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Abstract: Renewable energy sources are an environmentally attractive idea, but they require a proper
control scheme to guarantee optimal operation. In this work, we tune different controllers for an
Interleaved Boost Converter (IBC) powered by a photovoltaic array using three metaheuristics:
Genetic Algorithm, Particle Swarm Optimization, and Gray Wolf Optimization. We also develop
several controllers for a second simulated scenario where the IBC is plugged into an existing microgrid
(MG) as this can provide relevant data for real-life applications. In both cases, we consider hybrid
controllers based on a Linear Quadratic Regulator (LQR). However, we hybridize it with an Integral
action (I-LQR) in the first scenario to compare our data against previously published controllers.
In the second one, we add a Proportional-Integral technique (PI-LQR) as we do not have previous
data to compare against to provide a more robust controller than I-LQR. To validate our approach,
we run extensive simulations with each metaheuristic and compare the resulting data. We focus on
two fronts: the performance of the controllers and the computing cost of the solvers when facing
practical issues. Our results demonstrate that the approach proposed for tuning controllers is a
feasible strategy. The controllers tuned with the metaheuristics outperformed previously proposed
strategies, yielding solutions thrice faster with virtually no overshoot and a voltage ripple seven
times smaller. Not only this, but our controllers could correct some issues liaised to the IBC when it
is plugged into an MG. We are confident that these insights can help migrate this approach to a more
diverse set of MGs with different renewable sources and escalate it to real-life experiments.

Keywords: hybrid control; microgrid; Interleaved Boost Converter; metaheuristic; power quality;
grid-tied mode

1. Introduction

Recent studies have corroborated that the excessive exploitation of fossil fuels as a
primary energy source has caused negative impacts on our environment. Nonetheless,
experts recognize energy consumption as a pillar of worldwide economic development.
Therefore, environmental organizations have encouraged the exploration of alternative
and sustainable energy sources. The chief goal is to update the current electrical system
by incorporating renewable energies so that fossil fuel consumption can be gradually
decreased to 20% by 2050 [1]. This objective has created several research opportunities in
the Distributed Energy Resources (DERs) field. Some examples include the technological
furthering of power electronics for energy production, as well as the challenges associated
with energy quality, electric power systems reliability, and increasing energy demand. The
DERs appear as an innovative solution that benefits customers at a lower energetic cost
while preserving a high power quality and energy independence [2]. Moreover, integrating
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DERs with green technologies (e.g., wind, geothermal, biomass, and hydroelectric) can
help in reducing the carbon footprint and generate a self-sustaining power system. Because
of this, the development of Microgrids (MG) based on DERs with clean power technology
has attracted increased attention from both the scientific community and energy consumers
(buildings, factories, and communities). MGs and DERs have similar features. Some
of them include their reliability and enhancement of energy quality, as well as their
decarbonization and decentralization of the electrical grid [3]. Additionally, an MG is
defined as a group of interconnected loads and DERs with clearly defined electrical
boundaries that function as a controllable entity regarding the utility grid [4].

In general terms, an oscillatory power signal is provoked by unbalanced loads (either
linear or nonlinear). Such signals flow through the Voltage Source Inverter (VSI) until the
Point of Common Coupling (PCC) between the MG and the utility grid, compromising
the system reliability. Bear in mind that the PCC is well known as the interface between
the MG and the electrical grid. Additionally, the VSI synthesizes some MG components,
such as the renewable energy source and the three-phase inverter. These elements are
modeled as an ideal voltage source. Now, one way to analyze abnormalities within power
signals injected by an MG is to use the symmetrical components method [5]. With it, one
can analyze a system under normal or unbalanced conditions. In this sense, it is possible
to detect the negative-sequence components of the signals delivered by the MG, altering
voltage equilibrium at PCC through the well-known Voltage Unbalanced Factor (VUF)
described in the IEEE 1159–2019 standard [6]. Conversely, harmonics are additional signals
of current or voltage that manifest within a power signal as the multiples of the system
fundamental frequency. In an electric power system, harmonic content can be introduced
by nonlinear loads. This phenomenon distorts the waveforms of signals delivered by the
MG, so it is paramount not to exceed the Total Harmonic Distortion limit (THD) established
in the International Electrotechnical Commission Standard (IEC) [7].

There have been diverse attempts at achieving MG controllers with small DC source
inputs that perform properly [8,9]. The Interleaved Boost Converter (IBC) is one such
alternative. This alternative can be integrated into the structure of an MG, allowing for an
increased voltage from the renewable source. Following the selected topology for the IBC,
we can note that the input current is divided among the switches connected in parallel. This
scheme augments the reliability and efficiency of the converter, w.r.t. the Boost Converter
(BC). Besides, by adjusting the duty cycle appropriately, one can mitigate ripples within
the input current all the way down to zero. Furthermore, output filters for IBCs are smaller
than those for BCs, which minimizes losses and current stress for the power switches [10].
This effect leads to a stable power supply with the desired control response. Huangfu et
al. found that a two-phase DC-DC IBC is a suitable option with high efficiency and fast
dynamics, which can be used in high power density applications [11].

The IBCs have been mostly applied for improving the management of Proton Exchange
Membrane Fuel Cells (PEMFCs) [12,13]. A relevant example is the work of Ahmadi et al. [14],
where the authors proposed tuning a PID controller with the Particle Swarm Optimization
(PSO). They controlled the Maximum Power Point Tracker (MPPT) of PEMFCs by adjusting
the duty cycle. The authors compared their data against that yielded by the Perturb and
Observe (P&O) and Sliding Mode (SM) algorithms, finding that their proposed approach
exhibited a high precision under MPPT power fluctuations.

In other control schemes, Habib and Khoucha. [15] compared the performance between
the LQR algorithm and the classical PI controller under current undulation and load, as
well as voltage variations. Similarly, Habib et al. [10] used Genetic Algorithm (GA) to
optimize the parameters of LQR controllers and quantify performance metrics given
by the overshoot, response time, and ripple reduction. Another interesting approach
related to controllers tuned by MHs is the work proposed by Banerjee et al. [16]. In their
work, authors compared the efficiency between classical and optimal Type-III controllers.
Besides, they proposed a comparative study among IBCs and BCs, considering both kinds
of controllers. Cao et al. [17] also worked on tuning LQR controllers. However, they
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employed an improved version of the Chaotic Whale Optimization Algorithm and sought
to preserve PEMFCs within the desired operating range. Even so, they analyzed similar
metrics (ripple and overshoot) while comparing their data against previous works. This
study demonstrated that Metaheuristics (MHs) are powerful tools for tuning LQR, classical,
and hybrid controllers. In fact, hybrid controllers stand as a suitable choice when one wants
a fast response with good energy efficiency, i.e., robust and tolerant to perturbations. For
example, Kim et al. [18] proposed a controller offering a low operation cost and a reduced
error, which they called LQR+PI.

Controlling schemes have also been used for improving MG performance.
Savaghebi et al. [19] designed a hierarchical control for improving the voltage quality
of sensitive loads connected to the AC bus. The authors proposed a two-level controlling
scheme. The former managed DERs while the latter balanced voltage and harmonics.
Dasgupta et al. [20] implemented a new current control technique. They considered a
three-phase framework for active and reactive power flow management from a renewable
energy source.

Moreover, system stability was ensured by including the Lyapunov function. Such a
control scheme was focused on reducing the THD generated by typical nonlinear loads.
Throughout the same year, Lotfollahzade et al. [21] presented an LQR controller for
compensating unbalanced nonlinear loads in grid-tied and island mode. They included
a PID controller tuned by PSO, which managed the load from a set of distributed generators.
A few years later, Shi et al. [22] enhanced the MG power quality and the inverter performance
using a negative-sequence compensation method. Later on, Mousavi et al. [23] adopted a
resonant control strategy based on active and reactive power controllers. With this, they
compensated power quality problems at the Distributed Generation (DG) terminals or
the PCC.

Then, Hadidian et al. [24] tested a control scheme applied to four-leg battery energy
storage systems called BESS. Here, the authors considered an MG operating in isolated
mode faced with unbalanced and nonlinear loads. This approach exhibited a reduced
steady-state error, a fast transient response, and a low THD index. Beus et al. [25] presented
a hierarchical control method with three levels for MGs operating in grid-tied mode.
The first level minimized the MG operating cost. The second level used a predictive
controller and a Kalman filter for controlling the frequency of the MG. Finally, the third
level used classical controllers for tracking the set-points coming from the previous levels.
Faria et al. [26] proposed a new method for determining the optimal parameters of the
proportional resonant controller, as well as the values of the output filter upon a grid-tied
three-phase inverter through the Gray Wolf Optimization (GWO). The authors designed
the fitness function based on harmonic attenuation rate, power loss, and steady-state error
reduction. Additionally, Ebrahim et al. [27] compared three MHs techniques to properly
select the resonant proportional controller and its harmonic compensator for three-phase
voltage source inverters connected to the electrical grid. They employed a multi-objective
function for minimizing the harmonic distortion of the grid output current.

Despite their broad use for MG-related applications, hybrids between LQR and
PID controllers are also widespread in other engineering applications. For example,
Nagarkar et al. [28] tackled the nonlinear model of a quarter car suspension system, where
the controller was driven by a GA. Lindiya et al. [29] followed an equivalent approach,
but they applied it to improve the performance of DC-DC converters. Similarly, Şen and
Kalyoncu [30] used the GWO for tuning the controller. The authors, however, used this
approach for regulating the foot trajectory of a quadruped robot. Moreover, Ibrahim and
Abdulla explored the stabilization of a helicopter with three degrees of freedom [31].

It is well-known that the nature of an IBC is highly nonlinear. Even so, most of the
control schemes proposed for the IBC dynamic are linear. In this sense, we followed a
similar approach. As proposed in [10,17], we linearized the IBC mathematical model
considering the duty cycle of inductors and the system equilibrium points. However, bear
in mind that even if this facilitates model decoupling, it has the drawback of lowering
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performance due to the non-minimum phase problem Banerjee et al. [16]. Nonetheless,
there are several works dealing with this issue, as was mentioned above. However, the
performance of such controllers still has room for improvement. Besides, most previous
works either deal with PEMFCs or consider photovoltaic (PV) cells that are directly
connected to the MG. Moreover, the earlier approaches consider ideal elements, which
obscures performance in real-life applications.

In this work, we propose two approaches. The first one deals with tuning IBC
controllers in standalone mode by considering a multi-input single-output control path.
We focus on the settling time, overshoot, and steady-state error, as well as on the response
when faced with perturbations, and the output voltage ripple. Likewise, we design a
hybrid I-LQR controller driven by metaheuristics. Through it, we seek to improve the
aforementioned metrics. Moreover, we consider photovoltaic cells as the energy source
connected to the IBC.

As for the second approach, we introduce a new methodology for adjusting MG
control parameters when handling power quality issues, which is powered by metaheuristics.
In this case, we incorporate a PI-LQR controller, which contemplates the same control
specifications as in the first approach. Besides, we tackle the specific case of power exchange
between IBC and VSI, where energy is supplied by an MG towards the loads connected at
the PCC. Note that the IBC is seen as an ideal voltage source within the MG model. Besides,
drawbacks related to power quality in the MG are generated by unbalanced linear and
nonlinear loads. In this approach, the IBC feeds the MG while the latter works in grid-tied
mode and thus conforming the IBC+MG set.

To power our approach, we selected the most popular algorithms in the last few years.
We determined them by analyzing previously reported applications. Our exploration
revealed approaches where Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA) were used to tune IBC controllers [10,16,17]. We also detected reports about the
successful application of the Grey Wolf Optimizer (GWO) for adjusting control parameters
in microgrids [26,27].

In summary, our work has five significant contributions:

1. It proposes a hybrid controller ensuring voltage equilibrium at the PCC, according
to the regulations overseeing MGs, while reducing harmonic content from nonlinear
loads connected to the PCC.

2. It provides a comparison between three MHs for finding the best controller configuration
in terms of the IBC and MG dynamics.

3. It describes controller performance for an IBC connected to VSI while the MG is
working in grid-tied mode.

4. It delivers different controller proposals that outperform recent developments from
relevant literature while using photovoltaic cells as an energy source.

5. It introduces a testing scenario closer to reality, which includes non-ideal elements
such as voltage sources.

2. Fundamentals
2.1. Interleaved Boost Converter Model

An Interleaved Boost Converter (IBC) is a device used to increase the input voltage.
They are quite useful for applications such as electric vehicles and voltage regulators in
PEMFCs [17]. This kind of device preserves the working principle of a Boost Converter
(BC). Furthermore, IBCs have remarkable advantages compared to BCs. Some of them
include low ripple and harmonic content at the input and output current signals [16]. Such
advantages match the power quality interest mentioned in this article. For this reason, we
selected IBCs for this work. However, IBCs incorporate two inductance currents into their
structure [10]. A feasible approach to construct an IBC is to connect two BC in parallel,
resulting in a two-phase interleaved converter (Figure 1). In this case, it is paramount that
the drive signals be shifted by 180◦ [32].
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Figure 1. General topology of an Interleaved Boost Converter.

Based on Figure 1, the mathematical model of an IBC depends on the activation of
switches Q1 and Q2 and on the polarization of diodes D1 and D2. Bear in mind that R
represents the load connected to the IBC. Accordingly, the IBC dynamic can be described
in the state-space framework as

d
dt


iL1

iL2

vC1

=


0 0 s1

0 0 s2

s3 s4 − 1
RC1




iL1

iL2

vC1

+


1
L1
1
L2

0

vs,

y =
(
0 0 1

) iL1

iL2

vC1

,

(1)

where sk, ∀ k = {1, . . . , 4}, are variables defined by the four possible operating modes
shown in Table 1.

Table 1. IBC activation modes that render different variants of (1).

Inputs Outputs
Q1 Q2 D1 D2 s1 s2 s3 s4

1 1 0 0 0 0 0 0

1 0 0 1 0 − 1
L2

1
C1

0

0 1 1 0 − 1
L1

0 1
C1

0

0 0 1 1 − 1
L1

− 1
L2

1
C1

1
C1

Therefore, it is possible to obtain a weighted model of the IBC by adding a new input
linked to the duty cycle of inductors (U1 and U2). However, this scheme leads to the
following nonlinear mathematical model,

f1

f2

f3

=
d
dt


iL1

iL2

vC1

=


1
L1

(
vs − vC1U1

)
1
L2

(
vs − vC1U2

)
1

C1

(
iL1U1 + iL2U2

)
− vC1

RC1

. (2)

After averaging the IBC model one can infer that it is similar to the classical boost
converter expression. However, bear in mind that the mathematical representation includes
two inductor currents, as aforementioned. Therefore, the model expressed in (2) exhibits
two commonplace scenarios for activation modes of the duty cycle: lower or higher than
50%. However, the duty cycle should be 50%, the IBC benefits from ripple reduction, either
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in the input current or in the capacitor voltage. Nonetheless, our approach does not restrict
the values of these duty cycles.

As the proposed hybrid controller is based on a linear control technique, the nonlinear
system must be linearized. This process can be done through the Jacobian obtained from
the states x and inputs u,

JA =
∂

∂x

 f1
f2
f3

 and JB =
∂

∂u

 f1
f2
f3

, (3)

which derives into (4) and (5),

JA =


∂ f1
∂iL1

∂ f1
∂iL2

∂ f1
∂vC1

∂ f2
∂iL1

∂ f2
∂iL2

∂ f2
∂vC1

∂ f3
∂iL1

∂ f3
∂iL2

∂ f3
∂vC1

 =


0 0 −U1

L1

0 0 −U2
L2

U1
C1

U2
C1
− 1

RC1

, (4)

JB=


∂ f1
∂U1

∂ f1
∂U2

∂ f2
∂U1

∂ f2
∂U2

∂ f3
∂U1

∂ f3
∂U2

=


ṽC1
L1

0

0
ṽC1
L2

− ĩL1
C1
− ĩL2

C1

, (5)

where d
dt iL1 [A/s], d

dt iL2 [A/s], and d
dt vC1 [V/s] are related to the voltage at both inductors

(L1 [H], L2 [H]) and to the current of the capacitor (C1 [F]), respectively. Similarly, iL1 [A]
and iL2 [A] stand for the current at the inductors and vC1 [V] is the voltage of the capacitor.
As R represents the load connected to the IBC, it is connected to the output of the IBC and
can be used as a comparison point against previous approaches. vs [V] is the input voltage
source representing the PV modules, while Ud1 and Ud2 are the added system inputs (Duty
Cycles). The final IBC model is obtained by inserting the equilibrium point,

ĩL1

ĩL2

ṽC1

 =


1

RU2
1

1
RU2

2
1

U1

vs, (6)

into the linearized model given by (4) and (5), yielding

d
dt


iL1

iL2

vC1

 =

A︷ ︸︸ ︷
0 0 −U1

L1

0 0 −U2
L2

U1
C1

U2
C1
− 1

RC1




iL1

iL2

vC1



+

B︷ ︸︸ ︷
1

U1L1
0

0 1
U2L2

− 1
RC1U2

1
− 1

RC1U2
2


(

Ud1

Ud2

)
vs,

(7a)

and

y =

~C︷ ︸︸ ︷(
0 0 1

)
iL1

iL2

vC1

. (7b)
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Notice that matrices A and B , as well as vector ~C, come from the general representation
of the linearized model. These parameters are employed and detailed in Section 3.

2.2. Microgrid Model

A microgrid (MG) is a scheme used for generating, distributing, and regulating power
flow into an electrical grid. Such a scheme can operate in two configurations: grid-tied and
isolated mode. These lead to a characterization of MGs as autonomous or decentralized
systems, respectively. In the first case, unbalanced voltages and currents are generated by
unbalanced loads and issues within the utility grid, degrading the energy quality index [33].
Note that any anomaly in the electrical grid directly affects the MG performance. For the
isolated mode, the MG is disconnected from the utility grid and operates as an autonomous
system. Thence, the disequilibrium in voltages and currents is caused by unbalanced loads.

An MG allows users to integrate renewable energy sources; so, representing a sustainable,
efficient, and safe alternative for supplying energy. Even though there can be different
kinds of MGs, for this work, we consider the one depicted in Figure 2.

Figure 2. MG structure used in this work compounding by LC filter and VSI.

In electrical terms, the MG contains a Renewable Energy Source (RES), a three-phase
converter, a filter (in this case, made up to a capacitor and an inductor), and a Static
Disconnect Switch (SDS). This set of elements feed linear and nonlinear loads connected at
the PCC between the MG and the utility grid. The latter is constituted by a three-phase
voltage source and the respective coupling impedance.

Mathematically speaking, the RES–Converter duo can be modeled as an ideal voltage
source. The reason is that the IBC extracts energy directly from photovoltaic cells. Thus,
there are no mechanical components generating inertia, as is the case with wind turbines
and microturbines, among others [34]. Similarly, we assume a 99% efficiency for the
three-phase converter [35]. Bear in mind that in the MG model, the IBC is interpreted as
a RES.

The Park transform (PT) is a strategy that can be used for simplifying the electrical
three-phase model into the Direct-Quadrature-Zero (dq0) domain. In this way, the MG
model is decoupled, facilitating the description of its behavior [36]. The mapping process
of the PT begins by considering that passive elements within the LC filter have the same
value for each phase. Therefore, their three-phase framework representation is given by

Lαk = lk I3,

Cαk = ck I3,
(8)

where I3 is the identity matrix of order 3, and lk and ck are the scalar values for the inductor
and capacitor bank by phase, respectively. Afterward, the reference system is changed
from abc to dq, sans the homopolar component, for (8) using the following current–tension
relations:
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vLαk
abc = Lαk

d
dt

iLαk
abc ,

iCαk
abc = Cαk

d
dt

vCαk
abc .

(9)

Then, the concept behind the PT is applied to (9), resulting in

vLαk
dq = Tp(θ)Lαk

d
dt

(
Tp(θ)

−1iLαk
dq

)
, (10)

iCαk
dq = Tp(θ)Cαk

d
dt

(
Tp(θ)

−1vCαk
dq

)
, (11)

where Tp(θ) is the PT operator, which is a function of the axes angular-speed θ; that in turn,
is defined such as θ = ωt. The dq representation of passive elements is achieved via the
chain rule when plugging in (10) and (11), which yields

vlk
d = −ω lkilk

q + lk
d
dt

ilk
d , (12)

vlk
q = ω lkilk

d + lk
d
dt

ilk
q , (13)

ick
d = −ω ckvck

q + ck
d
dt

vck
d , (14)

ick
q = ω ckvck

d + ck
d
dt

vck
q (15)

In this sense, the PT can be applied to the Thevenin equivalent of the MG structure
using trivial circuit analysis theory [37]. Moreover, the MG dynamic in state-space is
represented by

d
dt


iL
d

iL
q

vC
d

vC
q

 =


0 ω − 1

L 0

−ω 0 0 − 1
L

1
C 0 0 ω

0 1
C −ω 0




iL
d

iL
q

vC
d

vC
q



+


1
L 0 0 0

0 1
L 0 0

0 0 − 1
C 0

0 0 0 − 1
C




ud

uq

isd

isq

,

y =
(
0 0 1 1

)


iL
d

iL
q

vC
d

vC
q

.

(16)

Taking advantage of the PT properties [38], the system shown in (16) can be decoupled
into the dq reference frame such as

d
dt

(
iL
d

vC
d

)
=

A︷ ︸︸ ︷(
0 − 1

L
1
C 0

)(
iL
d

vC
d

)
+

B︷ ︸︸ ︷( 1
L

0

)
ud +~g(x),

y =

~C︷ ︸︸ ︷(
0 1

)( iL
d

vC
d

)
,

(17)
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d
dt

(
iL
q

vC
q

)
=

A︷ ︸︸ ︷(
0 − 1

L
1
C 0

)(
iL
q

vC
q

)
+

B︷ ︸︸ ︷( 1
L

0

)
uq +~h(x),

y =

~C︷ ︸︸ ︷(
0 1

)( iL
q

vC
q

)
,

(18)

where ud [V] and uq [V] represent the dq components of the voltage delivered by the IBC.
Moreover, ~g(x) and~h(x) represent the system response to perturbations modeled with (19)
and (20), respectively.

~g(x) =

(
ω 0

0 ω

)(
iL
d

vC
d

)
−
(

0
1
C

)
isd , (19)

~h(x) = −
(

ω 0

0 ω

)(
iL
q

vC
q

)
−
(

0
1
C

)
isq . (20)

Bear in mind that throughout these equations, diL
d /dt [A/s], diL

q /dt [A/s], dvC
d /dt [V/s],

and dvC
q /dt [V/s] are related the voltages and currents of inductors (Lαk [H]) and capacitors

(Cαk [F]), respectively. Likewise, iL
d [A], iL

q [A] are the inductor currents and vC
d [V], vC

q [V]
are the capacitor voltages, including isd [A], isq [A] as the signals coming from the electrical
grid in the dq reference frame.

2.3. Metaheuristics

Metaheuristics (MHs) are procedures that may range from quite simple approaches
to sophisticated ones. They have been used to assess the solution of a wide array of
problems. Their use is customary nowadays because of their proven success, flexibility,
and simplicity. Besides, they usually are more direct than traditional approaches that
require derivatives and other rigid conditions. The current literature is prolific, with
examples linked to MHs. Some of the earliest ones have been used for over 30 years
and are still reasonably common [39]; for example, Genetic Algorithms [40]. Throughout
these years, others have been appearing, showing interesting performances and becoming
popular, e.g., Particle Swarm Optimization and Gray Wolf Optimizer. Note that natural
processes commonly inspire metaheuristics, so it is customary to accompany them with
a corresponding metaphor [41,42]. However, metaphors say nothing about their real
procedures, as Sörensen [43] criticized. It is proper to mention the research proposed by
Cruz-Duarte et al. [44], which settles the foundations for studying and somehow classifying
MHs by focusing on the mathematical procedure representing such metaheuristics.

Before describing the MHs that we implement for this work, we consider it crucial
to review two common concepts. The first one is the population employed by many
metaheuristics in the literature [41,44]. A population X(τ) is defined as a set of N candidate
solutions at iteration τ for an optimization problem given by a feasible domain X and an
objective function f : X 7→ R, which is modified in an iterative procedure, i.e., X(τ) =
{~x1(τ), . . . ,~xN(τ)}. Then, ~xn(τ) ∈ X(τ) denotes the position of the nth individual (or
agent). In this work, we consider a continuous problem domain, so X ⊆ RD, where
D stands for the number of dimensions. Plus, for the sake of simplicity, we regard a
parallelepipedical feasible region given by

X =
{
∀~x ∈ RD :

(
∃~xl ,~xu ∈ RD

)
[~xl � ~x � ~xu]

}
(21)

as ~xl and ~xu are the lower and upper limits, respectively.
The second concept, always present in all metaheuristics, is the best position ~x∗.

To define it, we may consider an arbitrary set of candidate positions Z, which can be
designated as, e.g., the entire population Z = X, the nth neighborhood Z = Yn, and the
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historical evolution of the nth candidate Z = {~xn(0), . . . ,~xn(τ)}, since τ is the current
iteration. Therefore, the best position from Z(t) corresponds to ~x∗ ∈ Z, i.e., ~x∗ =
arginf{ f (Z)} for a minimization problem. Bearing this in mind, we now comment on the
methods used for this work.

2.3.1. Genetic Algorithms

Genetic Algorithms (GAs) seek to replicate the natural selection process and so their
search agents are given by chromosomes, or genotypes, which can be represented as strings
of either binary or real-valued numbers [45]. GA is a population-based methodology
that, throughout an iterative process, strives to refine (evolve) such a population. This
evolution is achieved by using diverse genetic operators that alter chromosomes, aiming
to improve their quality measure [46], usually referred to as fitness. Commonplace
genetic operators include crossover, mutation, and selection. The first one combines
the information of the current population, while the second introduces genetic diversity by
randomly modifying some of the individuals. The final operator (also known as elitism)
decides which individuals will have the opportunity to provide genetic material for the next
generations. Their relationships and an overview of the whole procedure are illustrated in
Figure 3.

Figure 3. Illustrative procedure of Genetic Algorithm.

As this work deals with a continuous problem domain, the crossover and mutation
operators are based on the standard versions used for real-valued chromosomes. Then, for
crossover, the arithmetic approach is employed, as described below,

~xc = αc
(
~ru �~xp,1 + (1−~ru)�~xp,2

)
, (22)

where ~xc is the position of a child, and ~xp,1 and ~xp,2 are two parent chromosomes from
the current population. These parents are chosen via a pairing scheme, for example,
random, tournament, and roulette wheel. We utilize a random pairing scheme in this GA
implementation. Moreover,~ru 3 rk ∼ U (0, 1) is a vector of i.i.d. random numbers with
uniform distribution, αc ∈ R+ is a controlling factor, and � is the Hadamard–Schur’s
product. Plus, this crossover procedure must be carried out for as many children are
required to be considered for the next generation.

For mutation, we allow individuals to change within a range given by ~xl and ~xu,
cf. (21). Therefore, we implemented

~x′n = (1− αm)~xn + αm~ru (23)



Energies 2021, 14, 6909 11 of 31

as ~x′n is a mutant version of the individual (chromosome) ~xn,~ru is a vector of i.i.d. random
numbers such as~ru 3 rd ∼ U (xl,d, xu,d), ∀ d ∈ {1, . . . , D}, and αm ∈ [0, 1] is the percentage
of information to mutate for each element in the chromosome. After applying this
procedure, GA generally has multiple ways to decide if the originals or mutants are
preserved. The most common one is the well-known Greedy criterion, which consists of
keeping the best version for each individual according to their fitness value. We employ
this approach in this GA implementation.

The last genetic operator, the selection, is carried out through a random sampling
process with uniform distribution. This decision is based on preliminary empirical evidence
on the performance of the GA for this particular problem. Bear in mind that this operator
seeks to preserve the population size, then some ‘newborns’, ‘mutants’, and ‘parents’ are
neglected for the new generation. Besides, GA relies on elitism to keep some of the best
individuals of the population, so their promising genetic material is not compromised.

2.3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is inspired by the collective behavior of birds
and fish [47]. Therefore, as with the previous approach, it considers a collection of search
agents. In this case, each agent is called a particle, and their collection is said to form
“a swarm”. Moreover, each agent has a position ~xn and a velocity ~vn, where the former
provides candidate solutions to a given problem.

During the iterative process of PSO, the particles are constantly moving and exploring
the search space via a simple kinematic dynamic. It leads to some elements worthy of
highlighting. For starters, the best position ~pn that a particle n has found must be preserved
and updated accordingly; this is known as the personal best. Consequently, one of these
positions also represents the best position found by the whole swarm, ~g; this is known as
the global best. Furthermore, in a given iteration τ, the current position of the particle may
differ from its personal best, as they are always moving. Therefore, the movement of a
particle is determined by several factors [48], including the current parameters and the best
solutions. These elements are liaised through

~xn(τ + 1) = ~xn(τ) +~vn(τ), (24)

and

~vn(τ + 1) = w~vn(τ) + α1~r1 � (~pn −~xn(τ)) + α2~r2 � (~g−~xn(τ)). (25)

Equation (24) represents the actual movement of the nth particle and requires the
current position and velocity of the particle, ~xn(τ) and ~vn(τ), respectively, whereas (25)
updates the velocity of the nth particle. For such a dynamic, it is required the current
position of the nth particle; the personal and global best positions, ~pn and ~g, respectively;
the inertia factor w ∈ [0, 1[; the self-confidence coefficient α1 ∈ R+; and the swarm
confidence coefficient α2 ∈ R+. These formulae also employ a couple of vectors with
i.i.d. random elements with uniform distribution,~ri 3 ri,k ∼ U (0, 1) ∀ i = {1, 2}. Bear in
mind that w is included as a control mechanism for avoiding the swarm explosion [49]. In
Figure 4, we present an illustrative example of how the PSO procedure is employed for
solving a problem.
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Figure 4. Illustrative procedure of Particle Swarm Optimization.

2.3.3. Gray Wolf Optimizer

Gray Wolf Optimizer (GWO) seeks to mimic the hunting behavior of grey wolves by
considering a group of search agents with a strict hierarchy [50], i.e., α individuals sit at the
top, followed by β, and γ wolves. The remaining individuals are regarded to be of the ω
class. Now, the “hunting process of wolves” gives place to the position update for each
individual in the population, mathematically described by

~xn(τ + 1) =
1
3 ∑

i

(
~xi − 2~r1,i �~δ(τ)�~a(τ)

)
, ∀ i ∈ {α, β, γ}, (26)

with
~δi(τ) = |2~r2,i �~xi −~xn(τ)|�, ∀ i ∈ {α, β, γ}, (27)

as τ is the current iteration, ~xn(τ) stands the current position of the nth individual, ~xi(τ)
represents the position of an elite wolf (i.e., α, β, and γ), and ~r1,i 3 r1,i,k ∼ U (−1, 1)
and ~r2,i 3 r2,i,k ∼ U (0, 1) are vectors of i.i.d. random elements. Consider that |~y|� =
(|y1|, . . . , |yD|)ᵀ, with ~y ∈ RD as a dummy vector, is the element-wise version of the
absolute value operator for vectors. Moreover, ~a(τ) is a vector of components linearly
decreasing from 2 to 0 w.r.t. iterations. In this work, we use the formula given by
Mirjalili et al. [50], such as

~a(τ) = 2
(

1− τ

τmax

)
~1, with~1 = (1, . . . , 1)ᵀ ∈ RD, (28)

where τmax is the maximal number of iterations.
Figure 5 provides an overview of the GWO approach and details how each search

agent moves throughout the search space, depending on the location of the α, β, and δ
individuals.
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Figure 5. Illustrative procedure of Gray Wolf Optimizer.

2.4. Energy Quality

The energy quality index is a measurement of how ideal an electrical signal is. This
index is determined by the voltage supplied and the operating frequency, and it evaluates
whether the former is within an established range. Simultaneously, the latter must be a
constant, close to a nominal value, and describe a sinusoid. This concept is affected by the
phenomena that distort the waveform, such as the magnitude and phase of power signals
measured at the Point of Common Coupling (PCC).

For this work, we assume that these unbalanced loads are given by a voltage with
a magnitude provided by the ratio between negative and positive sequence percentages.
This term is well-known as the Voltage Unbalance Factor (VUF), which is determined
as follows:

VUF =
|Vseq(−)|
|Vseq(+)|

× 100%, (29)

where Vsec(−) and Vsec(+) are the negative and positive sequence components, respectively.
The standard IEEE 1159–2019 recommends that the voltage imbalance (sometimes called
unbalance) of a typical three-phase system must remain below 5% [6]. Another element
degrading the power quality is the connection of nonlinear devices at the PCC. This is
because these devices generate harmonic content that can deteriorate the MG components
and the performance of the utility grid. There are some methods to attenuate the levels of
this harmonic distortion, but they are often impractical and challenging to implement [51].
Moreover, the harmonic spectrum of voltage signals measured at the PCC is determined
through the Total Harmonic Distortion (THD). THD is then defined by the standard IEC
61000-2-2 as the ratio between the root-sum-square of all harmonic magnitudes (excluding
the fundamental) and the magnitude of the fundamental frequency [7]. When the THD
index is applied to voltage signals, say THDV , it is assessed such as
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THDV =
1

V1

√√√√ N

∑
k=1

V2
2k+1, (30)

as V1 [V] is the voltage signal corresponding to the fundamental frequency, and V2k+1 [V]
is the voltage of the harmonic 2k + 1, ∀ k = 1, . . . , N.

At the low-voltage distribution level, the allowed limit for the THDV is also 5%. Thus,
the THDV in each phase of the MG is measured following this bound. Conversely, it is
worth commenting that the THD index for the current is considered as a known factor for
the nonlinear load connected at the PCC.

3. Our Proposed Approach

In this section, we detail our proposed approach based on the significant concepts
reviewed above.

3.1. IBC Controller Optimization

An analysis of the state-space models shown in (7) reveals that the Interleaved Boost
Converter (IBC) exhibits an oscillatory response to a step input. At the same time, the
Microgrid (MG) provides a critically damped response. Therefore, in this work, we use
the state-feedback approach [52] shown in Figure 6 when designing the controllers. This
state-feedback is expressed as given,

~u(t) =~r(t)− K~x(t),

~̇x(t) = (A− BK)~x(t) + B~r(t),
(31)

where A, B, and C are matrices of the state-space representation model for IBC and MG,
as shown in (7), (17), and (18). K is the feedback matrix for the states, which is a design
parameter for the LQR algorithm that seeks the best position for the poles of a system.
From (31), one can manipulate the characteristic polynomial of the system, improving the
IBC slow dynamic caused by the non-minimum phase problem. In this regard, we use
the state-feedback approach to make the closed-loop system track step-type inputs while
considering metrics such as settling time and overshoot. Furthermore, LQR is an algorithm
that belongs to the theory of optimal control, which is concerned with operating a dynamic
system at a low cost [53]. Additionally, ~y(t) is the system desired output, and ~u(t) and~r(t)
are the system input and reference, respectively.

Figure 6. Full feedback states block diagram.

Therefore, it is somewhat straightforward to notice that the controller can be optimized
by solving the following minimization problem:

min
Q,R
{J} = min

Q,R

∫ ∞

0

(
~x (Tt′)Q~x(t′) + ~u (Tt′)R~u(t′)

)
dt′,

s.t. ẋ(t) = A~x(t) + B~u(t),
(32)

where Q and R ∈ RM×M
+ are positive semi-definite matrices assigned arbitrarily. Bear in

mind that Q represents the penalization matrix for the system states, ~x(t). Conversely, R
relates to the velocity of the controller and ~u(t) are the system inputs. In this case, Q and R
are used to calculate optimal values for K.
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From this problem definition, the updated input and state vector can be obtained
as shown,

~u(t) = −K~x(t), (33)

K = R−1BᵀS, (34)

as S is achieved by solving the Riccati equation, given by

AᵀS + SA− SBR−1BᵀS + Q = 0. (35)

Under some conditions, the LQR algorithm may fall short. For example, when faster
and accurate dynamics are required. For this work, we opt to complement the LQR
controller as described next. When designing the controller for the IBC, we include an
integral action to obtain a controller resilient to perturbations while being robust enough
to track the reference, as Figure 7 depicts.

Figure 7. IBC hybrid LQR-I control block diagram.

Then, the close-loop state-space representation of the IBC becomes(
~̇x(t)
~̇e(t)

)
=

(
A 0
−C 0

)(
~x(t)
~e(t)

)
+

(
B
0

)
~u(t),

~y(t) =
(
C 0

)
~x(t)

(36)

and the final state-space system with the hybrid controller, which is a Multi-Input Single-
Output (MISO) system, corresponds to

d
dt


iL1(t)

iL2(t)

vC1(t)

e(t)

 =


0 0 −U1

L1
0

0 0 −U2
L2

0
U1
C1

U2
C1
− 1

RC1
0

0 0 −1 0




iL1(t)

iL2(t)

vC1(t)

e(t)



+


vs

U1L1
0

0 vs
U2L2

− vs
RC1U2

1
− vs

RC1U2
2

0 0


(

Ud1

Ud2

)
,

y(t) =
(
0 0 1 0

)
iL1(t)
iL2(t)
vC1(t)

e(t)

.

(37)

In Equation (37), the inputs are given by the duty cycle of inductors (Ud1 and Ud2),
and the output y(t) corresponds to the capacitor voltage (vC1). Therefore, we design one
controller for each input, as shown in Figure 8, where~r(t) is the IBC voltage reference and
~u1,2(t) are the new inputs for the IBC states feedback. This scheme is advantageous, as we
can tune each controller independently [54].
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Figure 8. IBC MISO control scheme.

3.2. MG Controller Optimization

In the case of the microgrid (MG), we follow a similar approach. This time, however,
we consider a Proportional-Integral (PI) block instead of only an integral component. This
is done by striving for an accurate, fast, and robust controller. As with the previous case,
the hybridizing process is shown in Figure 9, where ucontrold,q

are the new inputs for the
MG states feedback, rd,q(t) is the MG voltage reference for d and q component, ~y(t) is the
MG output voltage and equivalent to the states vC

d and vC
q . Kp and Ki are the proportional

and integral gains of proposed hybrid controllers, respectively. Keep in mind that for both
cases, ė is the controller state added to the corresponding dynamic.

Figure 9. MG hybrid PI-LQR control block diagram.

Thence, the MG dynamic can be represented by

d
dt


iL
d (t)

vC
d (t)

e(t)

 =


K1
L

K2−Kp−1
L

Ki
L

1
C 0 0

0 −1 0




iL
d (t)

vC
d (t)

e(t)



+


Kp
L

0

1

rd(t),

y(t) =
(
0 1 0

)
iL
d (t)

vC
d (t)

e(t)

,

(38)
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d
dt


iL
q (t)

vC
q (t)

e(t)

 =


K1
L

K2−Kp−1
L

Ki
L

1
C 0 0

0 −1 0




iL
q (t)

vC
q (t)

e(t)



+


Kp
L

0

1

rq(t),

y(t) =
(
0 1 0

)
iL
q (t)

vC
q (t)

e(t)

.

(39)

The control strategies described in (37) and (39) guarantee that such dynamic models
inherit the properties of the LQR and traditional controllers. Therefore, they can provide a
low-cost system operation, robust reference tracking, and steady-state error minimization.
In turn, this allows for optimal energy management at the IBC-MG coupling and between
the MG and the electrical grid. Notice that Q and R have a remarkable effect on controller
performance since these matrices depend on the state number of the system and the actuator
effort. Conversely, the LQR algorithm may present a poor performance for some arbitrary
parameters, leading to impractical Q, R, and K parameters that compromise controller
performance. Such an issue can be addressed by implementing algorithms that render
optimal elements for such matrices, e.g., metaheuristics. Additionally, one can calculate
the proportional and integral gains and the LQR parameters by fusing the variables of the
hybrid controller through a single fitness function that considers the system design criteria.

3.3. Fitness Function

Throughout this work, we compare the three metaheuristics presented in Section 2.3 from
the perspective of controller performance. Thus, we use the overshoot, settling time, and
ripple, yielded by each controller as the comparison parameters. To this end, we require
the K, Q, and R matrices, cf. (32). For the IBC, the LQR parameters are computed such as

Q =


q1 0 0

0 q2 0

0 0 q3

, and R =

(
r1 0

0 r2

)
. (40)

Similarly, the LQR parameters for the MG are given by

Q =

q1 0

0 q2

, and R = r1. (41)

With this information, one can assess the performance of a given controller through

F = w1 |(MOshoot −Oshoot)|+ w2

∣∣∣∣ (MTs − Ts)

Ts

∣∣∣∣, (42)

where w1 and w2 are values between zero and one, w1, w2 ∈ [0, 1], for prioritizing the
overshoot or the settling time, respectively. Regard that MOshoot and MTs are the maximum
overshoot and settling time values, respectively, which are fixed by the user. Besides, Oshoot
and Ts are the actual values yielded by the controller, i.e., overshoot and settling time,
respectively.

It is also crucial to disclose how metaheuristics represent these design variables. In the
case of the IBC, there are six unknowns, i.e., three elements of Q, two of R, and the integral
action Ki. For the MG, the number of variables is one less. The reason is that there are two
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unknown values for the Q matrix, one for the R variable and two for the PI controller (Ki
and Kp).

4. Methodology

To implement and analyze our proposed approach, we followed a two-stage
methodology. Each stage focuses on a different scenario. The first one tackles the IBC as a
standalone device, whereas the second merges it with an MG. In both cases, we considered
the same PV array and IBC. Therefore, we assumed the parameters given in Table 2 for
all simulations.

Additionally, we used the parameters given in Table 3 and repeated each experiment
30 times for statistical purposes. Note that we selected a population size of 10 for comparison
purposes and following previous reports [10,17]. Moreover, although we selected the PV
array with illustrative purposes, our proposal can be easily extended to other configurations.
In the following lines, we provide the details about each stage.

Table 2. Parameters of the selected devices considered for this work. The PV array is arbitrarily
selected with illustrative purposes, while the IBC is defined based on Habib et al. [10].

PV Array

Module SunPower
SPR-X20-250-BLK

Maximum Power 249.952 W
Open circuit voltage (Voc) 50.93 V
Voltage at maximum power point (Vpm) 42.8 V
Temperature coefficient of Voc −0.35602%/◦C
Cells per module 72
Short-circuit current (Isc) 6.2 A
Current at maximum power point 5.84 A
Temperature coefficient of Isc 0.07%/◦C
Temperature 25 ◦C

IBC

Resistance (R) 50 Ω
Inductors (L1, L2) 5 mH
Capacitor (C1) 1 mF
PV array input voltage 150 V
Switching frequency 10 kHz
Voltage set-point 300 V

Table 3. Simulation parameters used for the metaheuristics when designing different kinds of
controllers.

Parameters IBC Controller MG Controller
GA PSO GWO GA PSO GWO

Population size (N) 10 10 10 100 100 100
Max. iterations (τmax) 10 10 10 200 200 200
Elitism ratio 0.20 – – 0.05 – –
Crossover ratio 0.60 – – 0.75 – –
Mutation ratio 0.20 – – 0.20 – –
Inertia factor (w) – 0.50 – – 0.50 –
Confidence coef. (α1) – 0.50 – – 0.50 –
Swarm coef. (α2) – 0.50 – – 0.50 –

4.1. IBC Experiments

We begin by analyzing the behavior of the IBC when fed with the irradiance profile
shown in Figure 10, with the task of providing the current displayed in Figure 11.
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Figure 10. Irradiance profile for the PV array.

Figure 11. Current load variation.

This is done to compare the performance of our proposed approach against previously
published data. Therefore, we analyze the same time intervals that other authors have used
before [10]. The set-point is defined to a value high enough so that it can be paired with
the MG. Thus, we select a value of 300 V.

To compare the performance of the generated controllers, we analyze data for three
categories: maximum overshoot, response time, and voltage ripple. We seek controllers
with zero overshoot (Oshoot). Nevertheless, their settling time (Ts) are made free, and
thus they may vary w.r.t. the data reported in the literature. In this sense, we conduct a
comprehensive analysis to determine the best controller configuration. Additionally, we
compare the computing requirements and the performance of designing controllers with
each one of the proposed metaheuristics. For this endeavor, we gather data about the
integral gain of the resulting controller (Ki), the minimal error, the number of iterations
(τmax) required by the algorithm, and the convergence time.

4.2. Experiments with the MG

In the second stage of our work, we verified whether our proposed approach could
provide a good enough controller for an MG. Therefore, we implemented the experiment
shown in Figure 12, where the parameters of the MG are shown in Table 4.
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Figure 12. Experiment proposed to evaluate the IBC performance interfaced with an MG working in
grid-tied mode.

Table 4. MG experiment conditions.

MG voltage 300 V
Converter switching frequency 10 kHz
Grid voltage 120 Vrms
Grid frequency 60 Hz
Distribution impedance line 0.64 + 0.0377i Ω
Filter inductance 12 mH
Filter capacitance 16 µF
Three-phase load 20 Ω
Three-phase nonlinear load capacitance 2 mF
Three-phase nonlinear load resistance 10 Ω

In this experiment, an optimal control strategy must regulate the energy transfer
between the IBC and MG so that the voltage at the PCC becomes balanced. We also
developed hybrid controllers for this stage, but the fusion between PI and LQR gave them.
We tuned these controllers with each one of the metaheuristics (MHs) considered in this
work. Therefore, we assessed their performance in terms of the energy cost associated
with the resulting controller, their error convergence, and the computational resources
their tuning demands. Recall that the energy cost is directly linked to the MG voltage and
the proportional gain value (Kp) of the controller. As the former is fixed, controllers with
smaller Kp lead to a lower energy cost. Thus, we sought controllers with Ts = 0.325 ms
and Oshoot = 5%, which were found by minimizing the cost function shown in (42).

We compared the controllers based on their overshoot, response time, and error
convergence as with the previous stage. However, this time around, we also focused on the
gains of the resulting controllers (i.e., Kp and Ki). Likewise, we compared the performance
of metaheuristics via their computing burden.

Our main long-term goal was to validate the MG performance when facing power
quality events. Therefore, for this work, we regarded a final approach with a battery of
tests based on the following conditions:

1. The MG is loaded with different unbalanced voltages that come from distribution
network failures, including negative sequence.

2. The MG is faced with balanced nonlinear loads that exhibit harmonic contents.
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3. The MG is simultaneously connected to nonlinear loads and unbalanced voltages
generated by the utility grid.

Note that all our experiments were run in Matlab R2021a, using a PC with a 2.60 GHz
Intel Core i7-9750H CPU, 8.00 GB RAM, and Windows 10.

5. Simulation Results and Discussion

We now present the data resulting from our experiments. To make things easier for
the reader, we follow the same structure from Section 4.

5.1. IBC Experiments

Table 5 presents the best controllers yielded by each one of the considered MHs and
their performance, along with the data from two previous works, i.e., Habib et al. [10], Cao
et al. [17]. Note that these data correspond to the response of controllers under the schemes
shown in Figures 7 and 8. From these results, one can evidence with ease that the controllers
achieved are quicker than those from previous works. This effect is due to the values of the
integral gains. Moreover, even though these values are higher than in previous works, the
designs presented in Table 2 do not exceed the saturation point for the control action.

Table 5. Comparative data for the IBC controllers developed with three different metaheuristics and
with previous approaches. All controllers were tuned seeking a zero overshoot and calculating the
error according to (42)

Approach Iter. Ts [s] Error K1, K2, K3 Ki

GA 9 0.0486 0.0486 1.5168, 0.1220, 0.5358 67.6403

PSO 8 0.0514 0.0714 4.6516, 0.3066, 1.3903 63.0782

GWO 5 0.0556 0.0644 1.8119, 0.3056, 1.2533 70

Habib et al. [10] 10 0.1410 1.0666 1.4259, 0.1127, 0.5056 27.2183

Cao et al. [17] 500 0.1781 1.4788 1.1935, 0.1165, 0.4963 25.7612
0.1290, 1.0120, 0.5645 29.2894

Another feature to highlight is the few iterations required by the MHs for tuning
controller parameters with an excellent response (Ts = 0.045 s, Oshoot = 0%). Keep
in mind that Cao et al. [17] found all six values for the controller parameters, but a
common approach is to simplify the search by reducing the parameters in half, as shown
by Habib et al. [10]. This effect can be achieved by assuming that both controllers from
Figure 8 have the same parameters. Therefore, instead of specializing each controller, we
design a general one capable of handling both tasks.

Figure 13 shows the response of each controller, as well as the working regions,
analyzed thoroughly in this experiment. Plus, Figure 14 details each region from Figure 13.
Within the first region (Figure 14a), the controllers tuned by PSO (reddish line) and by
GA (blueish line) fail to comply with the zero overshoot requirement, but they have a
fast response. Conversely, the slowest controller corresponds to the one proposed by
Cao et al. [17] (purple line), closely followed by the one proposed by Habib et al. [10].
Nonetheless, our remaining proposal (yellowish line), employing GWO, is the fastest
controller and complies with the zero overshoot requirement. Thus, it seems as if the
GWO algorithm is a good alternative for designing this kind of controller. There is
an interesting pattern in the remaining regions (Figure 14b). For regions B and D, the
controllers behave akin to region A. Nevertheless, for regions C and E, the controller
proposed by Habib et al. [10] becomes the one with the maximum overshoot value and the
slowest response. Once again, the controller tuned by GWO (i.e., GWO I-LQR) performs
best, exhibiting virtually no overshoot and providing the fastest corrections when faced
with perturbations.
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Figure 13. Step response of all the IBC controllers when subject to the conditions from Figures 10
and 11. The boxed regions represent the regions of interest.

To better assess the performance of the available controllers, Table 6 presents three
metrics evaluated at each region, along with their average value across all regions. It is
noticeable that all controllers fail at preserving the zero overshoot response at regions C
and E. This phenomenon is generated mainly because of a perturbation that suddenly
increases the irradiance profile at these regions (cf. Figure 10). Even so, the GWO I-LQR
controller always exhibited the lowest overshoot, leading to average values about 40%
smaller than that of the second-best controller; the one proposed by Cao et al. [17]. In
contrast, the PSO I-LQR controller yielded the worst response in terms of overshoot. It
rendered the maximum average value that derives from having the poorest behavior for
most regions. Such a value is almost thrice the one for the controller proposed by GWO.

(a) IBC controllers response at Point A

Figure 14. Cont.
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(b) IBC controllers response at B, C, D, E points

Figure 14. Settling time and overshoot of IBC controllers.

Table 6. Performance metrics for all the controllers generated for the IBC in the different regions
of interest. Blueish and yellowish values represent the best and worst metrics in each region,
respectively.

Performance Metric Controller Value in Region of Interest
A B C D E Avg. Value

Maximum overshoot [%]

GA I-LQR 0.50 0.01 1.74 0.25 0.38 0.57
PSO I-LQR 0.88↓ 0.12↓ 1.96↓ 0.37↓ 0.43↓ 0.75↓
GWO I-LQR 0↑ 0↑ 1.11↑ 0↑ 0.25↑ 0.27↑
Cao et al. [17] 0 0 1.74 0 0.38 0.42
Habib et al. [10] 0 0 2.24 0 0.51 0.55

Response time [ms]

GA I-LQR 60 40 40 40 35 43
PSO I-LQR 70 60 45 50 50 55
GWO I-LQR 50↑ 30↑ 30↑ 25↑ 30↑ 33↑
Cao et al. [17] 170↓ 100↓ 100↓ 100↓ 100↓ 114↓
Habib et al. [10] 140 90 100 70 80 96

Ripple [mV]

GA I-LQR 3.30 3.90 3.30 3.40 3.20 3.40
PSO I-LQR 12.80 1.80↑ 1.30↑ 1.30↑ 1.30↑ 3.70
GWO I-LQR 3.00↑ 3.50 3.00 3.10 2.90 3.10↑
Cao et al. [17] 20.00↓ 34.50↓ 20.50↓ 23.50↓ 20.50↓ 23.80↓
Habib et al. [10] 12.00 16.00 13.00 12.00 12.00 13.00

In terms of the response time when facing perturbations, GWO remains the approach
that provides the best controller. However, from this perspective, the previously proposed
control strategies perform poorly, having an average response time of about three or more
times higher than the GWO I-LQR controller and even about two or more times higher than
our slowest controller (PSO I-LQR). Notwithstanding, note the reduction in the voltage
ripple metric. Even if the GWO I-LQR controller achieved the best average value, the PSO
I-LQR controller is the one with minimal voltage undulation from regions B to E. The reason
is that in region A, the ripple exhibited by the PSO I-LQR controller goes beyond four
times the one yielded by the GWO I-LQR controller, which increases its average value. In
contrast, the ripple exhibited by the GWO I-LQR controller reveals a pretty stable dynamic
across all regions, with a maximum variation of 0.5 mV. Once again, the design proposed
by Cao et al. [17] performs the poorest, followed by the design from Habib et al. [10].
The former exhibits a ripple of about eight times higher than the GWO I-LQR alternative,
though the latter still renders a four-fold difference. In summary, we corroborate that the
controller tuned by the GWO algorithm is the best alternative as it ranks first in all metrics.
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We now move on to validate if these insights hold when all runs are observed as
a whole (Figure 15). In the case of the integral gain of the controller (Ki), Figure 15a
shows that GWO exhibits a high concentration around Ki = 70, with some isolated cases
between 35 to 70. Data from PSO and GA are more spread out, with median values (white
circles) of 62 and 72, respectively. The integral gains are uniformly distributed, but GA
obtained the highest Ki values. It is interesting to see that GWO generates stable data and
provides an intermediate gain value for the controller (median value of 69). This yields
high performance in terms of controller velocity since low values lead to slow responses,
and high values risk controller saturation. In any case, tuning controllers with GA seems
to provide the best error levels (see Figure 15b). Nonetheless, the three metaheuristics
rendered controllers with acceptable error margins (below 0.1), although GWO offers a
majority of runs within such a range. It is also essential to analyze the computational
effort of finding such controllers. Therefore, Figure 15c,d details the number of iterations
and the convergence time of these experiments. As can be seen, GWO exhibited the best
performance, requiring a median of 6 iterations that were run in about 5 s. This result
represents a mean reduction of about 19.62% and 15.58% w.r.t. the requirements of the
other MHs.
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Figure 15. Performance metrics of 30 controllers for the IBC and tuned with each one of the considered
metaheuristics.

5.2. MG Experiments

We now analyze how the controllers change when plugging the IBC into the selected
MG. Table 7 shows the best controller configuration achieved after 30 runs with each
metaheuristic. As in the previous stage, the controllers developed by GWO exhibit good
performance. In this case, the controllers shown in Table 7 require an MG voltage of 300 V
for reaching their operational point. Likewise, the selected controllers present a similar
performance in terms of overshoot, settling time, state feedback gains (K), and proportional
and integral constants (Kp and Ki, respectively). Be that as it may, the controller proposed



Energies 2021, 14, 6909 25 of 31

by GA has a Kp ~29% higher and a Ki ~8.80% lower. Besides, its tuning required more
iterations. Moreover, this pattern holds for all runs (Figure 16a,b). GWO obtains the
best features in terms of error, iterations, and convergence time (Figure 16d–f), providing
better-suited designs. Let us take a look at all the runs to determine if these patterns hold.
Figure 16a shows that the proportional gain reached by PSO for the controllers seems
uniformly distributed and covers a wide range. Besides, it includes small values such as
those achieved by GWO and GA. On the contrary, data for the controllers tuned by GWO
and GA are more stable. Although the Ki median value is similar across GWO, PSO, and
GA (Figure 16b), the last two have some isolated runs towards opposite extrema. Even so,
note that all the implemented methods exhibit a high concentration corresponding to the
overshoot information (Figure 16c). However, the designs achieved with GA displayed
the highest median error levels (Figure 16d), and they also required a high number of
iterations (Figure 16e) that consumed the highest amount of computing time (Figure 16f).
In contrast, GWO provides a good balance between a low-cost search and the desired
performance, thus representing the best alternative when designing PI-LQR controllers for
this IBC-MG system. Bear in mind that the controller parameters found by GWO require
an MG voltage of 300 V in its operational point; this concept is associated directly with
searching for low-cost dynamics. Therefore, we use the design shown in the third row of
Table 7 for the tests that follow.

Table 7. Comparative data for the best MG controllers tuned with three different metaheuristics. The error is calculated
with (42).

Method Iter. Ts [ms] Oshoot [%] Error K1, K2 Kp Ki

GA 61 0.3579 5.0276 0.0529 317.9907, 66.0267 1.4178 13,813.8517

PSO 5 0.3367 5 0.0266 360.2644, 86.5263 1 15,030.9159

GWO 19 0.3321 4.9122 0.0198 369.4960, 89.4125 1 15,265.7446
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Figure 16. Performance metrics of 30 runs of each metaheuristic for optimizing the controller of
the MG.

After analyzing the general scenario, we migrate to the power quality tests. Let us
begin by observing what happens when the distribution network demands unbalanced
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voltages. Figure 17a corresponds to the system working in normal conditions, i.e., our
base case. Such conditions include the connection of linear loads and VUF = 0% when the
simulation starts. Note that the controller is turned off during the interval 0 s < t < 0.1 s
to validate the posterior control response. During this period, the MG consumes power
because the energy flows from the electrical network towards the MG. At t = 0.1 s the
controller is activated and it reaches the voltage references (Vrefd

= 120 V and Vrefq = 0 V)
Vrms at t = 0.104 s, which maintains the equilibrium voltage at the PCC. It is easy to notice
that the system operates appropriately. Furthermore, note that all data from this point
onward assume an activated controller as in this scenario. Figure 17b displays the effect
of a grid failure leading to a VUF index of 5% in the MG. When the controller is turned
on, VUF is quickly reduced to 1.51%. The proposed controller can also handle higher VUF
values. For example, 7% and 9% indices are diminished to 2.15% and 3.25%, respectively,
as presented in Figure 17c,d.

Figure 17. MG hybrid controller performance under various scenarios of unbalanced voltages while
operating in grid-tied mode.

Our second power quality test focuses on harmonics attenuation. The nonlinear loads
considered for the simulations are composed of three single-phase bridges with capacitive
filters and resistive loads connected to each phase. For quantifying the Total Harmonic
Distortion (THD) index, a Fast Fourier Transform (FFT) analysis was applied to voltage
signals va, vb, and vc at the PCC to measure the harmonic content in each phase. In this
order of ideas, Figure 18 shows a simulation that assumes a THD index of 6.18% (for all
va, vb, and vc signals), which may appear when nonlinear loads are connected to the PCC.
When the controller is enabled, it almost halves the THD index, lowering it to 3.51%.

Finally, we analyze a critical scenario with a fusion of the prior situations. Therefore,
Figure 19 presents the case where the hybrid controller must simultaneously handle
harmonic distortion produced by nonlinear loads and voltage disequilibrium generated
by a failure within the utility grid. We assume a VUF index of 8% for this simulation,
which leads to a THD index for va, vb, and vc of 6.18%, 5.60%, and 6.74%, respectively.
These values are obtained through a spectral analysis with the FTT. Once the controller
powers on, these indices are improved and provided a VUF value of 3.38% and a THD
value of 2.65%, 3.55%, and 4.11% for va, vb, and vc, respectively. Table 8 contains the data
of the first five harmonics for these last scenarios. For the second study case (Columns
2 and 3 of Table 8), the 3rd and 9th harmonics were fully mitigated for all phases. In the
same scenario, the 11th harmonic was attenuated by 10% for all phases. Notwithstanding,
the 5th and 7th harmonics increased its harmonic voltage content by 17.21% and 27.31%,
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respectively. However, in general terms, the proposed controller reduced the THD index
by about 43%. As to the third study case (see Columns 4 and 5 of Table 8), the 3rd harmonic
was reduced by 73.87% for all phases. Similarly, the 7th harmonic was attenuated for va
and vc phases by 33.35%, while the 9th harmonic was mitigated for vb and vc phases by
54.95%. Similarly, the harmonic content of va and vb phases for the 11th harmonic were
reduced by 34.60%. Although, the harmonic content of some phases increased, especially
for the 5th harmonic. In summary, the controller mitigated THD index by 44.40%, thus
demonstrating good behavior when handling this kind of perturbation.

Figure 18. MG response under nonlinear compensation operating in grid-tied mode and with
balanced linear and nonlinear loads.

Figure 19. MG response under nonlinear compensation operating in grid-tied mode, and with
unbalanced voltage and nonlinear conditions.
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Table 8. Harmonics attenuated by the hybrid PI-LQR controller tuned with PSO, for the second (Columns 2 and 3) and
third (Columns 4 and 5) testing scenarios. Harmonics mitigated are shown in blue, while those that were aggravated are
shown in yellow.

Balanced Nonlinear Loads Unbalanced Linear and Nonlinear
Conditions

MG Harmonics
(Original)

MG Harmonics
(Compensated)

MG Harmonics
(Original)

MG Harmonics
(Compensated)

Phase va , vb , vc va , vb , vc va , vb , vc va , vb , vc

O
rd

er

Third (3rd) 1.97, 1.97, 1.97 0.00↓, 0.00↓, 0.00↓ 0.52, 3.52, 3.86 0.29↓, 0.33↓, 0.51↓
Fifth (5th) 3.95, 3.95, 3.95 4.63↑, 4.63↑, 4.63↑ 3.41, 4.18, 4.80 3.77↑, 4.18, 4.80
Seventh (7th) 2.16, 2.16, 2.16 2.75↑, 2.75↑, 2.75↑ 2.69, 0.98, 1.91 2.36↓, 2.76↑, 0.87↓
Ninth (9th) 0.18, 0.18, 0.18 0.00↓, 0.00↓, 0.00↓ 0.23, 0.58, 0.56 0.44↑, 0.45↓, 0.07↓
Eleventh (11th) 0.86, 0.86, 0.86 0.77↓, 0.77↓, 0.77↓ 0.47, 1.45, 0.77 0.31↓, 0.94↓, 1.02↑

6. Conclusions

This article carried out a comparative study for designing controllers for an Interleaved
Boost Converter (IBC) fed by a photovoltaic (PV) array. To this end, we used the three
widespread metaheuristics: Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
and Gray Wolf Optimizer (GWO). We also contrasted our data against previously published
controllers for IBCs in terms of three performance metrics: the maximum overshoot, the
response time when faced with perturbations, and the output voltage ripple. Besides, we
analyzed these metaheuristics when tuning controllers for a system comprised of the IBC
and a microgrid (MG) under different testing conditions.

We found an interesting behavior. For both experiments, i.e., the standalone IBC
and the interconnected scenario, GWO provided the best results. In the first case, we
achieved an average overshoot reduction of 41.86% compared with the worst performance
described by the PSO alternative (PSO I-LQR). Furthermore, the time response when
faced with perturbations and the output voltage ripple were reduced in an average
of 71.05% and 86.97%, respectively, according to the data achieved with the controller
proposed by Cao et al. [17]. For the second scenario, GWO provided the best results while
also demanding a low energetic cost that translates into a small-scale deployment of PV
arrays. Therefore, the proposed PI-LQR controller driven by GWO guaranteed fulfilling
the international standards established for energy quality indices, according to the results
shown in Table 8 and Figures 17–19. Although we consider that experimental tests are
relevant, we limited our approach to simulation scenarios in this work. The simulated
results demonstrated the effectiveness and robustness of the proposed hybrid controllers
for each testing scenario, achieving an equilibrium on the parameters established for all
study cases. Therefore, using metaheuristics seems like a viable path for tuning this kind
of controller. We showed that the resulting devices are even useful when facing power
quality issues.

We identified two interesting paths for future works. The first one considers the
physical implementation of the proposed experiment in a power hardware-in-the-loop
platform. The main idea of this research path is to carry out an experimental validation
of the hybrid controllers and to validate the performance of the MG and IBC models
in real-time systems. As to the second path, we intend to explore different controller
configurations applied to either the IBC or the MG dynamics. This should consider aspects
associated with controller performance when faced with a broader set of power quality
events and the effects of such events within the electrical grid. For achieving this, one
could pursue two approaches. One of them is to use MHs to tune a controller that can
withstand the diverse set of power quality perturbations, following a process akin to the
one shown in this work. The other one is to create a set of controllers, where each controller
specializes in a specific kind of perturbation, and then use a high-level approach (such as
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a hyper-heuristic or a machine learning algorithm) to learn when to use each controller.
The final path contemplates improvements upon the filtering stage of the microgrid. We
believe that by using MHs, one may generate a filter topology in agreement with electrical
features such as harmonics attenuation, filter size, and power supply.
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30. Şen, M.A.; Kalyoncu, M. Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a
Quadruped Robot. Gazi Univ. J. Sci. 2019, 32, 674–684.

31. Ibrahim, M.; Abdulla, A.I. Elevation, pitch and travel axis stabilization of 3DOF helicopter with hybrid control system by
GA-LQR based PID controller. Int. J. Electr. Comput. Eng. 2020, 10, 1868–1884.

32. Guilbert, D.; Guarisco, M.; Gaillard, A.; N’Diaye, A.; Djerdir, A. FPGA based fault-tolerant control on an interleaved DC/DC
boost converter for fuel cell electric vehicle applications. Int. J. Hydrog. Energy 2015, 40, 15815–15822. [CrossRef]

33. Wang, F.; Duarte, J.L.; Hendrix, M.A.M. Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid
Application—Concept and Implementation. IEEE Trans. Power Electron. 2011, 26, 3501–3513. [CrossRef]

34. Verdugo, C.; Tarraso, A.; Candela, J.I.; Rocabert, J.; Rodriguez, P. Synchronous Frequency Support of Photovoltaic Power Plants
with Inertia Emulation. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD,
USA, 29 September–3 October 2019; pp. 4305–4310.

35. Feng, Z.; Zhang, X.; Wang, J.; Yu, S. A High-Efficiency Three-Level ANPC Inverter Based on Hybrid SiC and Si Devices. Energies
2020, 5, 1159. [CrossRef]

36. Gamit, R.; Vyas, R. Harmonic Elimination in Three Phase System By Means of a Shunt Active Filter. Int. Res. J. Eng. Technol. 2018,
5, 313–322.

37. Alexander, C.; Sadiku, M.N.O. Fundamentals of Electric Circuits, 5th ed.; McGrawHill: New York, NY, USA, 2013; p. 995.
38. Escudero, R.; Noel, J.; Elizondo, J.; Kirtley, J. Microgrid fault detection based on wavelet transformation and Park’s vector

approach. Electr. Power Syst. Res. 2017, 152, 401–410. [CrossRef]
39. Halim, A.H.; Ismail, I.; Das, S. Performance assessment of the metaheuristic optimization algorithms: An exhaustive review.

Artif. Intell. Rev. 2020, 54, 2323–2409. [CrossRef]
40. Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm-A literature review. In Proceedings of the 2019 International Conference on

Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384.
41. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Chapter 10—Metaheuristic Algorithms: A Comprehensive Review. In

Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Sangaiah, A.K., Sheng, M., Zhang, Z.,
Eds.; Intelligent Data-Centric Systems; Academic Press: Cambridge, MA, USA, 2018; pp. 185–231.

42. Sotoudeh-Anvari, A.; Hafezalkotob, A. A bibliography of metaheuristics-review from 2009 to 2015. Int. J. Knowl. Based Intell. Eng.
Syst. 2018, 22, 83–95. [CrossRef]

43. Sörensen, K. Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]

http://dx.doi.org/10.1109/JESTPE.2016.2608504
http://dx.doi.org/10.1016/j.egyr.2020.02.035
http://dx.doi.org/10.3390/en12010001
http://dx.doi.org/10.1109/TSG.2012.2205281
http://dx.doi.org/10.1109/TIE.2012.2206356
http://dx.doi.org/10.1007/s40565-015-0182-3
http://dx.doi.org/10.3390/en10101568
http://dx.doi.org/10.1016/j.epsr.2020.106758
http://dx.doi.org/10.3390/en13081923
http://dx.doi.org/10.1049/gtd2.12108
http://dx.doi.org/10.1016/j.promfg.2018.02.061
http://dx.doi.org/10.3390/en12030477
http://dx.doi.org/10.1016/j.ijhydene.2015.03.124
http://dx.doi.org/10.1109/TPEL.2011.2147334
http://dx.doi.org/10.3390/en13051159
http://dx.doi.org/10.1016/j.epsr.2017.07.028
http://dx.doi.org/10.1007/s10462-020-09906-6
http://dx.doi.org/10.3233/KES-180376
http://dx.doi.org/10.1111/itor.12001


Energies 2021, 14, 6909 31 of 31

44. Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C.; Amaya, I.; Shi, Y.; Terashima-Marín, H.; Pillay, N. Towards a generalised metaheuristic
model for continuous optimisation problems. Mathematics 2020, 8, 2046. [CrossRef]

45. Roetzel, W.; Luo, X.; Chen, D. Chapter 6—Optimal design of heat exchanger networks. In Design and Operation of Heat Exchangers
and Their Networks; Academic Press: Cambridge, MA, USA, 2020; pp. 231–317.

46. Robandi, I.; Nishimori, K.; Nishimura, R.; Ishihara, N. Optimal feedback control design using genetic algorithm in multimachine
power system. Int. J. Electr. Power Energy Syst. 2001, 23, 263–271. [CrossRef]

47. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]

48. Sahab, M.G.; Toropov, V.V.; Gandomi, A.H. 2—A Review on Traditional and Modern Structural Optimization: Problems and
Techniques. In Metaheuristic Applications in Structures and Infrastructures; Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.,
Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 25–47.

49. de Almeida, B.S.G.; Leite, V.C. Particle Swarm Optimization: A Powerful Technique for Solving Engineering Problems. In Swarm
Intelligence—Recent Advances, New Perspectives and Applications; IntechOpen: London, UK, 2019; pp. 1–21.

50. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
51. Mazin, H.E.; Xu, W. Harmonic cancellation characteristics of specially connected transformers. Electr. Power Syst. Res. 2009,

79, 1689–1697. [CrossRef]
52. Fadali, M.S.; Visioli, A. Chapter 9—State Feedback Control. In Digital Control Engineering, 2nd ed.; Fadali, M.S., Visioli, A., Eds.;

Academic Press: Cambridge, MA, USA, 2013; pp. 351–397.
53. Dean, S.; Mania, H.; Matni, N.; Recht, B.; Tu, S. On the Sample Complexity of the Linear Quadratic Regulator. Found. Comput.

Math. 2020, 20, 633–679. [CrossRef]
54. Reyes-Lúa, A.; Skogestad, S. Multiple-input single-output control for extending the steady-state operating range-use of controllers

with different setpoints. Processes 2019, 7, 941. [CrossRef]

http://dx.doi.org/10.3390/math8112046
http://dx.doi.org/10.1016/S0142-0615(00)00062-4
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.epsr.2009.07.006
http://dx.doi.org/10.1007/s10208-019-09426-y
http://dx.doi.org/10.3390/pr7120941

	Introduction
	Fundamentals
	Interleaved Boost Converter Model
	Microgrid Model
	Metaheuristics
	Genetic Algorithms
	Particle Swarm Optimization
	Gray Wolf Optimizer

	Energy Quality

	Our Proposed Approach
	IBC Controller Optimization
	MG Controller Optimization
	Fitness Function

	Methodology
	IBC Experiments
	Experiments with the MG

	Simulation Results and Discussion
	IBC Experiments
	MG Experiments

	Conclusions
	References

