Since
these parameters play a key physiological role in the deployment of processes for the
recovery of macronutrients by organisms such as microalgae (as previously mentioned),
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the choice to monitoring them was motivated by the prospect of implementing future
performance optimization strategies based on biorefinery concepts. Having access to a
complete dataset of real-time information and being able to analyze them is therefore
an imperative requirement for the identification of those priority interventions that can
actually lead to an improvement in energy and environmental performance of the system.

2. Materials and Methods

This research falls within the activities related to a project entitled “Energy man-
agement for an intelligent water network”, which is part of a partnership between the
Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of
the University of Campania “L. Vanvitelli” and the company ASIS SpA. This project aimed
to acquire new knowledge and skills useful to expand and improve the current energy
consumption management system of ASIS company.

The company is responsible for four main plants: three wastewater treatment plants
and a large freshwater lifting station. Here, focus is on the wastewater treatment plant
serving the city of Agropoli (province of Salerno), as it is the only facility that is geograph-
ically located within the Cilento, Vallo di Diano and Alburni National Park. This plant,
which was designed for a maximum capacity of 45,000 PE (Population Equivalent), consists
of a classic CAS (Conventional Activated Sludge) process layout with two treatment lines,
“Sewage” and “Sludge” Line [8]. The Sewage Line consists of: (i) initial pre-treatment
and primary treatment to remove grease and most of the suspended solids; (ii) secondary
biological treatment to reduce the organic load by means of activated sludge oxidation
tanks; (iii) tertiary treatment to further allow the sewage sludge to settle; (iv) final treatment
to stabilize and disinfect the treated effluent using sodium hypochlorite; (v) discharge of
the treated and disinfected effluent into the receiving water body. The Sludge Line consists
of: (i) mohno pump to transport the sludge; (ii) a polyelectrolyte to condition the sludge;
(iii) a mechanical thickener; and (iv) a centrifuge to remove the water content.

Quantitative information from the plant, regarding the trend of the main process
variables, was obtained through both offline data collection (static monitoring) and real-
time parameter measurement (dynamic monitoring).

2.1. Analysis of Offline Data (Static Monitoring)

The offline data were defined as “static”, because they were obtained by gaining
access to energy bills, chemical–physical analysis reports on wastewater samples, and to
the archives of the company [18]. With reference to a timeline of 5 years, from January 2016
to December 2020, data were collected as average or total values at a monthly frequency
and concern the main control variables of the purification process, in particular: total
energy consumption of the facility; average pollutant load entering and leaving the plant,
expressed in terms of COD, BOD and TSS; total wastewater flowrate per month. Equivalent
emissions expressed in terms of tons of oil and CO2, associated with the electricity con-
sumption of the facility, were inferred using the following conversion factors: 0.187 tons of
oil equivalent (toe) for each megawatt-hour of electric consumption (MWhel), according to
D.Lgs 102/2014 as amended [19] 2014), and 0,411 tons of CO2 equivalent for each MWhel,
according to Fighir, et al. [20].

According to the Description Model already effectively applied in di Cicco, et al. [21]
for the evaluation of the energetic and environmental performance of a WWTP with a CAS
process layout, all the data acquired were then used to calculate the operational indicators
and KPIs described here below and summarized in Table 1.

The Population Equivalent served by the plant (PEserved), as it is known, allows to
evaluate the number of inhabitants that actually contribute to the wastewater entering the
plant, allowing to make comparisons with the maximum design capacity. This parameter
can be determined (i) with respect to the biodegradable organic load contained in the
wastewater, corresponding to 60 g of BOD per day for each inhabitant [22], or (ii) with
respect to the volumes treated by the plant, in which case reference will be made to the
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per-capita production of wastewater, obtained from the daily freshwater supply of each
people served (320 L PE−1 day−1) and the return coefficient to the sewer (80%) (first men-
tioned in di Cicco, et al. [23]). This distinction was necessary because the calculation of the
PEorganic

served is conventionally based only on the amount of BOD in the effluent, while it does
not consider the volume of effluent and—therefore—how concentrated the contaminants
actually are. This aspect, as also highlighted in di Cicco, et al. [21], is very important,
because conditions of strong dilution of the wastewater negatively impact on the mecha-
nisms that microorganisms perform for the removal of pollutants during secondary and
tertiary treatment.

Table 1. Overview of the indicators used for assessing energy-related and environmental perfor-
mances of the WWTP, according to the model described in [18].

Indicator (Unit) Formula

PEorganic
served (PE) Daily amount of BOD5

60 (g O2 per PE)

PEhydraulic
served (PE) Daily wastewater flow rate

Water supply (per PE)×Return Coefficient

LForganic (%) PEorganic
served

PE design × 100

LFhydraulic (%) PEhydraulic
served

PE design × 100

DF (L PE−1 day−1) Daily flow of wastewater
PEorganic

served

COD
BOD5

(adimensional) COD load
BOD5 load

KPI1 (kWh m−3) energy consumption
unit of volume treated

KPI2 (kWh PE−1 year−1) annual energy consumption
PEorganic

served

KPI3 (kWh kgCODremoved
−1) energy consumption

unit quantity of removed COD

The organic (LForganic) and hydraulic (LFhydraulic) Load Factors respectively quantify,
as percentages, the level of pollutant load to be treated [15] or the level of wastewater
flowrate [21] compared to the maximum value for which the plant was designed (PEdesign).
Dilution Factor (DF), on the other hand, through a ratio between the daily wastewater
flow rate and the organic PEserved, represents a further useful operational indicator to
assess the dilution of the wastewater in terms of daily volume of sewage for each organic
PEserved [24].

Concerning the COD/BOD ratio, it can be used to assess whether or not the effluent
is readily biodegradable and, for this reason, it is also referred to as “biodegradability
index” [8,25]. Typically, municipal wastewater has an average COD/BOD of approximately
2: the closer the index is to 1, the faster the wastewater will undergo biological degradation;
the higher (>3) the ratio, the more it implies that the wastewater is rich in substances
that are difficult to remove by biological treatment, not biodegradable or even toxic to the
metabolism of the microorganisms that fulfill the biological degradation reactions in the
oxidation tanks [26]. In order to better investigate the composition of the wastewater in
terms of BOD, COD and TSS, and to establish comparisons with data from the relevant
literature, a ternary plot was created; indeed, this graphical representation tool allows an
immediate visualization of the similarity or variability of 3 composition parameters with
respect to a fixed value (in this case, their sum, set equal to 1).

Lastly, the Key Performance Indexes (KPIs) are among the most widely used statistical
normalization techniques to describe plant performance in terms of energy consump-
tion [24]. They are specific consumptions obtained from the ratio between the energy
consumption of the facility and the values of selected process control variables. The KPIs
currently most used from a descriptive point of view due to their effectiveness, and for
which more benchmarking data are available in the literature, are those that compare
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energy consumption with wastewater flowrate (KPI1; kWh m−3), population equivalent
served from an organic point of view (KPI2; kWh PEorganic,served

−1 year−1), and the amount
of COD removed by purification treatments (KPI3; kWh kgCODremoved) [1].

All the indicators thus calculated, coupled with the static data originally collected,
were statistically processed not only in terms of their progress over time, but also to study
existing correlations among them, and to allow comparisons with similar cases from the
literature as benchmarks.

2.2. Analysis of Real-Time Data (Dynamic Monitoring)

Next to the analysis of static data, within the context of monitoring activities defined
as “dynamic”, data from the system were obtained in real-time mode, thanks to the use
of suitable sensors. As mentioned in the introduction, the use of sensors is of major im-
portance, because it allows to study the functionality of the system with a time resolution
that conventional controls performed by the plant technicians are not able to guarantee [3].
With a tighter data grid, it is possible to outline in a more accurate way the trend of process
control variables and provide company stakeholders with a more effective tool for support-
ing decision-making processes [16]. The analysis of dynamic monitoring data reported
in di Cicco, et al. [21] highlighted the interpretive limitations of investigating possible
correlations between variables that were not measured simultaneously and with the same
temporal frequency. For this reason, in the present study, an attempt was made to further
implement the monitoring system, adding to the measurement of energy consumption
also the measurement of parameters related to the chemical–physical characteristics of the
wastewater flowing through the Sewage Line.

Figure 1 shows a diagram of the sewage line with an overview of the parameters
measured in real time and the location of the probes. All the measurements taken by the
devices were transmitted to a datalogger (Hach, mod. SC1000) and sent through Wi-Fi
connection to a web interface (david.energreenup.it) specifically designed for storage,
statistical analysis and graphical representation of the data collected.

Energies 2021, 14, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 1. Overview of the system for real-time monitoring of energetic and environmental parameters. 

The measurements of absorbed power and related energy consumption (measured 
by means of an energy multimeter Lovato, mod. 380…415VAC), refer to the energy de-
mand of the entire facility (Figure 1). 

Concerning the other parameters (all measured through the use of specific HACH 
probes), given that in a CAS-type wastewater treatment plant more than 50% of consump-
tion is attributable to the aeration of sewage [27], it was decided to measure the content of 
dissolved oxygen in the wastewater inside the oxidation tank (Figure 1), in order to inves-
tigate the presence of possible correlations with the total energy consumption. Moreover, 
the variations in temperature and pH of the wastewater in the oxidation tank were meas-
ured. Finally, TSS of the wastewater entering and leaving the WWTP was also measured, 
with the aim of assessing the real purification efficiency of the plant and comparing it with 
the removal efficiency reported by static data. 

Statistical Analysis of Real-Time Data 
In the aggregate of all monitored parameters, the system recorded data from June 

2020 to July 2021. Based on the characteristics of the probes, parameters were recorded at 
the following time steps: energy consumption and absorbed power every 6 h; dissolved 
oxygen in the wastewater every 30 min; temperature and pH every 15 min; TSS every 10 
min. The measures recorded by the probes were downloaded as “comma separated val-
ues” files. Subsequently, data were imported and statistically processed using Microsoft 
Excel and JMP Pro software 16.0.0 (SAS Institute, https://www.jmp.com/en_us/home.html 
(accessed on 29 September 2021)). 

A data pattern screening was performed on all files to identify the presence of miss-
ing values, duplicate values, and the presence of time periods when monitoring was in-
terrupted due to maintenance activities. After that, the distribution of values for each pa-
rameter was evaluated to determine the frequency of data ranges and the average values. 

As mentioned in the previous paragraph, with the data coming from the energy mul-
timeter, the time trend of the power absorbed by the entire facility was analyzed, whereas 
the monthly average values of energy consumption were calculated for comparison with 
the static data coming from energy bills. 

In order to study the correlation between dissolved oxygen in the oxidation tank and 
the power absorbed by the plant, since the two parameters were recorded with a different 

Figure 1. Overview of the system for real-time monitoring of energetic and environmental parameters.

The measurements of absorbed power and related energy consumption (measured by
means of an energy multimeter Lovato, mod. 380 . . . 415VAC), refer to the energy demand
of the entire facility (Figure 1).

Concerning the other parameters (all measured through the use of specific HACH
probes), given that in a CAS-type wastewater treatment plant more than 50% of consump-
tion is attributable to the aeration of sewage [27], it was decided to measure the content of
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dissolved oxygen in the wastewater inside the oxidation tank (Figure 1), in order to investi-
gate the presence of possible correlations with the total energy consumption. Moreover, the
variations in temperature and pH of the wastewater in the oxidation tank were measured.
Finally, TSS of the wastewater entering and leaving the WWTP was also measured, with
the aim of assessing the real purification efficiency of the plant and comparing it with the
removal efficiency reported by static data.

Statistical Analysis of Real-Time Data

In the aggregate of all monitored parameters, the system recorded data from June 2020
to July 2021. Based on the characteristics of the probes, parameters were recorded at the
following time steps: energy consumption and absorbed power every 6 h; dissolved oxygen
in the wastewater every 30 min; temperature and pH every 15 min; TSS every 10 min.
The measures recorded by the probes were downloaded as “comma separated values”
files. Subsequently, data were imported and statistically processed using Microsoft Excel
and JMP Pro software 16.0.0 (SAS Institute, https://www.jmp.com/en_us/home.html
(accessed on 29 September 2021)).

A data pattern screening was performed on all files to identify the presence of miss-
ing values, duplicate values, and the presence of time periods when monitoring was
interrupted due to maintenance activities. After that, the distribution of values for each
parameter was evaluated to determine the frequency of data ranges and the average values.

As mentioned in the previous paragraph, with the data coming from the energy
multimeter, the time trend of the power absorbed by the entire facility was analyzed,
whereas the monthly average values of energy consumption were calculated for comparison
with the static data coming from energy bills.

In order to study the correlation between dissolved oxygen in the oxidation tank
and the power absorbed by the plant, since the two parameters were recorded with
a different time frequency, the O2 values with temporal matching with the absorbed
power measurements were filtered from the database, verifying that the linear relationship
between the two timelines returned an r2 equal to 1. Subsequently, O2 and P were analyzed
both through bivariate estimation, and through Pearson’s correlation index.

For suspended solids, the removal efficiency expressed as a percentage was calculated
according to the formula {[1 − (TSSout/TSSin)] × 100}. Since, at any given time, the
suspended solids leaving the plant (TSSout) do not correspond to the suspended solids
entering the plant (TSSin), and since information on the retention time of the wastewater
in the sewage line was not available, the removal efficiency formula was applied to the
average monthly values of TSSin and TSSout, while the error of the ratio was obtained by
error propagation method.

3. Results and Discussion
3.1. Static Monitoring

The comparative analysis of all the data coming from the system resulted in the
characterization of the average behavior of the control variables over a 5-year period.
Table 2 summarizes all the results obtained from the study not only of the static data
originally collected in offline mode, but also of the indicators defined within the descriptive
model and listed in Table 1.

Starting from the energy consumption, the system shows an average annual consump-
tion of about 900 MWh, with a monthly average request of 75 MWh of electricity, as the
only energy carrier of the entire facility. Concerning the stress faced by the plant, observing
the results obtained for the organic and hydraulic load factors, it was possible to notice
that the plant received a highly fluctuating organic contaminants load during the year
(high standard deviation), while more regular were the volumetric flowrates received by
the system, for which the WWTP almost always works in conditions close to or equal to
the maximum sustainable capacity. The result appeared more evident when observing
in Figure 2 the comparison between organic and hydraulic PEserved with respect to the

https://www.jmp.com/en_us/home.html


Energies 2021, 14, 6948 7 of 16

maximum design capacity (PEdesign). The ellipses surrounding the monthly average values
of the two parameters represent the 95% confidence range (normal bivariate density ellipse).
As shown, the pollutant load associated with the incoming wastewater in terms of BOD5
(PEorganic

served ) is remarkably variable, with the values exceeding the design capacity threshold
especially during the summer season. Since the city from which the plant receives the
wastewater (Agropoli) is located along the coastline and represents a destination with a
strong tourist influx, it can be assumed that the exceeding of the values is related to the
strong increase of the local population affected by seasons [28]. It is interesting to notice
that, during the summer months of 2020, this behavior did not show the same intensity;
this can probably be related to a reduction of the local tourist influx, as a consequence of
the restrictions introduced to cope with the COVID-19 pandemic crisis [29]. In Figure 2,
however, the hydraulic load received by the system is less variable, but still close to or
greater than the maximum design capacity.

Table 2. Overview of the results obtained for the WWTP system control variables and the description model indicators
listed in Table 1. In this table, all values are reported as averages over either the individual monitoring year or the entire
period (overall), with the exception of annual plant energy consumption, which is expressed as total consumption. Error on
average values is reported as standard deviation (SD).

Year

Parameter
2016 2017 2018 2019 2020 Entire Period

Value SD Value SD Value SD Value SD Value SD Value SD

Annual energy consumption
(MWh) 965 − 868 − 987 − 744 − 957 − 904 91

Monthly energy consumption
(MWh) 80 9 72 7 82 8 62 28 80 12 75 16

Oil equivalent consumption (toe) 180 − 162 − 185 − 139 − 179 − 169 17

CO2eq emissions (tCO2eq) 397 − 357 − 406 − 306 − 393 − 372 37

PEserved [organic] 35.813 18.448 34.115 11.362 30.994 18.091 30.992 27.668 21.892 9.840 30.761 18.243

PEserved [hydraulic] 42.513 5.206 45.870 4.243 48.230 6.115 48.706 5.905 44.959 4.075 46.056 5.493

BOD5 in 195 92 174 55 147 75 146 122 115 53 155 85

COD in 469 247 561 157 395 154 348 255 227 113 400 218

SST in 109 41 92 26 79 23 67 24 77 26 85 31

BOD5 removal % 95% 4% 94% 2% 92% 3% 88% 18% 93% 5% 92% 9%

COD removal % 91% 4% 95% 2% 91% 3% 85% 17% 89% 4% 90% 9%

TSS removal % 67% 10% 68% 10% 72% 10% 64% 18% 76% 8% 69% 12%

Average wastewater flowrate
(m3/month) 332.317 44.746 357.145 34.417 375.467 48.080 378.948 44.399 351.031 32.735 358.981 43.439

LForganic (%) 80% 41% 76% 25% 69% 40% 69% 61% 49% 22% 68% 41%

LFhydraulic (%) 94% 12% 102% 9% 107% 14% 108% 13% 100% 9% 102% 12%

Dilution factor(L PE−1 day−1) 400 256 379 123 500 212 594 301 670 384 508 283

COD/BOD5 2,51 1,04 3,37 0,94 2,84 0,53 2,55 0,94 2,22 1,10 2,70 0,98

KPI1 (kWh m−3) 0,24 0,02 0,20 0,02 0,22 0,03 0,17 0,08 0,23 0,03 0,21 0,05

KPI2 (kWh PEserved
−1) 36,62 25,91 28,30 9,85 41,54 20,52 36,84 21,66 56,22 33,42 39,90 24,57

KPI3 (kWh kgCODremoved
−1) 0,84 0,65 0,42 0,16 0,73 0,38 1,20 1,27 1,46 0,85 0,93 0,83
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A significantly high hydraulic load can often indicate a high level of dilution of the
effluent with respect to the associated organic matter. To investigate the quality of the
sewage in terms of COD, BOD5 and TSS content, the ternary graph shown in Figure 3
displays the average values obtained in the 5 years of monitoring using the formula
BOD5 + COD + TSS = 1. As can be seen, the composition of the effluent is rather homo-
geneous over time; furthermore, looking at Figure 3b, no seasonal fluctuations could be
noticed. Cross-checking this graph with the average values obtained from the COD/BOD5
ratio, it could be observed that the effluent was always in the range of “medium biodegrad-
able” sewage [26], relying on a composition richer in terms of BOD5 and more depleted in
terms of TSS, in contrast to what was reported in di Cicco, et al. [21] for the case study of
a large plant serving the city of Salerno, which was instead affected by a severe problem
of parasitic inflows diluting the wastewater, with negative consequences on the energy
performances of the system. The two districts of Salerno and Agropoli are distant about
50 km from each other, and both extend along the coastline and in the same geomorpho-
logical context. Hence, it should be excluded the climatic factor (also in terms of rainfall) as
a determinant of the different sewage composition in the two districts [30]. The reasons for
a higher content of organic matter in the wastewater of the city of Agropoli should more
probably be sought in the fact that it is smaller than the larger city of Salerno, therefore
having a lower impact of industrial activities, and being more densely surrounded by
agricultural and livestock productive activities, affecting the sewer system with a greater
discharge of organic substances from plant and animal sources.

Relevant literature showed that the more concentrated the wastewater is in terms
of organic load, the more efficient its specific energy consumption will be [24,27,31]. In
relation to this aspect, in Figure 4 the temporal trends of the KPIs through the 5 years of
monitoring were depicted, emphasizing their ranking with respect to the range reported
in the existing literature for treatment plants of the same size (10.000 < PE < 99.999) [27].
Campanelli, Foladori and Vaccari [27] reported representative values for these three key
performance indexes as a result of a statistical survey conducted on 241 treatment plants,
60 of which belonging to the same size category as the WWTP object of this study. For
such plants, the following ranges of values are given: (i) KPI1 between 0,15 and 1,51, with
a mean of 0,47 (standard deviation 0,27); (ii) KPI2 between 18 and 160, with a mean of
63 (standard deviation 29); (iii) KPI3 between 0,4 and 4,7, with a mean of 1,7 (standard
deviation 0,9). As observed, the specific consumptions were always high-performing
when compared to the benchmark range, being mostly scattered towards the lower cut-off
indicated (best performance). Unlike KPI1, which was very homogeneous, KPI2 and KPI3
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exhibited a greater variability over time; this trend should not be surprising because the
calculation of the two parameters considered the trend of the pollutant load associated
with the wastewater and which appeared affected, as has been previously discussed, by a
tourism seasonality effect.
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Finally, with regard to the effectiveness of purification treatments, Table 2 highlights
the average annual values obtained for the 3 parameters BOD5, COD, TSS, with their
standard deviation. For the first two parameters, removal efficiencies are very high and
largely comply with the effluent threshold values imposed by current legislation, for
which minimum removal is expected to be 80% and 75%, respectively for BOD5 and
COD. Concerning the suspended solids, the system very often appeared ineffective. In
particular, the values of removal efficiency evaluated using static data provide an overall
TSS removal performance of 69% (standard deviation 12%), while it should be equal or
higher than 90%. In order to investigate the real accuracy of the offline TSS measurements,
as it will be discussed in the next section, it was decided to rely on the use of sensors
for real-time monitoring of this parameter and for a simultaneous comparison with the
officially reported static data.

3.2. Dynamic Monitoring

Thousands of data were obtained during the 13 months of real-time monitoring,
starting with the energy consumption of the entire facility.

Figure 5 shows the time trend of the absorbed power recorded at the facility general
electrical panel over a period of about 10 months. As can be seen, power was absorbed by
the entire infrastructure without relevant fluctuations, with an average value over the entire
period of 117 kW (standard deviation 25 kW). Along with the energetic inputs, it was also
monitored the content of dissolved oxygen in the wastewater of the oxidation tank, with
an average value of 5,9 mg/L (standard deviation 0,5) (Table 3). The study of a potential
interdependence between the oxygen dissolved in the sewage and the power absorbed by
the facility (to drive the electromechanical units used to aerate the sewage) revealed that
there is no link between the two variables (Figure 6). Indeed, the bivariate estimation of
the two parameters returned an r2 equal to 0,03 (correlation index: −0,28 for a confidence
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interval < 95%; −0,05 for a confidence interval > 95%); moreover, Pearson correlation index
between O2 and Power was −0,09, for which two variables are significantly not correlated.
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Concurrently with the wastewater O2 content, in the oxidation tank it was also possible
to place sensors for monitoring the temperature and pH of the sewage. Monitoring of these
two parameters, although it does not directly affect the management of energy use in the
system at this stage, is still very important for future prospects of recovery of matter and
energy from the system. In recent years, in fact, the issue of implementing innovative and
sustainable technologies for recovering nutrients and resources from waste streams has
become increasingly relevant [32]. One of these streams is wastewater, which is responsible
for the loss of more than 55% of the total phosphorus from the European Union system
boundaries [33], phosphorus being primarily imported from foreign countries and for
which there is much interest in implementing recovery practices [34]. One of the approaches
most explored and appreciated in recent years for the significant benefits it brings is to
use urban wastewater as a growth medium for algal biomass, which traps within its
cellular structure most of the macro and micronutrients naturally abundant in wastewater,
including, for example, phosphorus [35]. For the implementation of such sustainable
cultivation systems, especially if they are continuously-fed systems for maximizing biomass
production, understanding how key parameters such as pH and temperature change during
the seasons becomes crucial, in order to select the organism that best suits such habitat
and that needs minimum interventions to artificially modify the growth conditions (by
chemically modifying the pH of the wastewater or heating/cooling the wastewater before
feeding it into photobioreactors). In the specific case study of the Agropoli WWTP, as
can be seen from the data shown in Table 3, the urban wastewater is characterized by
an average temperature of about 22 ◦C and an average sub-acid pH (5,7). A wastewater
with these values, used in an enclosed environment (e.g., greenhouse) and with a further
non-invasive acidification (up to pH 4) could potentially be suitable for the use with
extremophilic thermoacidophilic microalgae, which are currently among those of greatest
interest on the market for their great adaptive capacity, tolerance to heavy metals and toxic
substances in the environment, high productivity of bio-compounds with high market
value (phycobiliproteins, pigments, glycogen and other reserve carbohydrates, secondary
metabolites with antioxidant and antibacterial activity) [14,36–38].

The monitoring system implemented in this WWTP allowed to go a step further than
just monitoring energy consumption, providing an example of how data obtained in real
time can be used to learn about and more accurately manage a specific industrial system,
in this case a wastewater treatment plant. One of the parameters being monitored in real
time that was most effective in highlighting the ineffectiveness of random controls of the
chemical and physical composition of the wastewater is the TSS at the inlet and outlet
of the plant (Figure 1). Figure 7 shows the time-trend of this parameter during the three
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summer months of the year 2020, on which the studies focused because it represented the
timeframe during which the pollutant load associated with the sewage is expected to be
higher than the rest of the year due to a touristic season effect. During this time period,
the probes recorded average TSS removal efficiencies approximately equal to or greater
than the limit imposed by legislation (Table 4). Therefore, comparing the average values
obtained for this parameter based on both static and dynamic measurements during the
3-month timeframe (Table 4), it was demonstrated that not only does the plant operate in
full compliance with the thresholds imposed by legislation, but the random sampling of
wastewater to analyze its composition must be more accurately reprogrammed in order to
have a truly representative picture of the plant’s operating conditions.
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Table 4. Comparison of monthly removal efficiencies from static data versus average values from
dynamic monitoring, over a period of 3 months.

Static Data Dynamic Data

TSS Removal
Efficiency (%)

TSS Removal
Efficiency (%) Relative Error

June-20 72% 94% 0,09%

July-20 75% 89% 0,12%

August-20 86% 88% 0,17%

4. Conclusions

Aim of this document was to present the results of on-line and offline monitoring
activities on a WWTP with conventional activated sludge layout. Using a descriptive
model specifically conceived for such systems, it was possible to define the energetic-
environmental performances of the system, also comparing them with data reported in the
recent literature on similar case studies. Using the operational indicators conceived for the
evaluation of organic and hydraulic load entering the system, the plant has shown a ten-
dency to be undersized compared to the amount of pollutants and—especially—volumetric
flowrates it receives, very often exceeding the maximum design capacity (45.000 PE). The
variation in organic load was found to be influenced more by tourist seasonal influxes,
as evidenced by a comparative analysis between (i) the time-trend of hydraulic load and
(ii) the temporal characterization of the pollutant load with ternary plots. Nevertheless,
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from a descriptive point of view, the use of ternary plots helped to define the composition
of the effluent, which showed a general organic footprint and was weakly exposed to
dilution by inflow and infiltration. The use of sensors to monitor both environmental and
energy parameters allowed to reveal with a high temporal resolution a missing correla-
tion (Pearson correlation index equal to −0,09) between the electrical power absorbed
by the WWTP and oxygen dissolved in the wastewater, which is regulated by aeration
machineries that account for more than 50% of the total energy demand. Real-time moni-
toring of total suspended solids, on the other hand, showed that the plant is effective in
removing contaminants (average real-time TSSremoval efficiency > 90% vs. average offline
TSSremoval efficiency ≈ 70%), indeed disproving the offline records obtained through rou-
tine sampling of the effluent to determine its chemical and physical composition, thus
suggesting a more effective planning of monitoring operations on behalf of the technical
staff. Characterizing the pattern of parameters such as temperature and pH of wastew-
ater through continuous monitoring, finally, is extremely important, because it provides
essential information aimed at the implementation of sustainable technologies for the bio-
recovery of material and energy resources, towards the valorization of waste streams. The
overall results suggest the need for a more extensive digital monitoring within industrial
systems, providing information on the system at a deeper and deeper level. Moreover,
as they are comparable with similar systems, these results provide a useful support to
the international scientific discussion on the topic of optimizing the energy management
of wastewater treatment plants, for implementing more effective management strategies
through the knowledge of different experiences.
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