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Abstract: The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus,
oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and
1000 ◦C, respectively, was determined. The statistical analysis of the results was based on multivariate
methods: hierarchical cluster analysis (HCA), and principal component analysis (PCA), which made
it possible to classify the raw materials ashed at different temperatures into the most similar groups,
and to study the structure of data variability. Using PCA, three principal components were extracted,
which explain more than 88% of the variability of the studied elements. Therefore, it can be concluded
that the application of multivariate statistical techniques to the analysis of the results of the study of
heavy metal content allowed us to draw conclusions about the influence of biomass properties on its
chemical characteristics during combustion.

Keywords: ash composition; biomass; multivariate data analysis

1. Introduction

All recent research works and operational experiments in the area of biomass combus-
tion aim for the optimization of this process, and for a reduction in emissions [1,2]. Biomass
combustion, despite having many advantages, raises objections of power boilers operators,
such as slagging and sintering [3]. Research on the improvement of the combustion con-
cerns mainly the reduction of gas emission by proper selection of installation parameters,
and application of appropriate technology for flue gas cleaning, as well as methods of
solid waste management compliant with the principles of sustainable development [4–7].
Energetic use of solid biofuels, including the increasingly popular combustion of 100%
biomass, contributes to the formation of significant amounts of ash with new properties
other than ash from the combustion of coal, lignite, or biomass co-combustion. The use
of the variable properties of ash from biomass combustion are limited in construction
materials [8,9]; at the same time, ash from biomass combustion belong to the oldest mineral
fertilizers. There are many works in the literature presenting the fertilizing properties of
ashes from biomass combustion, due to the content of valuable nutrients [10–12]. Moreover,
the use of biomass ash in larger doses can have a deacidifying effect, and improve the
physicochemical properties of light soils [13,14].

The use of ash as a fertilizer is determined by many factors, including primarily the
content of basic nutrients, and the content of heavy metals that are toxic to plants and
the soil environment [15]. The total content of elements in biomass ash is influenced by
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genetic conditions, which are, to some extent, modified by environmental conditions, such
as soil properties (fertilization intensity), soil pH and organic matter abundance, and plant
species [16]. Literature analysis indicates that the content of heavy metals in biomass ash
varies widely [17–19].

Heavy metals contained in ash, in addition to conditioning the use of ash as a fertilizer,
may also affect the appearance of problems during biomass combustion in the furnace,
promoting the phenomenon of slagging and sludge formation, or leading to corrosion of
materials used in boilers [20].

Due to the use of different types of biomass in the energy sector, the actions so far
should aim to undertake research that will provide a broader picture of the properties of
energy waste produced with the use of biomass, with an indication of the potential risks
that may arise from their inappropriate economic use.

In paper [6], the authors presented an evaluation of the influence of the type of biomass
and its incineration temperature on ash content, and the content of selected heavy metal
elements in the context of sustainable management of biomass ash, by using them for
fertilizer purposes. The content of heavy metals in the ash studied was not excessive, and it
was not considered as potentially dangerous. It was found that, with an increase in ashing
temperature, the content of some elements (Zn, Cd, Cu, Pb and Fe) in the ash decreased,
which proves that, at higher temperatures, they pass into the gas phase. At the same time,
the content of elements which are thermally stable and less volatile metals (Cr and Ni) was
higher, and they were the elements with which the ash were enriched as the incineration
temperature increased. Moreover, a significant effect of biomass type, temperature, and
the interaction of biomass type and temperature on the content of individual metals in ash
was found.

However, as the previous discussion shows, ash from biomass combustion is a very
heterogeneous product in terms of elemental composition. Although classical statistical
analyses of large amounts of heterogeneous data can provide important information for the
study of any single variable, they do not provide global knowledge about the relationships
between different variables, nor do they allow grouping samples with homogeneous
characteristics. However, multivariate statistical methods, such as hierarchical cluster
analysis (HCA) [21] and principal component analysis (PCA) [22–24], can be used, which
allow for the clustering of objects, identification of variability, and presentation of results
in figures.

Literature reports indicate that HCA and PCA multivariate analyses are efficient meth-
ods to assess energy properties, and can be used to classify lignocellulosic materials [25].
Multivariate techniques have proven to be superior to conventional methods for predicting
biomass fuel properties using thermogravimetry, classifying lignocellulosic wastes for
bioenergy production [26], or defining a metric index of biofuel quality parameters [27].
Elemental composition, calorific value, and volatile matter content were also predicted
with high accuracy [25]. The literature lacks studies using these techniques to evaluate
plant biomass for solid biofuel production for heavy metal content in their ash.

The aim of this study was to select, on the basis of HCA and PCA results, plant
biomass, the ashes of which, obtained at different ashing temperatures, were characterized
by different contents of heavy metals. This will allow an effective and sustainable use of
biomass resources, and indicate the best direction, from an environmental point of view, of
the management of the resulting ashes.

2. Materials and Methods
2.1. Materials

Six typical materials used for pellet production, which are applied in low power
boilers, were selected for the study. These were: oak wood pellet, pine wood pellet,
miscanthus pellet, willow pellet, sunflower husk pellet, and wheat straw pellet, thus
providing a range of differing ash compositions.
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Miscanthus pellets, willow pellets, and wheat straw pellets were produced in-house,
while oak, pine, and sunflower husk pellets were purchased from retail chains. The basic
characteristics of the pellets are presented in Table 1.

Table 1. Characteristics of the pellets used in the research.

Biomass Moisture Ash VM C H N

%

Miscanthus 6.53 ± 0.04 2.98 ± 0.05 71.9 ± 0.1 43.1 ± 0.1 6.53 ± 0.03 0.53 ± 0.04
Oak 5.58 ± 0.05 0.25 ± 0.02 74.6 ± 0.2 46.3 ± 0.1 6.42 ± 0.01 0.11 ± 0.02
Pine 4.11 ± 0.05 0.52 ± 0.06 73.4 ± 0.2 48.1 ± 0.1 4.11 ± 0.05 0.12 ± 0.03

Sunflower husk 7.79 ± 0.09 2.91 ± 0.05 69.5 ± 0.2 43.6 ± 0.3 6.42 ± 0.09 1.67 ± 0.07
Wheat straw 6.25 ± 0.07 2.97 ± 0.04 73.5 ± 0.3 43.5 ± 0.2 5.24 ± 0.03 0.52 ± 0.07

Willow 6.82 ± 0.04 0.38 ± 0.07 78.4 ± 0.2 45.3 ± 0.2 5.97 ± 0.06 0.54 ± 0.03

The samples were milled in an analytical mill (IKA A11, IKA-Werke GmbH & Co.KG,
Staufen, Germany), and then sieved. Only the fraction retained on the 1.0–2.5 mm sieve
was used for further analysis.

2.2. Examination of Ash Composition

The tested material was ashed at temperatures from 500–1000 ◦C, with intervals of
100 ◦C. A thermogravimeter (TGA 701, LECO Corporation, Saint Joseph, MI, USA) was
used for the incineration of the material. Briefly, approximately 2 g of the biomass was
weighed into a ceramic crucible, and subjected to heating from ambient temperature to
ash-forming temperature at the heating rate of 10 ◦C·min−1 in the air stream. Subsequently,
the heated material was maintained at the ash-forming temperature for 4 h. After the
temperature dropped to approximately 100 ◦C, the ash was removed, placed in a desiccator,
and cooled again to ambient temperature [6].

The contents of Cd, Cr, Cu, Ni, Cu, Pb Zn, and Fe were determined in the ash obtained.
The XRF technique was used to determine the content of trace elements. An HDMaxine
(XOS, East Greenbush, NY, USA) analyzer, based on High-Definition X-ray Fluorescence
(HDXRF), was used. Since the apparatus did not require prior sample preparation, the
samples were dispensed directly into measuring cups. The software of the apparatus
allowed for the analysis of the acquired oscillograms [6]. The quality of the analytical
results regarding their accuracy was checked using standard certified materials. In order
to obtain accurate and stable experimental data, each experiment was repeated at least
three times.

2.3. Statistical Analyses

Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were
used to develop the results. Calculations were performed in the Statistica ver. 13 software
(TIBCO Software Inc., Palo Alto, CA, USA, 2017).

HCA methods make it possible to assign objects (raw materials and temperatures) to
groups within which the most similar objects will be found. The grouping can be helpful to
study the structure of the community, and to detect regularities occurring for the obtained
clusters. The results are presented in dendrograms, which show the hierarchical structure
of groups due to decreasing similarity between the clusters.

PCA can be used to determine the relationship between multiple primary (input)
variables, and to identify factors common to them. By reducing the number of primary
variables and replacing them with components that significantly explain their variation,
PCA allows for the description of occurring processes and phenomena with the maximum
amount of information. Assuming that the first few components contain a significant
amount of the variability of the original data set, they can together explain almost all of the
variability in the data, and thus simplify the interpretation of the results.
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3. Results and Discussion

The heavy metal content of the biomass studied varied within very wide limits. The
differences between particular types of organic material, even of the same type, were of
orders of magnitude. The results of the analyses are summarized in Table 2.

Table 2. Average contents of the studied heavy metals with distinction of biomass types and ashing temperatures.

Biomass Temp Code Cd Cr Cu Fe Ni Pb Zn
◦C mg·kg−1

Miscanthus 500 M5 7.68 25.7 58.77 5390 16.4 9.69 716
Oak 500 O5 8.26 22.41 307 4059 19.17 12.21 300
Pine 500 P5 8.06 18.87 203 4250 21.69 12.91 430

Sunflower husk 500 S5 9.93 50.09 358 5736 59.37 6.78 647
Wheat straw 500 Ws5 5.42 32.25 72.54 5315 14.17 8.52 336

Willow 500 W5 7.5 39.93 190 1568 75.51 10.23 922

Miscanthus 600 M6 6.36 27.14 58.55 4271 16.82 9.36 617
Oak 600 O6 5.92 34.92 304 3665 35.08 11.18 251
Pine 600 P6 7.16 28.3 196 3814 31.67 12.04 401

Sunflower husk 600 S6 7.24 53.95 333 4200 61.77 5.93 412
Wheat straw 600 Ws6 4.91 43.6 57.94 4450 17.44 7.01 235

Willow 600 W6 7.13 44.45 155 1485 83 9.27 758

Miscanthus 700 M7 4.91 30.99 57.24 3781 18.67 7.6 592
Oak 700 O7 4.98 38.19 266 3534 50.37 9.9 155
Pine 700 P7 6.25 32.61 151 3566 51.34 10.14 253

Sunflower husk 700 S7 6.57 59.39 284 3572 65.71 4.89 383
Wheat straw 700 Ws7 4.31 48.75 54.24 3944 28.49 6.46 204

Willow 700 W7 6.9 55.8 141 1452 89.33 8.43 699

Miscanthus 800 M8 4.12 33.33 55.83 2803 18.73 7.42 538
Oak 800 O8 4.85 40.2 242 3199 62.38 7.86 67.26
Pine 800 P8 4.49 36.88 134 3141 56.58 8.58 210

Sunflower husk 800 S8 4.88 69.76 263 2934 68.9 4.73 149
Wheat straw 800 Ws8 4.04 51.29 53.03 3226 31.13 5.93 185

Willow 800 W8 4.55 60.14 131 1338 96.67 7.55 550

Miscanthus 900 M9 3.65 37.11 54.74 2669 21.03 5.58 402
Oak 900 O9 3.9 44.18 220.33 2242 66.83 5.94 46.29
Pine 900 P9 4.17 40.88 102 2591 59.49 6.74 201

Sunflower husk 900 S9 3.62 81.92 254.67 2859 94.23 4.53 53.97
Wheat straw 900 Ws9 3.61 57.46 46.48 2593 45.08 4.2 163

Willow 900 W9 4.11 71.53 129 871 116.67 5.16 444

Miscanthus 1000 M10 3.17 50.43 51.27 1928 21.49 5.43 155.67
Oak 1000 O10 3.45 73.52 164.67 1603 84.56 5.38 31.69
Pine 1000 P10 3.45 65.95 85.63 1764 66.26 6.04 95.3

Sunflower husk 1000 S10 3.36 91.47 215 2788 106.67 3.76 22.13
Wheat straw 1000 Ws10 3.51 68.02 41.96 2356 50.32 3.45 152.67

Willow 1000 W10 3.5 96.90 95.1 712.67 126.33 4.71 236

Through analyzing the data presented in Table 2, it was observed that, with increasing
ashing temperature, the content of elements such as Cr and Ni in ash increased, while Cd,
Pb, Cu, Zn, and Fe decreased. It should be noted, however, that, for ashes from different
types of biomass, these changes occurred with different dynamics. Changes in Cr content
in miscanthus ash were characterized by the lowest dynamics among the materials studied
(25.7–50.43 mg·kg−1), while the highest dynamics of changes of this element were found in
willow ash (39.93–96.90 mg·kg−1). Miscanthus ash was also characterized by low dynamics
of changes in Ni content (16.4–21.49 mg·kg−1), while the highest range of changes in this
element content was observed in oak (19.17–84.56 mg·kg−1). In the case of elements whose
content decreased with increasing ashing temperatures, the highest dynamics of change
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were found in relation to Zn content. The most noticeable was the change in the content of
this element in the ash of sunflower husk (647–22.12 mg·kg−1). The dynamics of changes in
Cu content in the examined ashes were very different. Wheat straw and miscanthus ashes
were characterized by very low dynamics of changes in Cu content (72.54–41.96 mg·kg−1

and 58.77–51.27 mg·kg−1, respectively), while pine, oak and sunflower husk ashes showed
similar high dynamics (203–85.63 mg·kg−1, 307–164.67 mg·kg−1 and 358–215 mg·kg−1).
The highest dynamics were found for willow ashes (190–95.1 mg·kg−1). In the case of
changes in Pb content, sunflower husk and willow ashes showed similar dynamics, which
were low (6.78–3.76 and 10.23–4.71 mg·kg−1), whereas ashes from the other materials
showed similar higher dynamics of change. The concentration of Cd changed to the
smallest extent in wheat straw ash (5.42–3.51 mg·kg−1), and to the greatest extent in
sunflower husk ash (9.93–3.36 mg·kg−1); other ashes had similar dynamics of change in
the content of this element. The dynamics of changes in Fe content were lowest in ash of
willow (1568–712.67 mg·kg−1), and highest in miscanthus ash (5390–1928 mg·kg−1).

Moreover, it was observed, that among the ashes studied, sunflower husk ash was
characterized by the highest content of Cd, Cr, Cu, and Fe, willow ash contained the most
Ni and Zn, and pine ash contained the most Pb. On the other hand, miscanthus ash was
characterized by the lowest content of Cr and Ni, oak ash contained the least Zn, and wheat
straw ash contained the least Cd, Cu, and Pb. As stated in [28], it is essential to have a
better understanding of the origin of trace elements, as well as knowledge about which
trace elements are most critical for favorable biomass recycling schemes. It should be noted
that a high content of heavy metals in biomass ash makes recycling difficult.

In view of the above, an attempt was made to evaluate the biomass studied, with
respect to heavy metal contents, to group it according to these characteristics, and to
indicate the most important indicators determining this division.

A multivariate HCA technique was used to classify and cluster ash samples from
different types of biomass, based on the content of heavy metals tested, which represent
the main characteristics of the fuel.

Figure 1 shows a dendrogram, which is a graphical representation of the clustering
process. It shows the three clusters obtained after applying Ward’s agglomeration method,
and choosing the Euclidean metric as the distance measure. Ward’s agglomeration method
consists of minimizing the sum of squared deviations within the clusters. At each stage,
a pair is selected from among all possible combinable pairs of clusters, resulting in a
cluster with minimal differentiation after combining. The distance between the samples
reflects the similarity (close) or dissimilarity (distant) of their properties, which is useful
for determining the similarities or differences between them, in terms of metal content in
the ashes.

The most similar group (the least diverse on Figure 1) consists of sunflower husk,
willow, oak, and pine ashed at the highest temperatures. A separate cluster is formed by
oak, pine, and sunflower husk burnt mostly at temperatures ranging from 500 to 700 ◦C (in
the case of oak, this range also included 800 ◦C). The third group consists of miscanthus,
wheat straw, and pine (temperatures ranging from 800 to 900 ◦C).

The different agglomeration methods in the HCA method may result in different
clusters. Therefore, the HCA method is often used for preliminary data analysis.

The extraction of so-called principal components in PCA is possible when there are
correlations between the primary variables (heavy metal contents) [29]. In the correlation
matrix (Table 3), there are strong correlations between Cr and Ni (positive), and Cr and
Pb (negative). Moderate correlations can also be seen between Cd and the other variables
(except Ni), and moderate correlations between Fe and Ni, as well as Cr and Fe.

The relationships (factor loadings) between the elemental content of ash and the PC1
and PC2 components are presented in Figure 2. The axes of the coordinate system are
the PC1 and PC2 components. The position of the ends of the vectors near the unit circle
indicates that much of the information contained in the variables is carried by the principal
components. The position of the ends of the vectors relative to the axes (PC1 and PC2)
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is consistent with the signs of the factor loadings (Table 3). It can be seen (Figure 2) that
the variable Fe is positively correlated with the components of PC1 and PC2, while the
variables Cr and Ni are negatively correlated with the components of PC1 and PC2. The
other variables (Cd, Pb, Cu, and Zn) are positively correlated with component PC1, and
negatively correlated with component PC2. Nearby variables are positively correlated (e.g.,
Cr and Ni, Zn and Cd), and opposite variables are negatively correlated (e.g., Cr and Fe,
Cr and Cd). Perpendicular vectors indicate a lack of correlation (e.g., Cu and Cr variables,
Ni and Zn variables).
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Figure 1. Dendrogram of raw materials and temperatures obtained from HCA.

Table 3. Correlation coefficients between heavy metal contents.

Cd Cr Cu Fe Ni Pb

Cr −0.53 *
Cu 0.50 * 0.04
Fe 0.54 * −0.57 * 0.21
Ni −0.22 0.79 * 0.28 −0.68 *
Pb 0.67 * −0.79 * 0.21 0.37 * −0.42 *
Zn 0.66 * −0.40 * −0.05 0.10 −0.10 0.44 *

(* indicates significance at the significance level <0.05).

Table 4. Factor loadings of elements and selected principal components (PC1, PC2, PC3).

Element PC1 PC2 PC3

Cd 0.81 −0.52 −0.04
Cr −0.90 −0.29 0.06
Cu 0.19 −0.79 0.54
Fe 0.73 0.17 0.51
Ni −0.69 −0.66 −0.16
Pb 0.84 −0.13 −0.13
Zn 0.55 −0.30 −0.70

Eigenvalue 3.52 1.56 1.10
Variance % 50.25 22.23 15.65

Cumulative variance % 50.25 72.48 88.13
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Figure 3 shows the observations (distinguished by biomass type and incineration tem-
peratures) placed on the plane spanned by the PC1 and PC2 components. It is found that
the PC1 component classifies the observations with respect to the incineration temperatures.
It can be observed that observations corresponding to lower incineration temperatures,
i.e., 500, 600, and (mostly) 700 ◦C have positive PC1 coordinates. The observations corre-
sponding to the highest incineration temperatures (1000, 900, and 800 ◦C, except pine and
miscanthus) have negative PC1 coordinates. Additionally, a split in the data relative to the
PC2 component can be seen. Observations corresponding to the willow and sunflower husk
biomass have negative values of the PC2 component, and are located close to each other
for successive temperatures. Observations corresponding to oak and pine biomasses are in
the next lane (they have both positive and negative values of PC2), whereas observations
corresponding to wheat straw and miscanthus raw materials have positive values of PC2
(points are in the upper lane).
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Biomass classification based on multivariate data analysis methods has also been
attempted by other researchers. A previous work [31] showed the grouping and relations
between groups on score plots. An arrangement of biomass properties in a variable biomass
spectrum has been demonstrated, and correlations between the biomass properties and
the species groups were highlighted. Moreover, it has been proven that ash content is an
important factor that differentiates the energy properties of biomass and the fuel energy
content between grades, and between assortments.

4. Conclusions

The multivariate HCA and PCA methods used in this study proved to be effective tools
for analyzing the results of chemical composition of ash from different types of biomass.

HCA enabled the grouping of the examined biomass and incineration temperatures
into clusters, which included the ashes that were least differentiated among themselves.
On this basis, three groups of biomass and ashing temperatures were distinguished, which
were most similar in terms of variability of the content of heavy metals studied.

PCA allowed for the reduction in the set of seven variables (elements) initially used
to characterize the ash composition into three principal components, helpful in structure
identification, explaining more than 88% of the variation in the content of the studied
elements. Regularities were observed in the pattern of data for changing temperatures
relative to PC1 (lower ashing temperatures corresponded to higher PC1 values, and higher
temperatures corresponded to lower PC1 values). In addition, it was possible to group
biomass and ashing temperatures for which the elemental content was similar. Three
groups of observations (three groups of most similar materials) were distinguished: sun-
flower husk and willow (lowest PC2 values); pine and oak (moderate PC2 values); and
wheat straw and miscanthus (highest PC2 values).

Although the results of the HCA and PCA methods are not completely consistent (they
are essentially different methods of analysis), both methods revealed the similarity between
wheat straw and miscanthus raw materials, which may be a premise for further research.
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19. Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018,

11, 2885. [CrossRef]
20. Eriksson, J.-E.; Khazraie, T.; Hupa, L. Different Methods for the Characterization of Ash Compositions in Co-Firing Boilers; Springer:

Berlin/Heidelberg, Germany, 2018; pp. 253–263.
21. Izenman, A.J. Modern Multivariate Statistical Techniques; Springer Texts in Statistics; Springer: New York, NY, USA, 2008.
22. Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci.

2016, 374, 20150202. [CrossRef] [PubMed]
23. Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: Boston, MA, USA, 2019; Volume 5.
24. Trendafilov, N.; Gallo, M. Principal component analysis (PCA). In Multivariate Data Analysis on Matrix Manifolds: (With Manopt);

Trendafilov, N., Gallo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 89–139. ISBN 978-3-030-76974-1.
25. Strandberg, A.; Holmgren, P.; Broström, M. Predicting Fuel Properties of Biomass Using Thermogravimetry and Multivariate

Data Analysis. Fuel Process. Technol. 2017, 156, 107–112. [CrossRef]
26. de Paula Protásio, T.; Bufalino, L.; Junior, M.G.; Tonoli, G.H.D.; Trugilho, P.F. Multivariate Techniques Applied to Evaluation of

Lignocellulosic Residues for Bioenergy Production. Ciênc. Florest. 2013, 23, 771–781.
27. Sgarbossa, A.; Costa, C.; Menesatti, P.; Antonucci, F.; Pallottino, F.; Zanetti, M.; Grigolato, S.; Cavalli, R. A Multivariate SIMCA

Index as Discriminant in Wood Pellet Quality Assessment. Renew. Energy 2015, 76, 258–263. [CrossRef]
28. Tao, G.; Lestander, T.A.; Geladi, P.; Xiong, S. Biomass Properties in Association with Plant Species and Assortments I: A Synthesis

Based on Literature Data of Energy Properties. Renew. Sustain. Energy Rev. 2012, 16, 3481–3506. [CrossRef]
29. Jolliffe, I.T. (Ed.) Principal Component Analysis for Time Series and Other Non-Independent Data. In Principal Component

Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002; pp. 299–337. ISBN 978-0-387-22440-4.
30. Yeomans, K.A.; Golder, P.A. The Guttman-Kaiser Criterion as a Predictor of the Number of Common Factors. J. R. Stat. Soc. Ser. Stat.

1982, 31, 221–229. [CrossRef]
31. Voshell, S.; Mäkelä, M.; Dahl, O. A Review of Biomass Ash Properties towards Treatment and Recycling. Renew. Sustain. Energy Rev.

2018, 96, 479–486. [CrossRef]

http://doi.org/10.3390/app9091790
http://doi.org/10.1016/j.conbuildmat.2020.119450
http://doi.org/10.1016/j.rser.2021.111451
http://doi.org/10.1016/j.apgeochem.2016.07.002
http://doi.org/10.1016/j.jece.2015.12.035
http://doi.org/10.1007/s10705-010-9353-9
http://doi.org/10.1016/j.fuel.2012.09.041
http://doi.org/10.1016/j.fuel.2014.04.001
http://doi.org/10.3390/en11112885
http://doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://doi.org/10.1016/j.fuproc.2016.10.021
http://doi.org/10.1016/j.renene.2014.11.041
http://doi.org/10.1016/j.rser.2012.02.039
http://doi.org/10.2307/2987988
http://doi.org/10.1016/j.rser.2018.07.025

	Introduction 
	Materials and Methods 
	Materials 
	Examination of Ash Composition 
	Statistical Analyses 

	Results and Discussion 
	Conclusions 
	References

