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Abstract: This paper addresses the issue of incorporating rail transport into an urban delivery
system. Its main purpose was to identify the possibilities of utilising rail transport in a Zero-emission
Urban Delivery System (ZUDS) by applying Light Freight Railway (LFR) electric trains. The study
applied the following research methods: literature review, observation, case study, and mathematical
computations. In order to estimate the volume of transport external costs reduction resulting from
shifting urban deliveries from road to rail transport in the city of Szczecin, the EU methodology
was applied to specify the amounts of external costs generated by individual modes and means
of transport. The research study showed that application of LFR electric trains makes it possible
to significantly reduce external costs generated by transport. Moreover, this solution may have an
impact on developing Clean Transport Zones (CTZs) and may also contribute to expansion of the
ZUDS. The research study results also provide grounds to conclude that application of the LFR
system makes it possible to reduce negative effects generated by Urban Freight Transport (UFT) and
to achieve a coherent zero-emission system for handling cargo and passenger flows in cities, which
consequently contributes to achieving electromobility goals in transport.

Keywords: electromobility; electric vehicles; zero-emission vehicles; sustainable urban freight
transport; city logistics; light freight railway; urban consolidation centre; last-mile delivery; ex-
ternal costs of transport

1. Introduction

Observation of demographic processes occurring worldwide indicates that the dom-
inating trend of the 21st century is urbanisation [1]. According to forecasts, 68% of the
global population will be living in cities by 2050 (currently the rate is ca. 55%) [2]. Cities
play diverse functions in all societies [3]. The intensive growth of cities is accompanied by
intensive development of transport systems to handle both passenger and freight flows.
The consequences of transport growth in cities may be of positive or negative nature. The
positive aspects of urban transport development are mainly related to the free flow of
passengers and goods: flexible and effective in meeting the community’s needs, economic
growth of cities and regions, and their integration. Unfortunately, the intensive growth of
transport also entails problems, the most significant of which include:

• Environmental pollution as a result of emissions of harmful substances such as NOx,
CO, CO2, PM10, PM2.5, and SO2 [4–11];

• Global warming resulting from increased levels of CO2 in the atmosphere [12–15];
• Generating excessive noise [16,17];
• Negative impacts on human health, which contribute to respiratory and circulatory

system diseases and cancer [18–21];
• Road congestion [22–26];
• Excessive number of traffic accidents and ensuing increase in social costs [27–30];
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• Land consumption and land-use change [31,32].

In view of these negative phenomena ensuing from the intensive growth of transport,
particularly in urban areas, it becomes necessary to search for transport solutions that
mitigate and prevent such problems. A significant task in this regard is a shift to low-
emission mobility. A European Strategy for Low-Emission Mobility, adopted by the
European Union (EU), points to three key areas regarding transport: higher efficiency
of the transport system, low-emission alternative energy for transport, low- and zero-
emission vehicles [33]. Electrification of (particularly urban) transport has become one of
the priorities of the EU and Polish transport policies, as well as an important element of
developing a zero-emission transport system.

As a result of analysing the needs and problems of European cities concerning de-
velopment of zero-emission transport systems, the main goal of this article is to identify
possibilities of utilising rail transport in a Zero-emission Urban Delivery System (ZUDS).

To achieve the indicated goal, the following research questions (RQs) were formulated:

• RQ1. Does utilisation of rail transport in the urban delivery system make it possible
to reduce external costs generated by transport?

• RQ2. Can utilisation of rail transport in the urban delivery system have an impact on
the way Clean Transport Zones (CTZs) are developed in the city?

• RQ3. Can application of Light Freight Railway (LFR) become a factor enabling expan-
sion of the ZUDS?

The remaining part of this paper is divided into seven chapters. The literature back-
ground and the current literature concerning changes observed in Urban Freight Transport
(UFT), resulting from the need to mitigate its negative effects, are presented in the Literature
Review, Chapter 2. Chapter 3 presents the research process divided into its individual
stages and indicates the input data applied in the study. Chapter 4 contains the spatial and
functional description of the area covered by the research—the city of Szczecin, Poland.
This section also describes the transport infrastructure and the current urban delivery
system in Szczecin. Chapter 5 of this article outlines the original concept of Light Freight
Railway (LFR) and describes the operation system of LFR trains in the railway network.
Chapter 6 is the key part of this paper. It contains the results of the study of effects of
incorporating rail transport into the ZUDS, based on the example of the city of Szczecin,
Poland. The first item of the chapter enumerates the assumptions adopted for this study
and describes the two variants to be researched: V0 and V1. The second part of Chapter 6
presents the transport external costs computation results for the research variants adopted
in the city of Szczecin, and the possible level of external costs reduction. The third part of
Chapter 6 identifies the other effects that may be obtained as a result of shifting urban de-
liveries from road to rail transport in the city of Szczecin. Chapter 7 contains the discussion
of the results and it also points out the limitations of the proposed solution. The article
ends with conclusions contained in the last chapter.

2. Literature Review

Dynamically developing transport, including in particular urban transport, generates
numerous threats to the natural environment together with human life and health. Effects
of adverse changes intensify due to, inter alia, the growing populations and the ensuing
increase in the demand for urban mobility and urban logistics [34,35], changes in the life
styles resulting in new transport needs [36], or ever increasing expectations of customers
regarding the quality and lead time of transport services [37]. Additionally, there are
adverse climate changes connected with the fact that fossil fuels still play the dominant
role in transport [38].

Therefore, it is necessary to take steps aimed at mitigating the negative effects of UFT.
These include in particular:

• More effective utilisation of transport means and infrastructure;
• Preference for the transport modes that are less adverse to the environment;
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• Development of new kinds of vehicles;
• Development of new ways of freight movement and delivery.

Moreover, according to Hlali et al. [39], efficiency of a logistic chain is strongly de-
pendent on the extent of coordination between all the participating entities. The list of
indicated counteracting measures should then be supplemented with the ones that initiate
or improve the cooperation between the private and public sector stakeholders.

Analysing the available literature, it is possible to notice many interesting solutions
regarding means of transport, concepts of transport and cargo handling, or urban space
management, which are all aimed at meeting the growing market needs while at the same
time mitigating the adverse environmental impacts of the transport system. Implementa-
tion of the solutions is aimed at optimising the functioning UFT and its evolution towards
Sustainable Urban Freight Transport (SUFT). The sequence of issues addressed in the
literature review is shown in Figure 1.

Figure 1. Issues addressed in the literature review.

A significant element of cargo flows in SUFT is the functioning of Urban Consolidation
Centres (UCCs) within large cities. Reviewing the literature in that respect, it is also
possible to encounter other terms used to denote such facilities: Jacyna [40] describes
Cargo Consolidation Centres (CCCs), Malhene et al. [41] and Olsson et al. [42] use the
term Freight Consolidation Centres (FCCs), Triantafyllou et al. [43] and Zhou et al. [44]
distinguish Urban Freight Consolidation Centres (UFCCs), whereas Oliveira et al. [45], and
Agrebi et al. [46] and Sopha et al. [47] highlight Urban Distribution Centres (UDCs). Due
to the multitude of names used in the literature to refer to such centres, further on in this
article the authors use one term—Urban Consolidation Centre (UCC).

According to van Rooijen et al. [48] and Handoko et al. [49], UCCs are facilities whose
task is to combine the dispersed cargo flows coming into the city from the outside into
consolidated flows to be delivered as part of last-mile delivery service. UCCs are usually
located in the suburban areas of large cities at a relatively small distance from the areas
served—the city centre or a specific location (e.g., a shopping mall) [50]. As development of
UCCs is aimed at mitigating adverse environmental and social effects ensuing from urban
freight transport functioning [51,52], the expected and desired outcomes of implementing
such facilities include:

• Reduction in greenhouse gases emissions and in local air pollution [53];
• Reduction in road congestion and problems related to large vehicle traffic in narrow

city centre streets [54];
• Improved road traffic safety.

Interesting research studies regarding possibilities of UCCs application in concrete
locations were presented by, i.a., Paddeu [55]—for Bristol, England; van Rooijen et al. [48]—
for Nijmegen, the Netherlands; van Duin et al. [56]—for The Hague, the Netherlands;
van Heeswijk et al. [57] for Copenhagen, Denmark; and Correia et al. [58] for Belo
Horizonte, Brazil.

The study done by Firdausiyah et al. [59] shows interesting results regarding a potential
reduction in emissions as a result of implementation of UCC, whereas Roca-Riu et al. [60]
analysed the possibility of obtaining logistic costs savings ensuing from UCC implemen-
tation. It is also worth noting the research study completed by Wagner et al. [61], which
focused on construction of a special UCC concentrated exclusively on deliveries made
to municipal entities in the town of Stargard, Poland—Urban Consolidation Centre for
Municipal Entities (UCC-ME).
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In the aspect of developing urban cargo flows in compliance with the SUFT assump-
tions, electromobility tools have been gaining increasing importance. At this point, it should
be noted that the very idea of using electric vehicles in transport is far from new. They have
been applied in both passenger and freight transport for many decades. These include
passenger and freight trains as well as trams [62,63], also including cargo trams [64,65] and
trolleybuses that are still common in many cities. The role of the latter in electromobility de-
velopment is described in the vast research study completed by Barłomiejczyk et al. [66,67],
Wołek et al. [68], and Połom [69].

According to Borowska-Stefańska et al. [70] electromobility may be described in
two dimensions: the first pertains to utilisation of electric vehicles (EVs), whereas the
second concerns the necessary infrastructure dedicated to the vehicle group. Analysing
this definition, it is also worth noting the spatial aspect of electromobility observed in the
form of establishing specific city areas accessible only to EVs. A very broad definition
of electromobility was proposed by Macioszek [71], according to whom electromobility
is the totality of issues connected with the use of EVs, covering, i.a., technical aspects of
vehicles, charging technology, and infrastructure, together with social, economic, and legal
issues connected with the whole life cycle of EVs. Sierpiński et al. [72], in turn, analyse
the concept of electromobility in urban logistics in terms of numerous challenges to its
implementation, whereas Škrabul’áková et al. [73] examined the process of preparations
made by selected European countries for widespread use of EVs.

The increasingly more commonly applied solution aimed at reducing the traffic in city
centres is establishing special zones that may be entered only by specific groups of vehicles.
The dynamic growth of electromobility has considerably extended the possibilities. In
addition to zones established to prevent entrance of vehicles of specified sizes or zones
with traffic speed limitations, other kinds of zones have also been established. Low
Emission Zones (LEZs) and Zero Emission Zones (ZEZs) may only be entered by vehicles
with reduced environmental impacts. Effectiveness of LEZs and ZEZs in terms of air
quality improvement in the city was researched by, i.a., Holman et al. [74], Zhai et al. [75],
Tretvik et al. [76], Morfeld et al. [77], Peters et al. [78], and de Bok et al. [79].

In the context of the research study described in this paper, it is necessary to outline
the legal regulations pertaining to establishing and functioning of such zones in Poland.
The Act of 11 January 2018 on Electromobility and Alternative Fuels (AEAF) adopted by
the Polish Parliament [80] imposes on Polish cities a duty to establish zones referred to
as Clean Transport Zones (CTZs). Pursuant to the Act, CTZs are established in order to
prevent adverse impacts of transport on human health and the natural environment. The
duty to establish such zones is imposed on municipalities with populations exceeding
100,000, and pertains to inner city built-up areas or parts thereof.

Establishing LEZs and ZEZs in a city entails the need to restructure the UFT hitherto
functioning in the city. This mainly concerns the need for the operators to replace some of
the diesel-powered Light Commercial Vehicles (LCVs) with a carrying capacity of up to 1.5 t
with similar, electrically-driven vehicles—Electric Freight Vehicles (EFVs). The utilisation
of such vehicles in making deliveries in urban areas was researched by Quak et al. [81],
Dong et al. [82], Szczepański [83], and İmre et al. [84]. However, it should be stressed that
EFVs mitigate only some of the problems ensuing from cargo-flow handling by means of
road transport. Their application decreases emissions of harmful substances and noise, but
it does not reduce the number of vehicles in the city centre (the problem of congestion), or
the safety of pedestrians and cyclists. Due to their dimensions, EFVs may also be prevented
from access to the city areas that allow only small-sized vehicle traffic.

In view of the above, a system of zero-emission last-mile deliveries may be supported
also by means of other, smaller vehicles, referred to alternatively as Small Sized Electric
Vehicles (SEVs) or Light Electric Freight Vehicles (LEFVs). As shown by Melo et al. [85],
SEVs are vehicles characterised by smaller dimensions compared to conventional commer-
cial vehicles, therefore they take up less space, also during unloading operations. In turn,
Moolenburgh et al. [86] described LEFVs as quiet, agile, and emission-free vehicles that
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take up less urban space compared to conventional vans and trucks. They also described
three basic groups of vehicles categorised as LEFVs: small electric distribution vehicle,
electric cargo bike, and electric cargo moped. What is important from the point of view
of zero-emission last-mile delivery management, each of the types shows much smaller
loading capacity than conventional diesel-powered LCVs or electrically-driven LCVs. Sig-
nificant limitations of LEFVs, such as small travel range and low speed, are indicated, i.a.,
by Balm et al. [87].

Many researchers also indicate significant problems with electromobility development.
Skrúcaný et al. [88] point out the diverse scope of effects of electromobility implementation
in various countries, which depends, i.a., the share of Renewable Energy Sources (RES) in
the total electric power production. In their research studies, Csiszár et al. [89] indicated the
limited travel range of electric vehicles and the small number of public charging stations.
Macioszek [71] also takes note of the longer charging time of EV batteries compared to fuel
tanking in the case of conventional vehicles.

In view of the indicated limitations and problems with electromobility development,
it is important that in the process of serving any LEZs and ZEZs, EFVs and LEFVs should
be supplemented with vehicles from the Nonmotorized Transport (NMT) group. This
group includes:

• Cargo bikes/cargo cycles, including, i.a., post bike, bakers’ bike, longtail, front- and
rear loader—described in more detail by, i.a., Naumov et al. [90], Vasiutina et al. [91],
Balm et al. [92], and Dybdalen et al. [93];

• Cycle rickshaws or handcarts—described in more detail by Gupta [94];

Similarly, as in the case of LEFVs, NMT are also characterised by limited travel range
and carrying capacity.

The limited travel range and carrying capacity of LEFVs and NMT may lead to a need
to intervene in the hitherto last-mile delivery system. The distance between an UCC and
end customers may be too long for LEFVs and NMT to be used on the whole route, or it may
turn out to be unreasonable in technical, economic, or organisational terms. In this case,
there is a possibility of organising a two-level distribution system and providing it with
additional, small transshipment points in the direct vicinity of LEZs or ZEZs. The available
literature features numerous terms applied to describe such points. Elbert et al. [95] referred
to them as Micro Depots (MDs) and Micro Consolidation Centres (MCCs); Elhaq et al. [96]
used the term, Proximity Logistics Spaces (PLSs); Montwiłł et al. [97] named them Urban
Depots (UDs), while Bosona [98] wrote about Local Distribution Centres (LDCs). Due to
the multitude of names used in the literature to refer to such transshipment points, further
on in this article the authors use one term—Urban Depot (UD).

What is important from the point of view of this article, according to Enthoven et al. [99]
and Hof et al. [100], is an alternative approach to last-mile deliveries by using additional
intermediate points on the route between UCC and end customer, which makes it possible
to transship goods from conventional LCVs to zero-emission vehicles that are suitable for
traffic and deliveries in densely populated areas characterised by narrow streets.

Summarising, the literature addresses a very broad range of issues related to how
urban delivery systems function, and describes various solutions. Unfortunately, it should
be noted that the issue of applying rail transport in urban delivery system has been analysed
to a very limited extent; in this context it is worth mentioning papers published by, i.a.,
Gonzalez-Feliu [101], Diziain et al. [102], and Kelly et al. [103].

Paradoxically, most of the solutions proposed in the literature, which are aimed
at mitigating adverse effects of transport in cities, pertain to road transport. It is quite
puzzling in view of the fact that transport problems faced by cities are predominantly due
to the excessive and uncontrolled use of that mode of transport. Measures implemented
as part of electromobility programmes, which consist in gradual replacement of internal
combustion vehicles with their electric counterparts, unfortunately solve only some of the
transport-related problems encountered by cities. Although EVs do reduce emissions of
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pollutants and noise, they do not decrease traffic congestion, the number of road accidents,
land consumption, or land-use change.

Therefore, this article addresses the identified literature gap in the area of apply-
ing rail transport in an urban delivery system. Our research results demonstrate the
effects of incorporating LFR electric trains into the ZUDS, using the example of the city of
Szczecin, Poland.

3. Study Stages and Input Data

The article presents research on the effects of incorporating rail transport into the
ZUDS. The study was based on the example of the city of Szczecin, Poland. The research
process was divided into six stages, which are outlined in Figure 2:

• Stage 1: literature review concerning the technical and organisational changes taking
place in UFT, leading to identifying the literature gap, research goal, and research
questions;

• Stage 2: analysis of the current state, i.e., the research area being the city of Szczecin,
and the present urban delivery system were characterised;

• Stage 3: defining the assumptions for studying effects of incorporating rail transport
into the ZUDS;

• Stage 4: estimation of transport external costs resulting from shifting urban deliveries
from road to rail transport for the city of Szczecin example, taking into account appli-
cation of the LFR system developed by the authors in their earlier research studies;

• Stage 5: identification of other effects resulting from shifting urban deliveries from
road to rail transport on the city of Szczecin example, taking into account application
of the LFR system;

• The last stage of the research study was the discussion of the results and formulation
of the conclusions.

Figure 2. The research process flow diagram.

The following input data were used for the purposes of the research study:

• Statistical data regarding the research area, i.e., the city of Szczecin;
• Provisions of the Act of 11 January 2018 on Electromobility and Alternative Fuels

(AEAF) [80];
• The assumptions regarding the original LFR system developed by the authors—its

functioning scheme is outlined in their earlier publications [97,104–106];
• Average costs per category for individual means of transport, as per the Handbook on

the External Costs of Transport, Version 2019, developed by the European Commis-
sion [107].
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4. Characteristics of the Research Area

The research area covered by the case study was the city of Szczecin, located in
northwest of Poland. The city is situated on the Oder River and Dąbie lake, in the vicinity of
Poland’s land and sea frontiers, at the distance of ca. 65 km from the Baltic Sea coastline, ca.
130 km from Berlin, ca. 274 km from Copenhagen, ca. 454 km from Stockholm, ca. 507 km
from Prague, and ca. 516 km from Warsaw. Szczecin is the capital and largest city in
the West Pomerania Voivodeship, both in terms of the surface area and the population.
According to the statistical data as of 30 June 2020, Szczecin covers an area of 301 km2,
and its population is 400,990 [108]. The city is also the centre of the Szczecin Metropolitan
Area (SMA).

From the point of view of the adopted research goal, the relevant aspects that char-
acterise the research area are the spatial layout of the city, the transport infrastructure
providing transport accessibility to and within the city limits, and the current urban deliv-
ery system.

The spatial layout of the city is quite peculiar—it is dipolar. This is due to the fact that
the city is situated at the Oder River estuary and its flood plains, and that the seaport is
also located in this area (Międzyodrze). Consequently, the city area is naturally divided
into two parts: the left-bank (Lewobrzeże) and the right-bank (Prawobrzeże), which has
shaped their functionalities.

The left-bank part of Szczecin is dominated by services at the municipal, regional,
national, and international level, whereas the right-bank part of the city features the city
centre that serves the local and suburban purposes, focusing on the direct vicinity of the
city [109]. The analysis of the functional system of the city indicates that in the left-bank
part of Szczecin, the dominating functions are services, administration, education, culture,
sport, entertainment, tourism, and hotels, whereas in the right-bank part the prevailing
functions are production, warehousing, and storage. This functional division makes the
left-bank part of the city representative and important to its residents and visitors.

Additionally, both parts of the city are separated by the area of Międzyodrze with a
concentration of production and service facilities connected with the functioning of the
seaport and shipbuilding industry. This area is specific due to the fact that it is ca. 8 km
wide and it is excluded from other city-related functions.

It is also important to note that the residential function is found in both—the left-bank
and the right-bank parts of the city, except for the Międzyodrze area. It should also be
noted that in Szczecin, similarly as in other cities in Poland and Europe, we observe the
diminishing residential function in the city centre and suburbanisation of the outskirts.
This is mainly connected with the migration of residents to the newly built housing estates
located out of the city centre, or the migration out of the city to the rural areas.

In the aspect of (both passenger and freight) transport planning and organisation in
the city, another important factor to consider is the fact that the city centre in Szczecin is
used for transit purposes. The city centre serves as the interchange point for residents who
wish to move between the individual districts of the city. This means that a considerable
number of the residents arrive daily to this part of the city on their way to work, school, or
administration centres.

Implementation of an urban delivery system to a large extent depends on the available
transport infrastructure. The following traffic routes run through the city of Szczecin:

• Road transport: A6 motorway linking Szczecin with the country border and farther
on with Berlin, expressways: S3 (E65), S6, S10, and S11 linking Szczecin with other
major cities in Poland;

• Rail transport: railways: 273, 351, and 401, being part of E59 and CE59 European
transport routes;

• Inland transport: inland routes linking Szczecin via the Oder River with the port of
Świnoujście, and via the Oder–Havel Canal with Berlin

• Seaborne transport: Szczecin seaport has connections with other European seaports.
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The last major element characterising the research area in relation to the adopted
research goal is the current urban delivery system. It should be noted that as opposed
to the passenger transport, urban freight transport in Poland is not governed by national
legal regulations pertaining to its organisation by local self-government. Similarly, as
in the case of other Polish cities, freight transport in Szczecin is handled by numerous
dispersed entities characterised by diverse operations profiles, structures, and sizes or
functioning ranges.

There are two kinds of freight deliveries in the area of Szczecin. The first kind pertains
to cargo destined for the seaport. Overland deliveries are made via rail haulage, and large
goods vehicles made up of truck tractors and semi-trailers. The second kind of deliveries
covers those of dispersed nature, made within the city area and destined for end customers
or pick-up points. They are made only with road vehicles, predominantly by means of
diesel-powered LCVs. As opposed to the public passenger transport, in Szczecin currently
there are no implemented solutions regarding freight transport, which would correspond
to electromobility assumptions and goals.

5. Characteristics of the Light Freight Railway Concept

In the aspect of urban deliveries, rail transport offers many features that can be
decisive for its competitiveness in relation to other modes of transport. These include, i.a.,
considerable speed, high level of safety, considerable carrying capacity, no dependency
on weather conditions, low impact on the natural environment, and independence from
road traffic congestion. These features indicate a significant potential held by this mode of
transport in terms of deliveries made in compliance with the SUFT assumptions. However,
in business practice, making use of rail transport in freight deliveries is to a significant
extent determined by the quantitative and qualitative status of the infrastructure, i.a., the
number of available railway sidings or the length of a conventional train composed of
an engine and a dozen or several dozen wagons. A small number of railway sidings in
a given area limits the possibility of making direct “door-to-door” rail deliveries, and
necessitates incorporation of other modes of transport (usually road transport) into the
transport process. During transshipment, a traditional train composed of a locomotive
and a dozen or several dozen wagons requires a railway siding of an appropriate length,
which will make it possible to handle the whole train at the same time. A constraint
in rail transport utilisation may also be the need for complicated and time-consuming
manoeuvres at railway sidings, which require decoupling and shunting of wagons and
moving the engine from one end of the train to the other. To this end, the use of an
additional manoeuvre locomotive might also be required.

The analysis of the constraints related to utilisation of rail transport in urban deliveries
handling indicates that it is necessary to develop innovative means of rail transport, which
also implies modern forms of their handling.

The study of effects of incorporating rail transport into the ZUDS in Szczecin was
conducted with the use of the original concept, i.e., Light Freight Railway (LFR). LFR
applies small, bidirectional Freight Multiple Units (FMU) operating without a separate
locomotive. FMU is composed of several (minimum two) wagons, where the outermost
wagons of a train are equipped with driver’s cabins. Owing to this, a LFR train may
be handled:

• Within a railway network dedicated to passenger traffic, e.g., on urban and agglomer-
ation lines;

• Directly at railway stations;
• On railway sidings with limited lengths, located within a city.

Due to the small length of LFR trains, transshipment operations performed within
railway sidings may be considerably simplified, as there is no need to shunt any individual
wagons. Moreover, due to providing the two outermost wagons with driver’s cabins, the
train is bidirectional. The railway siding may be entered and exited in the push–pull system
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(Figure 3), without the need for moving the engine from one end of the train to the other or
engaging an additional manoeuvre locomotive.

Figure 3. LFR train operation system.

It should be noted that LFR trains may be powered in different ways depending on the
available infrastructure and needs. What is important from the point of view of the research
study described in this paper, in addition to internal combustion engine, LFR trains may
be powered by electric traction networks or use hybrid solutions, thus their application
may constitute an important element of SUFT and support electromobility development in
cities. In view of the research goal, to estimate the effects of incorporating rail transport
into the ZUDS in Szczecin, it was assumed that the LFR trains are electrically powered.

6. Study of Effects of Incorporating Rail Transport into the Zero-Emission Urban
Deliveries System—Case Study of the City of Szczecin, Poland
6.1. Research Assumptions

As already mentioned in Chapter 4, in the current urban delivery system in Szczecin
individual operators make deliveries from their logistic centres located usually on the
city outskirts or even outside its borders, directly to end customers or pick-up points
dispersed across the whole city. The deliveries are made predominantly by means of
diesel-powered LCVs.

It should be noted that as a result of the provisions of AEAF, it will be necessary to
significantly modify this system in selected parts of the city. Even though AEAF does not
specify the principles of urban delivery system functioning, it does stipulate the obligation
to establish CTZs by city authorities, which will lead to the need to introduce numerous
changes regarding cargo flow handling in such zones. One of them will be replacing
some of the vehicles in the fleet with zero-emission ones. However, it should be noted
that replacement of traditional diesel-powered LCVs with similar but electrically driven
vehicles will not solve all the problems related to freight traffic in CTZs. Admittedly, the
process will make it possible to reduce the pollution and noise levels; however, it will not
reduce the traffic congestion and it will not increase the safety of pedestrians and cyclists.

Analysing the possible solutions concerning future delivery handling in Szczecin, it
must not be forgotten that most of the left-bank part of the city shows historic, tourist, and
representative values. It is predominantly a densely built-up area, which means there is
only limited space for vehicle traffic or safe parking, or for establishing loading/unloading
bays. Making deliveries in such areas by means of LCVs of any kind, regardless of
their drive, significantly constrains the urban space functionality and free movement of
pedestrians and cyclists, at the same time leading to degradation of the infrastructure and
urban greenery.

What is important, as a result of increased road traffic in the centre of Szczecin, is
that the city authorities have already started the process of modifying some of the streets
in the inner city by establishing “30 km/h zones”. As part of these measures, changes
are introduced to the hitherto road traffic organisation. In such zones, in addition to
the considerable reduction in permissible speed for road vehicles, some traffic lanes are
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eliminated, right-of-way intersections are replaced with all-way-stop intersections, one-
way street routes are established, and some streets are excluded from vehicle traffic. At
the same time, such zones favour pedestrian and cycling traffic, cycle paths are built,
contraflow lanes for bicycles are organised within one-way roads, pedestrian crossings are
widened and their number increased. All these measures are aimed at elimination of transit
traffic from the city centre, as well as traffic calming and increased safety of pedestrians
and cyclists.

In view of the measures currently taken by the city authorities to regulate and reduce
road traffic in the city centre, and also in view of the AEAF provisions concerning the need
to establish CTZs, it should be noted that it will be problematic to use LCVs to handle
cargo flows in CTZs—the use of diesel-powered LCVs will be impossible due to their
emissions, whereas the use of electric LCVs will be constrained due to the size of the
vehicles. A solution that makes it possible to handle last-mile deliveries in CTZs, using the
infrastructure that is inaccessible for electric LCVs, is application of LEFVs and NMT. Due
to their zero-emission feature and small dimensions, they are able to reach end customers
or pick-up points located in CTZs.

However, while organising last-mile deliveries with the use of LEFVs and NMT, it
is also necessary to take into account the specific nature of these vehicles. Due to their
limited travel range and small carrying capacity, it is impossible for them to be loaded,
similarly as in the case of LCVs, in logistic centres and warehouse located on the outskirts
or outside the city limits. Therefore, it is necessary to organise, in the direct vicinity of
CTZs, mobile or nonmobile UDs where cargo brought from areas outside the city centre
can be transshipped onto vehicles eligible to enter the CTZs.

This research study on effects of incorporating rail transport into the ZUDS in Szczecin
takes into account the conditions noted above.

The following assumptions were adopted in connection with the research study:

1. CTZs will be established in the city centre, pursuant to the provisions of AEAF.
2. Last-mile deliveries in the CTZs in Szczecin will be made exclusively by means of

vehicles eligible to enter CTZs: LEFVs and NMT vehicles.
3. Due to the limitations of LEFVs and NMT (limited carrying capacity and travel range,

time-consuming battery charging), Urban Depots will be established around the
Clean.Transport Zones. In the UDs, the following operations will be performed:

• Transshipment from the vehicles bringing cargo from the areas outside the city
centre onto the vehicles eligible to enter CTZs;

• Charging the EVs;
• Possibly short-term storage.

4. UDs will be established in the following locations (all in the left-bank part of the city):

• UD Gumieńce—located directly next to the “Szczecin Gumieńce” railway station,
which has appropriate land reserves. In the vicinity of this place there are densely
built-up housing estates, commercial zones (large-format retail outlets, wholesale
outlets), a university campus, and a fast developing suburban residential zone
(multi- and single-family houses).

• UD Turzyn—located directly next to the “Szczecin Turzyn” railway station,
which has appropriate land reserves. In the vicinity of this place there are
densely built-up housing estates, commercial zones (large-format retail outlets),
a university campus, and hospitals.

• UD Niebuszewo—located directly next to the “Szczecin Niebuszewo” railway
station, which has appropriate land reserves. In the vicinity of this place there are
densely built-up housing estates, commercial zones (large-format retail outlets),
a university campus, hospitals, and production zones.

5. Due to the diverse locations of logistic centres and warehouses currently used in
making urban deliveries in the city of Szczecin, it is suggested to establish one UCC to
be shared by all the operators. The choice of the UCC was in particular dependent on:
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• Location outside the core city centre—as per van Rooijen et al. [48];
• Access to national and international roads and railway lines;
• Access to urban roads and railway lines;
• Access to land reserves.

In view this, the suggested location of the UCC to handle urban deliveries in Szczecin
is in the right-bank part of the city (marked on Figure 4 as “UCC Dunikowo”). The location
is equipped with a railway siding and it is situated directly next to railway lines 351 and
401, as well as next to the current and planned expressways—S3, A6, and S10. It should
also be stressed that in the future an intermodal terminal is planned to be built there.

Figure 4. Routes that are part of variant V0 and variant V1.

For the research purposes, two variants of urban delivery system functioning were
adopted for Szczecin: V0 (minimum) and V1 (extended). Both variants take into account
the need for the city authorities to establish CTZs pursuant to the provisions of AEAF.

Variant V0 (minimum) assumes that cargo will be delivered from the UCC to UDs
located in the centre of Szczecin by means of diesel-powered LCVs. Then, in accordance
with the adopted assumptions, in the local UDs cargo will be transshipped onto vehicles
eligible to enter CTZs, which will then make zero-emission last-mile deliveries. In this way,
variant V0 reflects the current urban delivery system in Szczecin, only taking into account
the need imposed by AEAF to establish CTZs, and thus it merely ensures zero-emission
last-mile deliveries in that area.

Variant V1 (extended) assumes deliveries of cargo from the UCC to UDs located in
the centre of Szczecin via rail transport by means of applying the original, zero-emission
LFR system. Thus, this variant assumes extension of the zero-emission delivery system
also beyond last-mile deliveries. Last-mile delivery handling from the individual UDs in
variant V1 is the same as in the case of variant V0.
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The graphic presentation of variants V0 and V1 can be seen in Figure 4. The black
line represents the route to be covered by diesel-powered LCVs in variant V0, the red line
marks the route to be covered by LFR electric trains in variant V1.

For the purposes of calculations pertaining to variants V0 and V1, the carrying capacity
of the vehicles and lengths of the individual routes were estimated. In the case of variant
V0 it was assumed that the carrying capacity of each LCV amounts to 1.5 tonnes. On that
basis it was further assumed that one LCV would serve one UD at a time. The routes of the
individual LCVs were specified as follows:

• UCC—UD Gumieńce—UCC: 20.7 km × 2 = 41.4 km;
• UCC—UD Turzyn—UCC: 20.0 km × 2 = 40.0 km;
• UCC—UD Niebuszewo—UCC: 19.7 km × 2 = 39.4 km.

In the case of variant V1, it was assumed that the carrying capacity of each LFR train
amounts to 45 tonnes. A train consists of two wagons equipped with driver’s cabins, with
a carrying capacity of 14 tonnes each, and one middle wagon with a carrying capacity of 17
tonnes. Therefore, it is possible and reasonable that one LFR train can serve all the three
UDs at a time. The LFR train route was specified as follows:

• UCC Dunikowo—UD Gumieńce—UD Turzyn—UD Niebuszewo—UCC Dunikowo:
50.7 km.

The entire analysed railway route is provided with electric traction, which makes it
possible to use LFR electric trains on it.

In accordance with the adopted research methodology, the computations do not
include last-mile deliveries to be made from the individual UDs to end customers. This
is because the last-mile deliveries are to be made in the same way in both variants—
exclusively by means of vehicles that are eligible to enter the CTZs in the city; therefore,
the last-mile deliveries are not analysed in this paper.

6.2. Study of the Transport External Costs Resulting from Shifting Urban Deliveries from Road to
Rail Transport in the City of Szczecin

In order to study the effects of incorporating rail transport into the ZUDS, it was
necessary to estimate the external costs of transport resulting from shifting urban deliveries
from road to rail transport. The estimation was based on the example of the Szczecin
city, taking into account two variants of urban delivery system functioning adopted for
the study: variant V0 (minimum) assuming cargo deliveries with vehicles categorised as
Light Commercial Vehicle Category N1 (LCV) [110] and variant V1 (extended) assuming
deliveries with LFR electric trains.

Estimation of the effects was based on the EU methodology regarding the amount
of external costs generated by specific means of transport used in the individual modes
of transport [107]. The computations take into account the average costs per category for
individual means of transport, as per the Handbook on the external costs of transport,
Version 2019, [107]. The computation of a reduction in external costs was performed per
one Delivery Cycle (DC), covering transport of cargo from the UCC to all the three UDs.
Considering the maximum carrying capacity of a LFR train, it was assumed that 1 DC
involves transport of a cargo totalling 45 tonnes, out of which 15 tonnes are delivered
to UD Gumieńce, 15 tonnes are delivered to UD Turzyn, and 15 tonnes are delivered to
UD Niebuszewo.

Estimation of External Costs in Variant V0
In order to calculate the external costs generated by the means of transport in variant

V0, the following data were adopted:

• Deliveries from UCC to UDs are made by means of diesel-powered LCVs;
• Carrying capacity of 1 LCV = 1.5 tonnes;
• One DC (45 t) is handled by 30 LCVs (10 vehicles per each UD);
• Average external cost per diesel-powered LCV= 0.247 EUR/vkm.
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Assuming the EU methodology concerning external costs generated by the means of
road transport, [107] the following formula was applied for the computation:

ECV0 = WLCV ∗ (DLCV-G ∗ NLCV-G + DLCV-T ∗ NLCV-T + DLCV-N ∗ NLCV-N) ∗ UECVO

where:
ECV0—external costs generated by LCVs per 1 DC (EUR);
WLCV—cargo weight per 1 LCV (tonnes);
DLCV-G—distance covered from UCC to UD Gumieńce and back to UCC (km);
NLCV-G—number of LCVs bringing cargo to UD Gumieńce per 1 DC (pcs);
DLCV-T—distance covered from UCC to UD Turzyn and back to UCC (km);
NLCV-T—number of LCVs bringing cargo to UD Turzyn per 1 DC (pcs);
DLCV-N—distance covered from UCC to UD Niebuszewo and back to UCC (km);
NLCV-N—number of LCVs bringing cargo to UD Niebuszewo per 1 DC (pcs);
UECVO—external unit costs generated by 1 LCV at a distance of 1 km (EUR).
External costs generated by LCVs per 1 DC in variant V0 for the analysed case

study are:
ECV0 = 1.5 ∗ (41.4 ∗ 10 + 40.0 ∗ 10 + 39.4 ∗ 10) ∗ 0.247

ECV0 = 447.56 EUR

Estimation of External Costs in Variant V1
In order to calculate the external costs generated by the means of transport in variant

V1, the following data were adopted:

• Deliveries from UCC to UDs are made by means of LFR electric trains;
• Carrying capacity of 1 LFR = 45 tonnes;
• One DC (45 t) is handled by 1 LFR train;
• Average external cost for electric freight railway trains = 0.0112 EUR/tkm.

Assuming the EU methodology concerning external costs generated by the means of
rail transport [107], the following formula was applied for the computation:

ECV1 = WLFR ∗ DLFR ∗ UECV1

where:
ECV1—external costs generated by an LFR electric train per 1 DC (EUR);
WLFR—cargo weight per 1 LFR train (tonnes);
DLFR—delivery distance on the route: UCC Dunikowo—UD Gumieńce—UD Turzyn—

UD Niebuszewo—UCC Dunikowo (km);
UECV1—external unit costs generated by 1 LFR train in transporting 1 tonne at a

distance of 1 km (EUR/tkm).
External costs generated by LFR per 1 DC in variant V1 for the analysed case study are:

ECV1 = 45.0 ∗ 50.7 ∗ 0.0112

ECV1 = 25.55 EUR

To compute the reduction in the external costs per 1 DC, being the result of shifting
urban deliveries from road (V0) to rail (V1) transport in the city of Szczecin, the following
formula was adopted:

REC = ECV0 − ECV1

REC = 447.56 EUR − 25.55 EUR = 422.01 EUR

As results from the above, application of LFR trains in the ZUDS in Szczecin will make
it possible to reduce the external costs generated by the means of transport, which provides
a positive answer to research question RQ1 posed in the Introduction. In the analysed case
study, the reduction in external costs per 1 DC amounts to 422.01 EUR. Assuming that
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during one day only 1 DC is completed, the yearly reduction in external costs will amount
to over 154,000 EUR.

In case more DCs are completed per day, the annual reduction in external costs
resulting from incorporating LFR into the ZUDS in Szczecin, may amount to:

• For 2 DCs completed per day—308,067.30 EUR;
• For 3 DCs completed per day—462,100.95 EUR;
• For 4 DC s completed per day—616,134.60 EUR.

6.3. Study of Other Effects Resulting from Shifting Urban Deliveries from Road to Rail Transport
in the City of Szczecin

Taking into account the results of the computations described in Section 6.2, it is
possible to notice that incorporating rail transport (variant V1) into the ZUDS may bring a
number of positive effects with regard to reduction in external costs of transport.

In view of the assumed carrying capacity of the LFR train, which corresponds to that
of 30 LCVs, application of LFR trains may lead to considerable reduction in the number of
vehicles on the city roads. Completion of 1 DC on the UCC Dunikowo—UD Gumieńce—
UD Turzyn—UD Niebuszewo—UCC Dunikowo route by means of a LFR train may enable
elimination of 30 single deliveries made by LCVs in the city area, covering the total of
1208 km. Within one year, this means a reduction of up to 10,950 deliveries made by LCVs
covering the total of 440,920 km.

In case more DCs are completed per day, the annual reduction in the number of
deliveries made by LCVs resulting from incorporating LFR into the ZUDS in Szczecin may
amount to:

• For 2 DCs per day—21,900 deliveries, total distance of 881,840 km;
• For 3 DCs per day—32,850 deliveries, total distance of 1,322,760 km;
• For 4 DCs per day—43,800 deliveries, total distance covered: 1,763,680 km.

This significant reduction in the number of deliveries made by LCVs driving within the
city may have an impact on decreasing the road traffic congestion, decreasing the number
of accidents, increasing the road safety, and decreasing the level of road infrastructure
degradation. Moreover, a significant reduction in the number of LCVs in the city centre
may also have an impact on traffic calming and uncluttering of the urban transport system,
thus making it possible to manage the public space in a resident-friendly manner.

Another important issue regarding the effects of incorporating rail transport into the
ZUDS is that the way of locating and handling the local UDs is different than the one in
the case of applying LCVs.

In the case of using LCVs to make deliveries to UDs (variant V0), it should be borne
in mind that these vehicles are not eligible to enter CTZs. Therefore, in order to ensure the
possibility of transshipping cargo from LCVs to vehicles capable of making zero-emission
last-mile deliveries (LEFVs and NMT), the UDs may only be located outside the CTZs or
directly at their borders. Consequently, in the case of implementing variant V0, there is
no possibility of locating any UDs inside CTZs. This may have specific implications in the
future—the functioning UDs and the road infrastructure used by LCVs to reach the UDs
may hinder or even prevent the possibility of extending the CTZs.

In this case, two alternative scenarios of CTZ spatial development are possible:

• Any future spatial development of CTZs will be uneven due to the need to bypass the
UDs along with the infrastructure used by LCVs (Scenario A in Figure 5);

• It will be necessary to build a new UD (along with the accompanying infrastructure)
outside the extended CTZ so as to enable LCV traffic, which will each time generate
additional costs (Scenario B in Figure 5).
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Figure 5. Scenarios of CTZ spatial expansion in variant V0.

It is worth noting that the CTZ expansion scenarios in variant V0, presented in Figure 5,
would be unfavourable for organisational, spatial, and economic reasons.

Delivery-making by means of LFR trains (variant V1) makes it possible for CTZs to
expand in the city and for UDs to be located and handled in a way that is different from
variant V0. In variant V1 it is possible to locate UDs (along with the railway infrastructure)
within the CTZ, because, as opposed to LCVs, LFR electric trains may be part of CTZ
traffic. Therefore, UDs that are served by LFR will not hinder the possibility of CTZ spatial
expansion. In variant V1, UD may be located within the CTZ; it may even become its
central point. In this case, any CTZs may expand evenly in each direction, without the need
to bypass any UD or to construct a new UD (along with the accompanying infrastructure)
at the individual stages of the CTZ development.

A sample scenario of CTZ expansion in the case LFR is used (variant V1) to make
deliveries to UD Turzyn in Szczecin is presented in Figure 6. It was assumed that this zone
would be expanded in stages, as follows:

• First stage—within a radius of ca. 1 km from UD Turzyn;
• Second stage—within a radius of ca. 2 km from UD Turzyn;
• Third stage—within a radius of ca. 3 km from UD Turzyn.
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Figure 6. Scenario of CTZ expansion in the case LFR is used (variant V1) to make deliveries to UD Turzyn in Szczecin.

It should be noted that an even expansion of the individual CTZs in the city, being a
result of applying LFR (variant V1), also provides a possibility of partial overlapping of
those zones at subsequent stages of their development. Consequently, it may be possible
to obtain a coherent clean transport zone with a considerable area covering, e.g., whole
districts, with a possibility of making zero-emission deliveries also between the individual
UDs. The research results therefore enable us to give a positive answer to research question
RQ2 posed in the Introduction.

Assuming that CTZs expansion in the analysed case study (the city of Szczecin) will
proceed evenly and in stages:

• First stage—within a radius of ca. 1 km from each of the proposed UDs;
• Second stage—within a radius of ca. 2 km from each of the proposed UDs;
• Third stage—within a radius of ca. 3 km from each of the proposed UDs.

It will be possible to realize these effects as early as at the second stage, when the
areas served by UD Turzyn and UD Niebuszewo partially overlap. The next (third) stage
will lead to merging the UD Turzyn and UD Gumieńce zones, which consequently will
make it possible to obtain one coherent clean transport zone covering a considerable part
of left-bank Szczecin.

The possible spatial expansion of CTZs in Szczecin in the case of applying LFR is
presented in Figure 7.
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Figure 7. Spatial expansion of CTZs in Szczecin in the case of applying LFR.

It should be noted that incorporation of LFR in the urban delivery system may also
bring positive effects outside CTZs. Application of LFR electric trains makes it possible to
supplement the zero-emission last-mile delivery system (from UDs to individual customers)
with zero-emission deliveries between UCC and the individual UDs. As a result, it is
possible to reduce pollutant emissions not only in the specific CTZs (which is the case in
variant V0), but also in other areas of the city. The research results therefore enable us to
give a positive answer to research question RQ3 posed in the Introduction.

Moreover, it is worth noting that inclusion of LFR trains in the ZUDS in Szczecin will
not entail a need to build additional electric infrastructure. All the rail tracks to be used
by the planned LFR train routes are provided with electric traction, and as the trains are
permanently connected to the power network, there is no need to construct a charging
station. These features make it possible to ensure continuity of deliveries to be made with
LFR trains to the individual UDs. Thus, as opposed to EFVs, the planning process of
deliveries to be made with LFR will not have to provide for technical breaks necessary for
battery charging.

7. Discussion

The research studies completed for the purposes of this paper made it possible to
identify potential possibilities of applying rail transport in the ZUDS. The case study of
the city of Szczecin, Poland, was particularly important in view of the adopted research
goal. The study made it possible to indicate effects ensuing from shifting urban deliveries
from road to rail transport, and in particular to estimate the possible level of external costs
reduction resulting from application of the proposed solution.

The computations of external costs generated by the means of transport for the two
adopted research variants (V0 and V1) showed that completion of 1 DC by LFR trains makes
it possible to reduce transport external costs by 422.01 EUR and to eliminate 30 deliveries
made by LCVs in Szczecin, covering the total distance of 1208 km. It is worth noting that
depending on the needs and volume of cargo flows in the city, the number of DCs may be
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successively increased, which implies that the obtainable level of transport external costs
reduction may rise considerably.

Application of the original concept of incorporating LFR into the ZUDS may also
bring other positive effects for the city and its residents. The key benefits identified in the
study process are decreased traffic congestion and decreased number of accidents, thus
leading to increased road safety, decreased level of road infrastructure degradation, traffic
calming, and uncluttering of the urban transport system, together with the possibility of
managing the public space in a resident-friendly manner. Another significant effect ensuing
from incorporating rail transport into the ZUDS, which was identified in the course of the
study, is different locations of UDs and a different manner of serving them, which makes it
possible for CTZs to expand more evenly in terms of space.

However, it should be stressed that obtaining the particular effects is also connected
with specific limitations. In particular, these include:

• Concerning the level of external costs reduction—the principles of the given country’s
energy policy, including especially the share of renewable energy sources (RES) in the
energy mix. The impact of the RES share on the possibility of obtaining the assumed
effects of electromobility in Poland is described in Pietrzak et al. [111,112].

• Regarding measures related to establishing CTZs and introduction of vehicle traffic
constraints—the assumptions of the local and national transport policies;

• Engagement of individual stakeholders in changing the urban delivery system, in
particular: city authorities, suppliers and shippers;

• The state of the railway infrastructure—it is a precondition for the possibility of apply-
ing rail transport in the urban delivery system; especially in terms of its quantitative
and qualitative status and the railway electrification level.

• In case the railway network is shared by freight and passenger transport, it is necessary
to include LFR in the timetable to assure that passenger transport is undisturbed.

• Rail transport operators will need to purchase appropriate means of transport—the
means of transport proposed in the LFR concept are not used on the transport market
at the moment.

Moreover, incorporation of rail transport into the ZUDS in Szczecin, via application of
LFR electric trains, may provide significant support in view of implementation of the SUFT
assumptions and the electromobility policy in the analysed city. Given that in both research
variants (V0 and V1) last-mile deliveries from UDs and end customers are to be made with
LEFVs and NMT, application of LFR electric trains to handle cargo flows between the UCC
and the UDs will make it possible to expand the ZUDS. Consequently, it will be possible to
make zero-emission deliveries over the whole UCC–UD–end customer route.

The urban delivery systems for variant V0 and variant V1 are outlined in Figure 8.
The blocks in white denote deliveries made with diesel-powered vehicles, whereas the
blocks in green show deliveries made with zero-emission vehicles.

Figure 8. Diagrams of urban delivery systems for variants V0 and V1.
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8. Conclusions

The dynamic and often uncontrolled growth of cargo and passenger flows in cities,
being the result of urbanisation processes, generates a number of phenomena that are
adverse for the natural environment and humans. Counteracting these negative effects
requires taking specific measures. One of the solutions applied on an international scale is
decarbonisation of transport, which includes its electrification.

The literature addresses this issue to a very broad extent; however, it seems that
the vast majority of the deliberations pertain to road transport solutions. In view of the
available research results in that respect, it should be underlined that EVs are unable to solve
all problems encountered by cities as a result of excessive growth of transport. Although
application of EVs does reduce pollution and noise emissions [113], it does not relieve
cities from problems such as road congestion, road accidents, and urban infrastructure
and greenery degradation. Moreover, EVs are characterised by specific limitations that
significantly determine their utilisation. These include in particular the limited battery
capacity, the limited travel range, and the need to plan routes in a way that provides time
necessary to charge the battery. Many authors also point out the possible future problem
with disposal of used batteries [114,115].

As already mentioned above, despite numerous studies on electromobility in transport,
the problem of applying rail transport in an urban delivery system is addressed in the
literature only to a negligible extent. This paper provides some theoretical value by
addressing the issue of effects of incorporating rail transport into a ZUDS by using the LFR
concept; thus, it fills the existing literature gap. This issue is particularly important due to
the fact that the means of rail transport have been using electric power as the basic drive for
many years, and they could (or even should, as demonstrated in the article) be considered
as a tool for implementing the idea of urban transport decarbonisation and electromobility.

Analysing the possibilities of using the original concept of LFR, based on the use of
dedicated electric vehicles, it was demonstrated that rail transport has potential for its
incorporation into the urban delivery system, and it may provide significant support for
zero-emission last-mile deliveries in city areas. In particular, the research studies carried
out in connection with this paper made it possible to formulate the following conclusions:

• Application of rail transport in the urban delivery system by replacing, on the routes
between the UCC and the individual UDs, the LCVs with LFR electric trains, will
make it possible to reduce the external costs of transport, decrease the number of
vehicles on the streets, and reduce the traffic congestion, which consequently will
increase the safety of road traffic participants as well as pedestrians and cyclists.

• Application of rail transport in the urban delivery system may have an influence
on development of Clean Transport Zones (CTZs) in the city. LFR trains, being
zero-emission vehicles, may enter CTZs, therefore they do not constrain their spatial
development; CTZs may expand evenly, regardless of the original locations of UDs.

• Application of LFR may become a factor facilitating expansion of the ZUDS. Appli-
cation of LFR electric trains between the UCC and the individual UDs provides a
possibility of extending zero-emission deliveries in the city also beyond the CTZs.

The research described in this paper also has some practical value. Incorporating rail
transport into the ZUDS by applying LFR electric trains may contribute to SUFT develop-
ment, and consequently to reduction in adverse effects generated by UFT, and achieving
the assumptions of the transport electromobility policy. The LFR system is autonomous;
therefore, it may be implemented in a given city regardless of the systems applied in other
cities. Its application may have an impact on changing the local transport policy and
achieving a coherent, zero-emission system of cargo and passenger flow handling in cities.

The issues tackled in this paper require further studies on the determinants of intro-
ducing the proposed solutions in specified cities and the ensuing effects.
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The following abbreviations are used in this manuscript:
AEAF Act on Electromobility and Alternative Fuels
CCC Cargo Consolidation Centre
CTZ Clean Transport Zone
DC Delivery Cycle
EFV Electric Freight Vehicle
EU European Union
EV Electric Vehicle
FCC Freight Consolidation Centre
FMU Freight Multiple Units
LCV Light Commercial Vehicle
LDC Local Distribution Centre
LEFV Light Electric Freight Vehicle
LEZ Low Emission Zone
LFR Light Freight Railway
MCC Micro Consolidation Centre
MD Micro Depot
NMT Nonmotorized Transport
PLS Proximity Logistics Space
RES Renewable Energy Sources
SEV Small Sized Electric Vehicle
SMA Szczecin Metropolitan Area
SUFT Sustainable Urban Freight Transport
UCC Urban Consolidation Centre
UCC-ME Urban Consolidation Centre for Municipal Entities
UD Urban Depot
UDC Urban Distribution Centre
UFCC Urban Freight Consolidation Centre
UFT Urban Freight Transport
ZEZ Zero Emission Zone
ZUDS Zero-emission Urban Delivery System
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