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Abstract: With the present state of the direct current (DC) distribution market, securing the safety of
the DC distribution system is emerging as a major issue. Like AC distribution systems, DC switches
and circuit breakers are one of the main means to ensure safety. However, in the DC system, since
there is no current zero point in the load current, the phenomenon occurring when the circuit is cut
off is different from that of the AC system, so technical research is required to cope with this. In this
study, the aging characteristics of the contact electrode of a 400 V class low voltage DC (LVDC) switch
is studied for the development of wall-mount switches or circuit breakers for residential houses.
As an arc extinguishing method to break DC load current, a prototype experimental circuit breaker
that uses a magnetic extinguishing method that is effective for blocking low voltage low power DC
is invented, and an automated experiment system is established. The DC switch test repeats the
operation of turning it on and off 13,000 times, and continuously evaluates the performance of the
electric contacts by calculating the voltage drop between the electrode contacts and the corresponding
Ohmic resistance value when conducting every 500 times. This paper tests six contact materials to
compare the aging characteristics of them by evaluating contact resistance during the test period.
AW18-Cu composite material showed the most stable and excellent contact performance for LVDC
switches during the entire test operation period.

Keywords: low voltage DC (LVDC) switches; contact electrode; magnetic extinguishing method;
aging of contact surface

1. Introduction

The necessity of DC distribution has emerged in accordance with the demand for
renewable power generation, and the increased DC load and energy efficiency requirement.
Direct current distribution technology is already applied in the various fields of photo-
voltaic power generation [1], wind generation [2], data centers [3,4], electric vehicles [5],
etc. The introduction of low voltage DC (LVDC) distribution is also considered in the fields
of DC buildings and DC housing [5] and microgrids [6].

One of the essential elements for securing the safety of the DC distribution system
is a switchgear [7]. The contact type switch has very low conduction loss, so it has been
widely used as an AC switch [8]. However, since there is no current zero point in DC,
it is highly probable that an arc is generated for a very long time when disengaging the
plug loads from socket-outlets [9] or when shutting off the switches [10]. Safety concepts
related with circuit connections using DC switches in LVDC grids have been proposed for
datacenters [11].

Contact erosion due to an arc discharge is a critical problem, particularly for a DC
switch or a DC circuit breaker. Longer duration arc causes severe burnout and deterioration
of the contact points, which leads to higher degradation of their reliability and lifetime [12].
If the arc duration is long, the arc transits from the metal phase to the vapor phase and an
oxide film is deposited on the contact surface, increasing the contact resistance. Contact
mass moves from positive to negative in an open contact operation [13].
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The contact surface is eroded by the arc and the molten metal bridge. A smooth hollow
is formed when the molten metal moves from the anode to the cathode. When the molten
bridge ruptures, a smooth hollow can be formed in the anode. Arc discharge immediately
erodes both sides of the anode and cathode, forming a rough hollow [14].

Even if the thermal properties of the fixed terminal are significantly changed, the
erosion of the contact and the movement of the mass of the contact are not greatly affected.
The contact material has a significant effect on the erosion of the contact and the movement
of the contact mass [15]. Arc energy is also a major factor affecting the contact life. The
higher the arc energy, the shorter the contact life [16].

The contact life is closely related with the contact resistance and contact voltage drop
because they generate power loss in the contact. Due to the Joule heating of the contact
surface, the contact voltage drop increases. When the contact voltage drop exceeds the
boiling voltage of the contact material, an arc discharge occurs [17]. Tungsten contacts
have the highest boiling voltage of 2.1 V, but the contact resistance is also high. Relatively
low contact resistance can be achieved by attaching bulk copper to the tungsten clad
materials [18]. The surface temperature of the tungsten clad contact can be reduced due to
the high thermal conductivity of the copper bulk attached to the tungsten. Copper also has
a low resistance value.

IEC60898-3 standard regulates the maximum power loss per contact; a DC circuit
breaker having a rated DC voltage not exceeding 440 V must be 3 W when the rated current
is less than or equal to 10 A. IEC 60898-3 also regulates that the circuit breaker is submitted
to 1000 operating cycles with rated current and to 3000 operating cycles without load [19].
This means that the voltage drop between electrode contacts should not be greater than
600 mV after 1000 operating cycles with the load current not more than 10 A.

In this paper, we study the aging characteristics of the contact points of a 400 V class
residential LVDC switch. As an arc extinguishing method for breaking DC load current,
a prototype experimental circuit breaker with a magnetic extinguishing method that is
effective for breaking of low power LVDC load was invented, and an automated test system
was established [20]. The DC switch test repeats the operation of turning on for about 1.5 s
and then turning off for 2 s, 13,000 times, and continuously evaluates the performance
of the electrode by calculating the voltage drop between the electric contacts and the
corresponding Ohmic resistance value when conducting, every 500 times.

2. Experimental Condition

In this study, the magnetic arc extinguishing method using a permanent magnet pair
as shown in Figure 1 is used. In the magnetic arc extinguishing technique, magnetic flux
formed by a magnet pair is arranged at perpendicular angles to the flow of arc current
generated at electric contacts. Then, Lorentz force, according to Fleming’s left-hand rule, is
generated on the arc current and the arc is dispersed into space, thereby increasing the arc
resistance to extinguish the arc quickly. In this study, magnetic arc extinguishing force is
improved by using a magnetic flux concentrating method using a permanent magnet pair
arranged in tandem.

In addition, in order to suppress the generation of continuous arc voltage caused by
inductive loads, freewheeling technology is used to dissipate arc energy through a branch
of a diode and dump resistor. Without freewheeling diode branch, the voltage between the
switch contacts can be calculated as Equation (1).

VSW = VDC − L
dILoad

dt
− RL ILoad (1)

In Equation (1) the second term L dILoad
dt is normally a negative value and the magnitude

of it increases much larger than the supply voltage, VDC, during shutting off of the switch,
so that the transient voltage between the switch contact during switching off increases very
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much and is related to the load inductance, L. However, a freewheeling diode branch limits
the voltage between the switch contacts as Equation (2).

VSW = VDC + RD ILoad (2)

The DC switch automatic testing device shown in Figure 2 allows the breaking pole to
be open at various speeds by the stepping motor and the gear drive, and it can automatically
perform repeated cut-off tests to analyze the durability of the electric contacts. Tests
were performed at air-conditioned room temperature. The testing device automatically
turns on and off iteratively and measures Ohmic resistance between the contacts every
500 operating cycles.

Figure 1. Arc extinguishing concept of the proposed DC switch.

Figure 2. Photo of DC switch automatic test device.

The contact life is related with the contact material because the erosion of the contact
or the movement of the contact mass depends on the contact material [14]. In this study,
aging characteristics of the electric contacts according to various contact materials of the
DC switch were tested. Five composite metal contact materials of the DC switch, tungsten-
copper (AW18-Cu), silver-palladum (AgPd), silver-tungsten (AgW), silver-nickel-copprer
(AgNi-Cu), silver-tin-copper (AgSnO2-Cu), in addition to pure copper (Cu) as summarized
in Table 1, were tested. Here, 5 samples were provided by braze welding the 5 composite
metal clads bonded on a copper bulk to get high thermal conductivity and low resistance.
The composite metal layer had a thickness of around 1 mm, and the length of the copper
bulk was around 30 mm long. In the case of the pure copper contact, only the copper bulk
was used.
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Table 1. Five kinds of contact materials of the DC switch experiment.

Type AW18-Cu AgPd AgW AgNi-Cu AgSnO2-Cu Cu

Component Tungsten
Copper

Silver
Palladium

Silver
Tungsten

Silver
Nickel
Copper

Silver
Tin

Copper
Copper

Figure 3 shows the photo of the five electrode samples for the electric contacts tested
in this study.

Figure 3. Photo of five kinds of samples for the electric contacts tested in this study; (a) AW18-Cu,
(b) AgPd, (c) AgW, (d) AgNi-Cu, (e) AgSnO2-Cu, (f) Pure Cu.

In this study, in order to perform the aging test according to the material type of the
electric contacts, the repeated open/close test conditions were set as shown in Table 2. This
paper compares the contact life characteristics for an inductive load with a supply voltage
of 400 V, a load current of 5 or 10 A and a load time constant of 20 ms. The DC switch
is tested by being turned on for about 1.5 s and then turned off for 2 s, 13,000 times; the
performance of the electrode is continuously evaluating by calculating the voltage drop
between the electric contacts and the corresponding resistance value when conducting,
every 500 cycles.

Table 2. Contact electrode aging test conditions.

Item Value

Supply voltage [V] 400

Electrode diameter [mm] 5

5A Load
Resistance [Ω] 80

Inductance [mH] 1600

10A Load
Resistance [Ω] 40

Inductance [mH] 800

Operation seq. On time [s] 1.5

Off time [s] 2

3. Experimental Results
3.1. 400 V/5 A Load Condition

In the experiment, the conduction time of the DC switch electrode under test was
approximately 1.5 s and the cut-off time was approximately 2 s. Figure 4 shows volt-
age/current waveforms between electrode contacts of DC switch according to electrode
materials under 400 V/5 A load/current conditions during the conduction period. Be-
cause two samples of pure copper (Cu) and silver tungsten (AgW) failed to match the IEC
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60898-3 standard, Figure 4 shows the waveforms for only the other four sample cases. All
four test samples conformed to the IEC 60898-3 standard, since the voltage drop between
the contacts was under 300 mV.

Figure 4. Example of voltage/current waveforms between electrode contacts according to electrode
material for 400 V/5 A experimental conditions (time: 200 ms/Div); (a) AgNi-Cu, (b) AgSnO2-Cu,
(c) AW18-Cu, and (d) AgPd.

Table 3 shows the magnitude of the voltage drop between electrode contacts according
to the electrode material measured every 500 cycles when the DC switch was repeatedly
turned on/off under 400 V/5 A load conditions. In the case of pure copper (Cu) and
silver-tungsten (AgW), the voltage drop between electrode contacts increased sharply to
922 [mV] and 633 mV, respectively, after 1000 operating cycles, which was not in accordance
with IEC60898-3 standards. Moreover, these two kinds of electrodes were severely burned
out after 1000 ON/OFF cycles, thus no more experiments were possible. Therefore, in this
study, pure copper (Cu) and silver-tungsten (AgW) were no longer considered as target
contact materials.

The voltage drop between the contacts of the remaining 4 electrode materials under
test was initially less than 20 mV, but it can be seen that it varied depending on the
material within the range of up to under 400 mV during the 13,000 repetitive operations.
Considering that the voltage drop between the contacts of the electrode is the degree of
aging of the electrode, it is noticed that the aging characteristics of the four contact materials
are similar until 3000 repetitions, but after 3000 repetitions, the life characteristics vary
depending on the contact material.

This phenomenon is evident when looking at the trend of the voltage drop of the
contact point according to the electrode material in Figure 5 as a whole. In other words,
the magnitude of the voltage drop of the contact point, according to the four electrode
materials that initially showed a low voltage drop of 8~20 mV, uniformly increases with
a similar pattern as the repetitive operation progresses up to 3000 times. Then, in the
repeated operation periods from 3000 to 11,000 cycles, the voltage drop size of the contact
point, according to the four electrode materials, has various distributions, ranging from
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28 mV to 400 mV. However, after 11,500 repeated operations, the deviation decreases to
within 10% (voltage value less than 100 mV), and the contact performance recovers again.

Table 3. Voltage drop between switch contacts under 400 V/5 A load conditions.

Iteration Cu AgW AgNi AgSn AW18 AgPd

0 30 14 18 8 20 16

1000 922 638 16 14 18 20

2000 - - 24 76 60 48

3000 - - 130 96 62 102

4000 - - 316 220 138 124

5000 - - 278 236 106 82

5500 - - 94 64 130 244

6000 - - 218 42 106 276

6500 - - 164 86 50 50

7000 - - 204 28 46 90

7500 - - 72 54 146 120

8000 - - 80 64 166 400

8500 - - 102 370 84 50

9000 - - 82 152 154 128

9500 - - 42 111 88 116

10,000 - - 36 100 50 128

11,000 - - 122 144 70 92

11,500 - - 88 90 96 84

12,000 - - 74 60 102 90

12,500 - - 86 82 62 70

13,000 - - 66 86 80 78

Figure 5. Voltage drop of electrode contact according to electrode material under 400 V/5 A load conditions.
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3.2. 400 V/10 A Load Condition

Table 4 shows the magnitude of the voltage drop between electrode contacts according
to the electrode material measured every 500 cycles when the DC switch is repeatedly
turned on/off under 400 V/10 A load current conditions.

Table 4. Voltage drop between switch contacts under 400 V/10 A load conditions.

Iteration Cu AgW AgNi AgSn AW18 AgPd

0 42 30 32 40 30 50

1000 844 710 46 26 40 46

2000 - - 72 224 60 148

3000 - - 186 202 118 172

4000 - - 346 290 172 196

5000 - - 346 342 158 164

5500 - - 128 88 100 384

6000 - - 264 46 156 450

6500 - - 176 150 110 132

7000 - - 246 110 40 158

7500 - - 158 180 152 200

8000 - - 166 194 302 506

8500 - - 132 402 180 150

9000 - - 100 200 240 146

9500 - - 52 161 103 97

10,000 - - 24 188 70 54

11,000 - - 154 110 82 90

11,500 - - 114 152 130 202

12,000 - - 150 146 132 248

12,500 - - 122 122 112 110

13,000 - - 134 162 122 122

Figure 6 shows the variation in the performance of the four electrode contacts accord-
ing to the electrode material under the 10 A load current condition. It can be seen that the
voltage between the electrode contacts in the conduction condition is measured in a variety
of ranges from 30 mV to 506 mV, depending on the composition of the electrode material.

In the 10 A load current condition of Figure 6, when looking at the trend of the voltage
drop of the contact according to the electrode material as a whole, life characteristics
slightly differ from the 5 A load current condition. That is, the voltage drop value for each
electrode material during the initial operation was in the range of 8 mV to 20 mV under
the 5 A load current condition, but it becomes 2.5 to 4 times greater under the 10 A load
current condition as 30 mV to 50 mV. In addition, the magnitude of the voltage drop of
the contact point according to the four electrode materials shows a greater deviation from
24 mV to 506 mV in the repeated operation periods of up to 11,000 cycles. This means
that the maximum voltage drop between electrode contacts is increased by about 20%
compared to the 400 V/5 A load current conditions.

As with the 5 A load current condition, after 11,500 times of the repeated operation,
the mutual deviation decreases to within 30% (within 10% in the case of a 5 A load current),
the voltage drop decreases to 170 mV or less (within 100 mV in the case of a 5 A load
current), and the contact performance is restored again. Excluding the AgPd electrode
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materials with relatively poor contact characteristics, after 11,500 repetitive operations, the
mutual deviation decreases to within 12% and the voltage drop decreases to 150 mV or less.

Figure 6. Voltage drop of electrode contact according to electrode material under 400 V/10 A load conditions.

3.3. Aging Characteristics of Electrode Contacts

Analyzing the whole aging test results of the contacts of the low-voltage DC switch, the
voltage drop of all the electrode materials increases uniformly up to the initial 4000 on/off
cycles, and shows a zig-zagged pattern from 4000 on/off cycles to approximately 9000 on/off
cycles, and then decreases again after 9000 on/off cycles. This means that the contact points
of the DC switches initially deteriorate and then recover from a certain point of on/off cycles.

The characteristics of AW18-Cu contact material and AgNi-Cu contact material are
explicitly different. In the initial repetitive operation up to about 7500 times, the AW18-
Cu contact material shows the best performance. However, from about 7500 to about
10,000 operations, the performance of the AgNi-Cu contact material is temporarily excellent,
and after about 10,500 operations, the performance of the AW18-Cu contact material
becomes the best again.

AgSnO2-Cu contact materials do not have superior performance compared to other
contact materials in the initial and late characteristics of repeated operation under all load
current conditions. Ag-Pd contact material shows excellent properties in both 400 V/5 A
and 400 V/10 A load conditions up to the initial 5000 times. Therefore, it is evaluated as the
most suitable contact material for applications requiring repeated operation of 5000 times
or less.

Figure 7 shows the state of contact surfaces according to electrode material during
repeated operation (10,000 times) under the 10 A load current condition. AgW and pure
copper contact materials are burnt due to severe carbonization of both the (+) and (−)
electrodes, whereas the other contact materials are not severely burnt at the (+) and
(−) electrode.

Figure 8 shows the contact surface condition of electrodes according to the electrode
material after 10,000 repeated operations and 13,000 repeated operations for the four contact
electrode materials of AgNi-Cu, AgSnO2-Cu, AgPd, and AW18-Cu under the 10 A load
current condition. In the figure, the photo on the left shows the contact surface status after
10,000 repeated operations, and the photo on the right shows the contact surface status after
13,000 repeated operations. In the case of all four electrode materials, it can be seen that the
contact state of the (−) pole became cleaner after 13,000 repeated operations. This can be
said to prove the characteristic of the contact recovery after 10,000 repeated operations.
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Figure 7. Contact surface condition of each electrode material in repeated operation 10,000 under
10 A load current condition; (a) AgW (failed after 1000 operations), (b) AgNi-Cu, (c) AgSnO2-Cu,
(d) Cu (failed after 1000 operations), (e) AgPd, and (f) AW18-Cu.

Figure 8. Comparison of deterioration of each electrode material in repeated operations, 10,000 (left
photo) and 13,000 (right photo), under the 10 A load current condition, (a) AgNi-Cu, (b) AgSnO2-Cu,
(c) AgPd, and (d) AW18-Cu.

4. Conclusions

This paper evaluated six kinds of contact materials for the application of low-voltage
DC (LVDC) switches. Generally, the states of all the contact surface rapidly deteriorated
during the repeated operation period up to about 4000 operations, but remained at those
levels until 10,000 repeated operations; after 10,000 operations, the states of all the contact
surfaces were improved again, showing a recovery phenomenon.

According to the load current condition, the voltage drop between electrodes con-
verged with a different voltage level during 13,000 repetitive operations. In other words,
the voltage drop of the electrodes operating under 400 V/5 A load conditions converged to
80 mV, while the voltage drop of the electrode operating under 400 V/10 A load conditions
converged to 140 mV, which is almost doubled.
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Except AgW and pure copper, the other four composite materials passed the IEC 60898-
3 standard. The contact state of AgNi-Cu composite material was good until 3500 operation
cycles, the AgNi-Cu composite material was good until 5000 operation cycles, and the
AgPd composite material was good until 5500 operation cycles. AW18-Cu composite
material showed the most stable and excellent contact performance for LVDC switches
during the entire test operation period of 13,000 cycles.
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